
Findings of the Association for Computational Linguistics: EACL 2023, pages 2325–2336
May 2-6, 2023 ©2023 Association for Computational Linguistics

Better Pre-Training by Reducing Representation Confusion

Haojie Zhang1, 2∗, Mingfei Liang1∗, Ruobing Xie1∗, Zhenlong Sun1, Bo Zhang1, Leyu Lin1

1WeChat Search Application Department, Tencent, China
2Peking University, China

1 {coldhjzhang, aesopliang, ruobingxie, richardsun, nevinzhang, goshawklin}@tencent.com
2zhanghaojie@stu.pku.edu.cn

Abstract

In this work, we revisit the Transformer-based
pre-trained language models and identify two
different types of information confusion in po-
sition encoding and model representations, re-
spectively. Firstly, we show that in the relative
position encoding, the joint modeling about
relative distances and directions brings con-
fusion between two heterogeneous informa-
tion. It may make the model unable to cap-
ture the associative semantics of the same dis-
tance and the opposite directions, which in
turn affects the performance of downstream
tasks. Secondly, we notice the BERT with
Mask Language Modeling (MLM) pre-training
objective outputs similar token representations
(last hidden states of different tokens) and head
representations (attention weights1of different
heads), which may make the diversity of infor-
mation expressed by different tokens and heads
limited. Motivated by the above investigation,
we propose two novel techniques to improve
pre-trained language models: Decoupled Di-
rectional Relative Position (DDRP) encoding
and MTH2 pre-training objective. DDRP de-
couples the relative distance features and the
directional features in classical relative posi-
tion encoding. MTH applies two novel auxil-
iary regularizers besides MLM to enlarge the
dissimilarities between (a) last hidden states of
different tokens, and (b) attention weights of
different heads. These designs allow the model
to capture different categories of information
more clearly, as a way to alleviate information
confusion in representation learning for better
optimization. Extensive experiments and abla-
tion studies on GLUE benchmark demonstrate
the effectiveness of our proposed methods.

*Equal contribution.
1"attention weights" mainly refer to the dot product be-

tween Key and Query in the self-attention module.
2MTH is the abbreviation of our proposed MLM with To-

ken Cosine Differentiation (TCD) and Head Cosine Differen-
tiation (HCD) pre-training task. TCD and HCD are described
in detail in sec. 1(2) and sec.3.2.

1 Introduction

The paradigm of pre-training on large-scale cor-
pus and fine-tuning on specific task datasets has
swept the entire field of Natural Language Pro-
cessing (NLP). BERT (Devlin et al., 2018) is the
most prominent pre-trained language model, which
stacks the encoder blocks of Transformer (Vaswani
et al., 2017) and adopts MLM and Next Sentence
Prediction (NSP) pre-training tasks, achieving the
SOTA results in 2018. After that, a large num-
ber of Pre-trained Language Models (PLMs) (Liu
et al., 2019; Lan et al., 2020; Raffel et al., 2019;
Clark et al., 2020; He et al., 2021) that optimize
the Transformer structure and pre-training objec-
tives have emerged, which further improves the
performance of the pre-trained language models on
multiple downstream tasks. In this work, we iden-
tify two different types of information confusion
in language pre-training, and explore two concep-
tually simple and empirically powerful techniques
against them as follows:

(1) Decoupled Directional Relative Position
(DDRP) Encoding. It is well known that rela-
tive position encoding is competitive and has been
widely used in real PLMs (Shaw et al., 2018; Yang
et al., 2019; Wei et al., 2019; Raffel et al., 2019; Su
et al., 2021; He et al., 2021; Ke et al., 2021). De-
spite its great performance, we still notice relative
position encoding methods utilizes completely sep-
arate parametric vectors to encode different relative
position information, which indicates that every sin-
gle parametric vector needs to learn both distance
and directional features. We consider this paradigm
of utilizing a single parametric vector to represent
both relative distance and direction as a kind of
information confusion, and question its rationality.
Since relative distance features and the directional
features are apparently heterogeneous information
that reflects different aspects of positional informa-
tion, we argue that existing methods may impose

2325



difficult in establishing connections explicitly be-
tween parametric vectors of the same distances
and the opposite directions, which in turn result
in serious information losses in position encoding.
Inspired by this, we propose a novel Decoupled
Directional Relative Position (DDRP) encoding. In
detail, DDRP decomposes the classical relative po-
sition embedding (Shaw et al., 2018) into two em-
beddings, one storing the relative distance features
and the other storing the directional features, and
then multiply the two together explicitly to derive
the final decoupled relative position embedding, al-
lowing originally confused distance and directional
information to be as distinguishable as possible.

(2) Model Representation Differentiations.
We analyze that there is non-negligible confusion
in the representation of pre-trained BERT, as ev-
idenced by the high consistency in last hidden
states across different tokens and attention weights
across different heads, respectively. Similar last
hidden states will introduce the anisotropic prob-
lem (Mimno and Thompson, 2017), which will
bound the token vectors to a narrow representa-
tion space and thus make it more difficult for the
model to capture deep semantics. Considering at-
tention weights contain rich linguistic knowledge
(Clark et al., 2019; Jawahar et al., 2019), we ar-
gue that high consistency in attention weights also
constrains the ability of the model to capture multi-
aspect information. To alleviate the representa-
tion confusion between different tokens and heads
caused by high information overlap, we propose
two novel pre-training approaches to stimulate the
potential of the pre-trained model to learn rich lin-
guistic knowledge: Token Cosine Differentiation
(TCD) objective and Head Cosine Differentiation
(HCD) objective. Specifically, TCD attempts to
broaden the dissimilarity between tokens by min-
imizing the cosine similarities between different
last hidden states. In contrast, HCD attempts to
broaden the dissimilarity between heads by min-
imizing the cosine similarities between different
attention weights. We apply TCD and HCD as
two auxiliary regularizers in MLM pre-training,
which in turn guides the model to produce more
discriminative token representations and head rep-
resentations. Formally, we define our enhanced
pre-training task as MLM with TCD and HCD
(MTH).

Extensive experiments on the GLUE benchmark
show that DDRP achieves better results than classi-

cal relative position encoding (Shaw et al., 2018) on
almost all tasks without introducing the additional
computational overhead and consistently outper-
forms prior competitive relative position encoding
models (He et al., 2021; Ke et al., 2021). More-
over, our proposed MTH outperforms MLM by a
0.96 average GLUE score and achieves nearly 2x
pre-training speedup on BERTBASE . Both DDRP
and MTH are straightforward, effective, and easy
to deploy, which can be easily combined with ex-
isting pre-training objectives and various model
structures. Our contributions are summarized as
follows:

• We propose a novel relative position encoding
named DDRP, which decouples the relative
distance and directional features, giving the
model a stronger prior knowledge, fewer pa-
rameters, and better results compared to con-
ventional coupled position encodings.

• We analyze the trend of self-similarity of last
hidden states and attention weights during pre-
training, and propose two novel Token Cosine
Differentiation and Head Cosine Differentia-
tion objectives, motivating pre-trained Trans-
former to better capture semantics in PLMs.

• We experimentally verified by our proposed
techniques (DDRP and MTH) that decompos-
ing heterogeneous information and extending
representation diversity can significantly im-
prove pre-trained language models. We also
analyze the characteristics of DDRP and MTH
in detail.

2 Related Work

In recent years, pre-trained language models have
made significant breakthroughs in the field of NLP.
BERT (Devlin et al., 2018), which proposes MLM
and NSP pre-training objectives, is pre-trained on
large-scale unlabeled corpus and has learned bidi-
rectional representations efficiently. After that,
many different pre-trained models are produced,
which further improve the effectiveness of the pre-
trained models. RoBERTa (Liu et al., 2019) pro-
poses to remove the NSP task and verifies through
experiments that more training steps and larger
batches can effectively improve the performance
of the downstream tasks. ALBERT (Lan et al.,
2020) proposes a Cross-Layer Parameter Sharing
technique to lower memory consumption. XL-Net

2326



(Yang et al., 2019) proposes Permutation Language
Modeling to capture the dependencies among pre-
dicted tokens. ELECTRA (Clark et al., 2020)
adopts Replaced Token Detection (RTD) objective,
which considers the loss of all tokens instead of a
subset. TUPE (Ke et al., 2021) performers Query-
Key dot product with different parameter projec-
tions for contextual information and positional in-
formation separately and then added them up, they
also add relative position biases like T5 (Raffel
et al., 2019) on different heads to form the final cor-
relation matrix. DEBERTA (He et al., 2021) sepa-
rately encodes the context and position information
of each token and uses the textual and positional
disentangled matrices of the words to calculate the
correlation matrix.

3 Method

In this section, we analyze in turn two different
types of information confusion that exist in the
real PLMs: (i) The paradigm of utilizing a single
parametric vector of relative position embedding
to represent both relative distance and direction.
(ii) The high similarity and overlap in model rep-
resentations. Based on above two investigations,
we propose two techniques, Decoupled Directional
Relative Position (DDRP) Encoding and MLM
with TCD and HCD (MTH), respectively, to help
the PLMs alleviate information confusion and en-
hance representation clarity and diversity.

3.1 Decoupled Directional Relative Position
(DDRP) Encoding

We first start to introduce DDRP by formulating
multi-head attention module of BERT and BERT-R
(Shaw et al., 2018). Specifically, BERT formulates
multi-head attention for a specific head as follows:

Q = HWQ,K = HWK , V = HWV , (1)

A =
QKT

√
d

, (2)

Z = softmax (A)V, (3)

where H ∈ RS×D represents the input hidden
states; WQ, WK , W V ∈ RD×d represent the pro-
jection matrix of Query, Key, and Value respec-
tively; A ∈ RS×S represents attention weight;
Z ∈ RS×d represents the single-head output hid-
den states of self-attention module; S represents
input sequence length; D represents the dimension
of input hidden states; d represents the dimension
of single-head hidden states. Unlike BERT, which

adds the absolute position embedding to the word
embedding as the final input of the model, BERT-R
first applies relative position encoding. It adds rela-
tive position embedding into K in the self-attention
module of each layer to make a more interactive
influence. Its formulations are as follows:

Ai,j =
Qi

(
Kj +Kr

σ(i,j)

)T
√
d

, (4)

σ (i, j) = clip (i− j) + rs, (5)

where Qi represents Query vector at the i-th posi-
tion; Kj represents Key vector at the j-th position;
rs represents maximum relative position distance;
σ (i, j) represents the index of relative position em-
bedding Kr ∈ R2rs×d; relative position embed-
ding for K are shared at all different heads. Note
that Shaw et al. (2018) has experimentally demon-
strated that adding relative position embedding to
the interaction between A and V gives no further
improvement in effectiveness, so the relative posi-
tion embedding in V space is eliminated in all our
experiments to reduce the computational overhead.

Compared with BERT, BERT-R models the cor-
relation between words and positions more explic-
itly, and thus further expands the expression diver-
sity between words. However, we notice that in
BERT-R, the vectors from the same distance on
both left and right sides are encoded in isolation (as
shown in Figure 1(a)), which indicates that every
single parametric vector from Kr is forced to main-
tain distance and direction, two different types of
information. Since it is confirmed that directional
information is crucial in language modeling (Vu
et al., 2016; Fuller, 2002; Shen et al., 2018), we
argue that such an approach causes unnecessary in-
formation confusion and faces several constraints:
(i) Mixing relative distance and directional informa-
tion for modeling makes information originally in
different spaces entangled, which in turn makes the
learning of parametric vectors more difficult. (ii)
Dot products between word vectors and direction-
ally confused positional vectors bring unnecessary
randomness in deep bidirectional representation
models.

To alleviate the confusion of distance and direc-
tion that exists in BERT-R and allow the model to
perceive distances and directions more clearly, we
propose a novel Decoupled Directional Relative
Position (DDRP) encoding. Specifically, DDRP
decouples the relative distance and directional in-
formation and maintains them with two different

2327



embeddings. Its formula is as follows:

Ai,j =
Qi

(
Kj +Kd

δ(i,j)

)T
√
d

, (9)

Kd
δ(i,j) = Dρ(i,j) ⊙Krd

δ(i,j), (10)

ρ (i, j) =




1, if i− j < 0
0, if i− j = 0
2, if i− j > 0

, (11)

δ(i, j) = abs(clip(i− j)), (12)

where ρ (i, j) represents the index of directional
embedding D ∈ R3×d; δ (i, j) represents the index
of relative distance embedding Krd ∈ Rrs×d; Kd

represents the relative position matrice. Note that
in terms of implementation details, the only differ-
ence between DDRP and BERT-R is that DDRP
decouples Kr in BERT-R into the element-wise
multiplication of D and Krd. We also provide a
specific comparison example in Figure 1.

Compared to previous relative position encod-
ings, we summarize the advantage of DDRP as
follows: (i) DDRP explicitly extracts the common-
alities (relative distances) and differences (direc-
tions) in the positional information, leading the
model to produce attention that better match the
real semantic distributions, which reduces the diffi-
culty of model learning and unlocks the potential of
the model. (ii) DDRP compresses the total number
of parametric vectors from 2rs to rs + 3.

𝐾!"# 𝐾$"# 𝐾%"# 𝐾&"#

𝐾$"# 𝐾!"# 𝐾$"# 𝐾%"#

𝐾%"# 𝐾$"# 𝐾!"# 𝐾$"#

𝐾&"# 𝐾%"# 𝐾$"# 𝐾!"#

𝐷! 𝐷% 𝐷% 𝐷%

𝐷$ 𝐷! 𝐷% 𝐷%

𝐷$

𝐷$

𝐷$

𝐷$

𝐷! 𝐷%

𝐷$ 𝐷!

𝐾&" 𝐾'" 𝐾(" 𝐾)"

𝐾%" 𝐾&" 𝐾'" 𝐾("

𝐾$" 𝐾%" 𝐾&" 𝐾'"

𝐾!" 𝐾$" 𝐾%" 𝐾&"

(a) (b)

Figure 1: Fig.1(a) represents the classical relative posi-
tion matrice; Fig.1(b) represents the decoupled relative
position matrices we proposed. Note that the parametric
vectors of the same color have the same values.

3.2 Model Representation Differentiations
Token representations. Isotropic distributions
have been proved theoretically to be beneficial to
token representations, which ensures that the dif-
ferent token vectors are directional uniform, thus
maximizing the diversity of token representations.
(Mimno and Thompson, 2017). In practice, Mu
et al. (2017) have also empirically confirmed the ef-
fectiveness of isotropic distributions on static token
representations, such as WORD2VEC (Mikolov
et al., 2013) and GLOVE (Pennington et al., 2014).

Inspired by the above studies, we also wonder
whether contextualized token representations (e.g.,
last hidden states of BERT) are isotropic. Follow-
ing Mimno and Thompson (2017), we utilize the
cosine similarity to evaluate the degree of isotropy
in token representations. The higher similarity, the
smaller isotropy; the lower similarity, the greater
isotropy. For an input sequence S = [x1, . . . , xn],
we formulate the last hidden states’ average self-
similarity as follows:

f(S) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

cos (hi, hj) , (15)

where hi and hj are the last hidden states of xi and
xj ; cos represents cosine similarity.
Head representations. Multi-head attention, is
aimed at capturing information in different hetero-
geneous subspaces and has been experimentally
verified different heads correspond well to differ-
ent linguistic notions (Clark et al., 2019). However,
some studies point out that some heads contribute
almost nothing to downstream tasks (Kovaleva
et al., 2019; Michel et al., 2019; Voita et al., 2019;
Correia et al., 2019). We are surprised by this, and
speculate that the above problem may be caused by
the heavy overlap of information that some heads
are concerned about. To verify our point, we utilize
cosine similarity to evaluate the degree of overlap
in head representations, following token represen-
tations. The higher similarity, the higher overlap;
the lower similarity, the lower overlap. For mul-
tiple heads H = [H1

1 , . . . ,H
1
m, . . . ,HL

1 , . . . ,H
L
m],

we formulate the attention weights’ average self-
similarity as follows:

f(H) =
2

Lm(m− 1)

L∑

l=1

m−1∑

i=1

m∑

j=i+1

cos
(
al
i, a

l
j

)
, (16)

where L represents the number of Transformer lay-
ers; ali and alj are the attention weights of the i-th
head and j-th head of the l-th layer.
Analysis on the similarities between different
tokens and heads. With curiosity about the simi-
larity of token representations and head represen-
tations, we analyze the self-similarity trends of
tokens and heads during the original MLM BERT
pre-training. Specifically, we sample 5,000 sen-
tences from the validation set and evaluate the av-
erage self-similarity of last hidden states and at-
tention weights under multiple checkpoints during
the pre-training stage as shown in Figure 2. We

2328



0 200 400 600 800 1000

Pre-Training Steps(k)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 C
os

in
e 

Se
lf-

Si
m

ila
rit

y
f(H) for MLM f(S) for MLM

Figure 2: Average self-similarity of last hidden states
and attention weights during MLM pre-training.

can notice that although f(S) and f(H) decrease
at the beginning of pre-training, soon they start to
rise gradually until the end of the training, and the
similarities are always high throughout the training
process. These fully demonstrates that in the MLM-
based BERT, the overlap between different tokens
and heads is strong and information confusion in
model representations has become a problem worth
to be solved.
Training objectives. To guide the model to pro-
duce more discriminative token representations and
head representations, we propose a novel MTH pre-
training objective, which combines original MLM
with two novel Token Cosine Differentiation (TCD)
objective and Head Cosine Differentiation (HCD)
objective. Specifically, MTH applies the average
cosine self-similarity of sampled last hidden states
and attention weights as two auxiliary pre-training
regularizers besides MLM 3. For an input sequence
S = [x1, . . . , xn], TCD samples n′ (n′ <= n)
tokens uniformly in sequence order to obtain a
subsequence S̃ = [x̃1, . . . , x̃n′ ] and calculates the
average cosine self-similarity of the subsequence’s
last hidden states as follows:

LTCD =
2

n′(n′ − 1)

n′−1∑

i=1

n′∑

j=i+1

cos
(
h̃i, h̃j

)
, (17)

where h̃i and h̃j are the last hidden states
of x̃i and x̃j . For multiple heads H l =
[H l

1, . . . ,H
l
m] of a specific layer l, HCD randomly

3We have empirically verified that this below sampling
strategy can greatly reduce the computational overhead with
only a slight performance drop, comparing with regularizing
all tokens and heads. In practice, we notice that setting n′ =
50,m′ = 2 is fine on both BERT and DDRP, which will
compress the additional computational overhead from about
30% to 4%.

samples m′ (m′ <= m) different heads H̃ l =
[H̃ l

1, . . . , H̃
l
m′ ] (Note that HCD samples by layers,

so sampled heads may be different across different
layers.) and then calculate the average cosine self-
similarity of attention weights of sampled heads as
follows:

LHCD =
2

Lm′(m′ − 1)

L∑

l=1

m′−1∑

i=1

m′∑

j=i+1

cos
(
ãl
i, ã

l
j

)
,

(18)

ãli and ãlj are the attention weights of the i-th head
and j-th head in the sampled headset of the l-th
layer. Ultimately, we define the global pre-training
objective MTH as follows:

LMTH = LMLM + α1LTCD + α2LHCD, (19)

where α1 and α2 are hyperparameters.

4 Experiments

4.1 Pre-training Text Corpora
Follow Devlin et al. (2018), we use Wikipedia and
BooksCorpus (Zhu et al., 2015), a roughly 16G
uncompressed text corpus for pre-training.

4.2 Baselines
We compare DDRP with competitive pre-trained
models. BERT (Devlin et al., 2018) equips Trans-
former (Vaswani et al., 2017) with parametric ab-
solute position encoding. BERT-R uses the relative
position encoding proposed by Shaw et al. (2018),
which couples relative distance information and
directional information for modeling. TUPE (Ke
et al., 2021) performs Query-Key dot product with
different parameter projections for contextual infor-
mation and positional information separately and
then adds them up, plus the relative position bi-
ases like T5 (Raffel et al., 2019). DEBERTA (He
et al., 2021) uses two vectors to encode content and
position and uses disentangled matrices on their
contents and relative positions respectively to com-
pute the attention weights among words.

4.3 Experimental Settings
Following the previous practice, we use a base-size
model for training, which consists of 12 Trans-
former encoder layers, each containing 12 heads
with an input dimension of 768. During pre-
training, we directly use the maximum training
length of 512 without taking any form of random

2329



Models Steps RTE STS-B MRPC CoLA SST-2 QNLI QQP MNLI Avg.
BERT (MLM) 1M 70.75 89.66 87.50 59.65 92.20 91.23 91.00 84.33 83.29
BERT-R (MLM) 1M 71.84 89.68 87.99 60.82 92.66 91.54 91.13 85.45 83.89
TUPE (MLM) 1M 68.59 89.61 86.02 62.82 92.66 91.26 91.04 84.88 83.36
DEBERTA (MLM) 1M 73.28 89.14 87.99 60.60 92.66 92.14 91.00 85.93 84.09
DDRP (MLM) 1M 72.20 90.01 88.25 62.82 92.41 92.31 91.24 86.02 84.41
DDRP (MTH) 1M 75.09 90.41 88.72 63.36 92.66 92.24 91.22 86.22 85.00

Table 1: Results on the development set of the GLUE benchmark for base-size pre-trained models. The best results
are bolded, and the second results are underlined.

Approaches Steps RTE STS-B MRPC CoLA SST-2 QNLI QQP MNLI Avg.
BERT (MLM) 500k 68.23 88.92 86.74 57.05 91.97 90.41 90.74 83.41 82.18
BERT (MTH) 500k 71.84 89.41 86.76 61.40 92.08 90.59 90.76 83.61 83.31
BERT (MLM) 1M 70.75 89.66 87.50 59.65 92.20 91.23 91.00 84.33 83.29
BERT (MTH) 1M 73.64 90.16 88.48 62.31 92.43 91.21 91.12 84.67 84.25
DDRP (MLM) 1M 72.20 90.01 88.25 62.82 92.41 92.31 91.24 86.02 84.41
DDRP (MTH) 1M 75.09 90.41 88.72 63.36 92.66 92.24 91.22 86.22 85.00

Table 2: Development scores on GLUE benchmark. BERT (MLM/MTH) represents pre-trained BERTBASE with
MLM/MTH pre-training objective. DDRP (MLM/MTH) represents pre-trained DDRPBASE with MLM/MTH
pre-training objective.

injection, and for examples less than 512 in length,
we do not use the next document for padding. We
remove Next Sentence Prediction (NSP) task and
only keep Masked LM (MLM) as our pre-training
task for all models unless noted otherwise. Con-
sidering that shorter documents may be missing
semantics, we discard documents of length less
than 8. We adopt the whole word masking strategy
and split the whole words longer than 4 into indi-
vidual subtokens. Following Devlin et al. (2018),
we set the batch size to 256 sequences, the peak
learning rate to 1e-4, and the training steps to 1M.
We grid search α1 and α2 of TCD and HCD in
{0.01, 0.1, 1.0}. Eventually, we set α1 = 1.0 for
TCD and set α2 = 0.01 for HCD. All the mod-
els are implemented based on the code practice
of BERT4 in Tensorflow. We conduct all exper-
iments on 16 Tesla-V100 GPUs (32G). All the
pre-training hyperparameters are supplemented in
Appendix A. To make a fair comparison, we im-
plement BERT, BERT-R, TUPE, DEBERTA, and
DDRP5 with the same pre-training hyperparame-
ters and model configurations, which are consistent
with vanilla BERT.

4.4 Results on GLUE Benchmark
We evaluate models on eight different English un-
derstanding tasks from General Language Under-

4https://github.com/google-research/bert
5Following Shaw et al. (2018) and Raffel et al. (2019), we

set rs = 64 for all the relative position encoding models.

standing Evaluation (GLUE) benchmark (Wang
et al., 2019). The datasets cover four types of tasks:
natural language inference (RTE, QNLI, MNLI),
paraphrase detection (MRPC, QQP), linguistic ac-
ceptability (CoLA), and sentiment classification
(SST-2). For all experiments, STS-B and CoLA
are reported by Pearson correlation coefficient and
Matthews correlation coefficient, and other tasks
are reported by Accuracy. All the fine-tuning hy-
perparameter configurations can be found in Ap-
pendix B. Following Ke et al. (2021), we fine-tune
with five random seeds and report the median re-
sults.

4.4.1 Comparing Prior Competitive Models
with DDRP

The overall comparison results are shown in Ta-
ble 1. Firstly, we can notice that all the various rel-
ative position encoding models perform better than
BERT, which proves that relative position encoding
is a more competitive approach to encode position
information. Sencodly, it is easy to find that DDRP
outperforms all the strong baselines, which demon-
strates modeling relative position encoding by clar-
ifying the originally confused relative distance and
directional information more clearly is more ef-
fective. Thirdly, DDRP pre-trained with MTH
can consistently outperform BERT-R/DEBERTA
by a 1.11/0.91 average GLUE score, which indi-
cates that DDRP can be effectively compatible with
better pre-training objectives to perform stronger.

2330

https://github.com/google-research/bert


0 200 400 600 800 1000

Pre-Training Steps(k)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

ve
ra

ge
 C

os
in

e 
Se

lf-
Si

m
ila

rit
y

f(H) for MLM
f(S) for MLM

f(H) for MTH
f(S) for MTH

200 300 400 500 600 700 800 900 1000

Pre-Training Steps(k)

79

80

81

82

83

84

85

G
LU

E 
D

ev
 S

co
re

MTH MLM Best Result of MLM

Figure 3: The left figure (a) represents the trend of average cosine self-similarity of token representations and
head representations during pre-training. The right figure (b) represents the trend of GLUE average score during
pre-training.

Moreover, compared to BERT-R, DDRP introduces
nothing in complexity while DEBERTA increases
the computational cost about 25%, we also con-
sider DDRP is a more time-efficient alternative
than the recent state-of-the-art model DEBERTA
(as analyzed in Sec.5.4).

4.4.2 Comparing MTH with MLM
As illustrated in Table 2, BERT (MTH) outper-
forms BERT (MLM) by a 0.96 average GLUE
score and is consistently better on 7 out of 8 tasks.
When combining MTH with strong DDRP, it still
brings an improvement by 0.59 GLUE average
score. Notably, BERT (MTH) can achieve better
results compared with well-trained BERT (MLM)
while only using 50% training steps. Since MTH
utilizes cosine similarity and sampling strategy for
the penalty, only a very slight computational cost is
introduced. All the above statistics can fully verify
that decreasing the similarity in model representa-
tions can effectively alleviate information overlap
and increase representation diversity, which in turn
leads to consistent and stable improvement across
different model structures.

5 Analysis and Discussion

5.1 Ablation Studies

Effect of DDRP. As shown in Table1, BERT-R out-
performs BERT by 0.6 points on average. Based on
BERT-R, our proposed DDRP outperforms BERT-
R by 0.52 points averagely without imposing addi-
tional computational costs. It is worth noting that
compared to BERT-R, DDRP helps a great deal on
low-resource tasks, such as CoLA, while further

improving the performance on high-resource tasks,
such as QNLI and MNLI. These fully demonstrate
utilizing separate parametric vectors to represent
distances and directions, two apparently heteroge-
neous information, can be beneficial to the model,
and further justifies the value of dissociating con-
fusing information that is confounded in similar
spaces.
Effect of TCD and HCD. MTH brings in two
additional TCD and HCD regularizers besides the
original MLM task. To further evaluate the relative
contributions of the HCD and TCD, we develop one
variation, which is BERT pre-trained with MLM
and TCD. Table 3 summarizes the results on the
base-size models. Firstly, it shows a 0.42 average
GLUE score drop when HCD is removed from
MTH, especially on MRPC, CoLA, and MNLI.
Secondly, there is a 0.54 average GLUE score drop
when TCD is progressively removed, especially on
RTE, STS-B, and CoLA. These results indicate that
both TCD and HCD regularizers play a crucial role
in improving performance.

5.2 Analysis on MTH

To further understand why MTH works, we com-
pare MLM and MTH in terms of average self-
similarity of token representations and head repre-
sentations and performance during pre-training in
Figure 3. As shown in Figure 3.(a), it is easy to find
that MTH’s average self-similarity is much lower
than MLMs’. We can also clearly notice from Fig-
ure 3.(b) that the average GLUE score of MTH is
always about one point higher than MLM’s during
the whole pre-training process. These confirm that

2331



Model RTE STS-B MRPC CoLA SST-2 QNLI QQP MNLI Avg.
MTH 73.64 90.16 88.48 62.31 92.43 91.21 91.12 84.67 84.25
w/o HCD 73.28 90.41 87.25 60.85 92.23 91.37 91.00 84.22 83.83
w/o TCD&HCD 70.75 89.66 87.50 59.65 92.20 91.23 91.00 84.33 83.29

Table 3: Ablation study for MTH. Note that MTH (w/o TCD&HCD) equals simply using MLM in pre-training.

(i) the differentiation of tokens and heads is impor-
tant for model optimization; (ii) MTH can help to
produce more discriminative token representations
and head representations, extend the representation
space of tokens and heads, and thus improve the
performance.

5.3 Analysis on DDRP
In this subsection, we intend to analyze the atten-
tion maps of DDRP as a way to investigate why
making only slight modifications on BERT-R can
bring great gains. To better examine and explain
the ability of DDRP to capture information in both
left and right directions, we divide multiple heads
into two groups evenly, where group 1 consists of
the heads that focus most on the right side, and
group 2 consists of the heads that focus most on
the left side. As shown in Figure 4, it is easy to ob-
serve a distinct upper triangle effect in group 1 and
a distinct lower triangle effect in group 2, which
indicates that DDRP may allow the model to be
more precise in the perception of direction, a piece
of information that is crucial to understanding se-
mantics. To further confirm our point, we sample
5,000 sentences from the validation set and count
the percentage of sentences with upper and lower
triangular effects according to Algorithm 1 (more
details can be seen in Appendix C). It is observed
that 92.11% of sentences have an up-down triangle
effect. We also count the percentage for BERT-R
with the same process and observe only 78.94%
of the sentences have an up-down triangle effect.
All the phenomena and statistics fully reveal that
DDRP can make different heads focus on the token
information interaction in different directions and
reduce confusion between heads, thus improving
the effectiveness and rationality of the model.

5.4 Complexity Analyses
DDRP. Compared with BERT, DDRP introduces
additional parameters: D ∈ R3×d and Krd ∈
Rrs×d. The total increase in parameters is 3 ×
d + rs × d. For base-size model (D = 768, L =
12, S = 512, N = 12, d = 64)6, the total increase

6N is the number of head.

Figure 4: Attention visualization for a sampled batch of
sentences. From left to right is the attention visualiza-
tion for group 1, group 2, and global, respectively.

amounts to 0.0043M, which is negligible. Com-
pared with BERT, the additional computational
complexity for both BERT-R and DDRP is O(SD).
Since DEBERTA equips different heads with un-
shared Krs, the additional computational complex-
ity for DEBERTA is O(NSD). Overall, BERT-R
and DDRP increase the computational cost about
5%, and DEBERTA increases the computational
cost about 30%. Although DDRP introduces a
slight computational cost compared to BERT, it
is more time-efficient than DEBERTA and outper-
forms all the above models.
MTH. Since the two regularizers of TCD and HCD
are based on cosine similarity and sampling strat-
egy, they do not introduce too much computational
cost. Compared with MLM, MTH only increases a
slight computational cost of about 4% while bring-
ing excellent improvement.

6 Conclusion

In this work, we analyze and identify potential in-
formation confusion in the relative position encod-
ing and model representations, respectively, and
design two novel techniques to address these prob-
lems: DDRP (Decoupled Directional Relative Po-
sition) encoding and MTH (MLM with TCD and
HCD) pre-training objectives. Specifically, DDRP
decouples relative distance features and directional
features to eliminate unnecessary randomness in
the self-attention module. MTH utilize TCD and
HCD as two regularizers to supervise the model to
always maintain a certain level of critical thinking.
The experimental results show that DDRP achieves
better performance compared with various relative

2332



position encoding models and MTH outperforms
MLM by a large margin. We believe that reducing
information confusion in representation learning
may have broader application scenarios, and leave
this area of exploration for future work.

7 Limitations

Our limitations lie in inducing additional computa-
tional costs. Compared with BERT, the additional
computational complexity for DDRP is O(SD)7,
which is reflected in the 5% increase in compu-
tational cost. Compared with MLM, MTH with
sampling strategy increases the computational cost
by about 4%.

References
Kevin Clark, Urvashi Khandelwal, Omer Levy, and

Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. In BlackBoxNLP.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In ICLR.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
EMNLP-IJCNLP.

Graham Neubig Devendra Singh Sachan. 2018. Param-
eter sharing methods for multilingual self-attentional
translation models. In WMT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Gillian Fuller. 2002. The arrow–directional semiotics:
Wayfinding in transit. Social semiotics.

J Pino X Li H Gong, Y Tang. 2021. Pay better attention
to attention: Head selection in multilingual and multi-
domain sequence modeling. In NeurIPS.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In ICLR.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. TACL, 8:64–77.

7Here, S is the input sequence length and D is the dimen-
sion of token representations.

Guolin Ke, Di He, and Tie-Yan Liu. 2021. Rethink-
ing positional encoding in language pre-training. In
ICLR.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In EMNLP.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In ICLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In NeurIPS.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

David Mimno and Laure Thompson. 2017. The strange
geometry of skip-gram with negative sampling. In
EMNLP.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.
All-but-the-top: Simple and effective postprocess-
ing for word representations. arXiv preprint
arXiv:1702.01417.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In NAACL.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018. Disan: Di-
rectional self-attention network for rnn/cnn-free lan-
guage understanding. In AAAI.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yun-
feng Liu. 2021. Roformer: Enhanced transformer
with rotary position embedding. arXiv preprint
arXiv:2104.09864.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

2333



Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. In ACL.

Ngoc Thang Vu, Pankaj Gupta, Heike Adel, and Hin-
rich Schütze. 2016. Bi-directional recurrent neural
network with ranking loss for spoken language un-
derstanding. In ICASSP.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICLR.

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong
Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin
Jiang, Xiao Chen, and Qun Liu. 2019. Nezha: Neural
contextualized representation for chinese language
understanding. arXiv preprint arXiv:1909.00204.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In ICCV.

2334



A Appendix A. Hyperparameters for
Pre-Training

As shown in Table 4, we list the pre-training hy-
perparameter configurations. To make a fair com-
parison, all models’ pre-training hyperparameter
configurations in our experiments are identical to
vanilla BERT (Devlin et al., 2018).

Hyperparameter
Vocab size 3,0522
Hidden size 768
Attention heads 12
Layers 12
Training steps 1M
Warmup ratio 0.01
Batch size 256
Learining rate 1e-4
Adam ϵ 1e-6
Adam (β1, β2) (0.9,0.999)
Learning rate schedule linear
Weight decay 0.01
Clip norm 1.0
Dropout 0.1

Table 4: Hyperparameters used for pre-trained models.

B Appendix B. Hyperparameters for
Fine-Tuning

As shown in Table 5, we enumerate the hyperpa-
rameter configurations to fine-tune the tasks on the
GLUE benchmark (Wang et al., 2019). We grid
search these fine-tuning hyperparameter configura-
tions for all models. Following the BERT, we do
not show results on the WNLI GLUE task for the
Dev set results.

Hyperparameter GLUE
Batch size {16, 32}
Learining rate {1e− 5, 2e− 5, 3e− 5}
Epoch {4, 6}
Adam ϵ 1e-6
Adam (β1, β2) (0.9,0.999)
Learning rate schedule linear
Weight decay 0.01
Clip norm 1.0
Dropout 0.1
Warmup ratio 0.1

Table 5: Hyperparameters used for fine-tuning on the
GLUE benchmark.

C Appendix C. Details for Up-Down
Triangle Effect

Here we provide more details for the up-down tri-
angle effect (in Sec. 5.3). It is rather difficult and
non-intuitive to analyze the directional informa-
tion in 12 different attention heads. Since previous
studies have considered to group multiple heads in
the self-attention module (Devendra Singh Sachan,
2018; H Gong, 2021), we thereby attempt to divide
the heads into two groups evenly. Specifically, we
divide the heads that focus more on the right side
information into group 1 and the heads that focus
more on the left side information into group 2, wish-
ing to reveal the directional information encoded
in attention weights more explicitly. We experi-
mentally verified that this grouping approach could
provide a better presentation of the directional in-
formation. Therefore, we combined this approach
to conduct a comparative analysis of DDRP and
BERT-R to demonstrate the more powerful direc-
tional perception of DDRP.

As illustrated in Figure 4, group 1 is more fo-
cused on the right information (greater attention
values in the upper triangle region) and group 2 is
more focused on the left information (greater atten-
tion values in the lower triangle region). To further
analyze the universality of this phenomenon, we de-
sign the Algorithm 1 to quantitatively analyze the
ability of DDRP to capture information on the both
left and right sides. To make a fair comparison, we
also conduct the same process for BERT-R.

2335



Algorithm 1 Count up-down triangle percentage
Require: N : total number of sentences; n : total number of
sentences that have been processed; ms : maximum sentence
length; mn : total number of sentences that match the upper
and lower triangle; t : the threshold value that satisfies the

up-down triangular effects; amp : attention map obtained by
averaging attention maps in specific group.

1: Initialize ms← 64, n← 1, mn← 0, t← 0.7
2: while n ≤ N do
3: Divide heads in equal with greater attention values in

the (upper/lower) triangle region into (group 1/group 2)
and obtain (amp1/amp2).

4: // prepare for the upper and lower triangle
5: Sum the values in upper and lower triangles of amp1

respectively and obtain amp1up, amp1down.
6: Sum the values in upper and lower triangles of amp2

respectively and obtain amp2up, amp2down.
7: amp1up ← amp1up/ms, amp1down ←

amp1down/ms
8: amp2up ← amp2up/ms, amp2down ←

amp2down/ms
9: // compute for the upper and lower triangle

10: if amp1up ≥ t and amp2down ≥ t then
11: mn← mn+ 1
12: else
13: Continue
14: n← n+ 1
15: return float(mn/N)

2336


