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Abstract

Dense vector representations for textual data
are crucial in modern NLP. Word embeddings
and sentence embeddings estimated from raw
texts are key in achieving state-of-the-art results
in various tasks requiring semantic understand-
ing. However, obtaining embeddings at the doc-
ument level is challenging due to computational
requirements and lack of appropriate data. In-
stead, most approaches fall back on computing
document embeddings based on sentence rep-
resentations. Although there exist architectures
and models to encode documents fully, they are
in general limited to English and few other high-
resourced languages. In this work, we provide
a systematic comparison of methods to produce
document-level representations from sentences
based on LASER, LaBSE, and Sentence BERT
pre-trained multilingual models. We compare
input token number truncation, sentence aver-
aging as well as some simple windowing and
in some cases new augmented and learnable ap-
proaches, on 3 multi- and cross-lingual tasks in
8 languages belonging to 3 different language
families. Our task-based extrinsic evaluations
show that, independently of the language, a
clever combination of sentence embeddings is
usually better than encoding the full document
as a single unit, even when this is possible. We
demonstrate that while a simple sentence aver-
age results in a strong baseline for classification
tasks, more complex combinations are neces-
sary for semantic tasks. Our code is publicly
available.1

1 Introduction

Semantic representations, especially embeddings,
are crucial for natural language processing (NLP).
In fact, the field has exploded since the success of
dense word embeddings (Mikolov et al., 2013). For
some tasks like finding semantic or syntactic rela-
tions among words, high quality word embeddings

1https://github.com/sonalsannigrahi/
Document_Embeddings

are enough. Other tasks, like question classifica-
tion or paraphrase detection, benefit from sentence
embeddings. Finally, lots of tasks deal with doc-
uments: summarisation, document classification,
question answering, etc. Document representations
are difficult to be learned, especially multilingually,
given the amount of available training data and the
length of each training instance.

For these reasons, document embeddings usu-
ally resort to sentence embeddings. Since some of
the state-of-the-art techniques for language mod-
elling and sentence embeddings are based on self-
attention architectures such as BERT (Devlin et al.,
2019), and self-attention scales quadratically with
the input length, one cannot afford arbitrarily long
inputs. Training is usually constrained to input frag-
ments up to 512 tokens (subunits). This limit goes
well beyond an average sentence length and can
cover several paragraphs. However, full documents
can be significantly longer. The average length of
a Wikipedia article in English is 647 words (not
subunits) for example,2 and the average for two of
the tasks that we consider in this work, document
alignment and ICD code classification, is around
800 words, with documents up to 40k words.

In order to be able to process long inputs, more
efficient architectures such as Linformer (Wang
et al., 2020), Big Bird (Zaheer et al., 2020) or Long-
former (Beltagy et al., 2020) implement sparse at-
tention mechanisms that scale linearly instead of
quadratically. These architectures accept at least
4096 input tokens. With this length, one can em-
bed most Wikipedia articles, news articles, medical
records, etc. These architectures are available as
pre-trained models in English3 and can be fine-
tuned for NLP tasks such as document classifica-
tion, question answering or summarisation. How-

2https://en.wikipedia.org/wiki/
Wikipedia:Size_of_Wikipedia
Consulted on Feb. 2023.

3https://huggingface.co

2306

https://github.com/sonalsannigrahi/Document_Embeddings
https://github.com/sonalsannigrahi/Document_Embeddings
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://huggingface.co


ever, multilingual or non-English versions are rare.
For most languages, it is not just a matter of training
a model from scratch, but the amount of documents
is just not enough to train high quality models.

LASER (Artetxe and Schwenk, 2019; Heffer-
nan et al., 2022), Sentence BERT (Reimers and
Gurevych, 2019, 2020) and LaBSE (Feng et al.,
2022) are representative and state-of-the-art models
which largely adapt language models to be used as
task-independent sentence representations. These
models are available as pre-trained models and,
contrary to the long sequence models introduced
before, they are multilingual. LASER, which is not
transformer-based, allows longer inputs.

These observations explain why the two main
approaches to obtain multilingual (or non-English)
document embeddings are simply (i) truncating the
input to 512 tokens and feeding it into a sentence-
level encoder or (ii) splitting the document in
shorter fragments and then combine their embed-
dings. There are few works that do a systematic
comparison among methods. Park et al. (2022) per-
form a systematic study for document classification
in English and found that the most sophisticated
models such as Longformer do not always improve
on a baseline that truncates the input to fit it into
a fine-tuned BERT. The results mostly depend on
how the information is distributed along a docu-
ment and therefore varies from dataset to dataset.

In this work we explore multilingual document-
level embeddings in three tasks in detail: docu-
ment alignment, a bilingual semantic task; ICD
code (multi-label) classification in 2 languages;
and cross-lingual document classification in 8 lan-
guages. We compare input token number trun-
cation, sentence averaging as well as some sim-
ple windowing and in some cases new augmented
and learnable approaches. Our results show that a
simple sentence average is a very strong baseline,
even better than considering the whole document
as a single unit, but that positional information is
needed when the distribution of information across
a document is not uniform.

2 Related Work

Word embeddings have been exceptionally success-
ful in many NLP applications (Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017).
Subsequent works developed methods to learn con-
tinuous vector representations for longer sequences
such as sentences or even documents. Skip-thought

embeddings (Kiros et al., 2015) train an encoder–
decoder architecture to predict surrounding sen-
tences. Conneau et al. (2017) showed that the task
on which sentence representations are learnt sig-
nificantly impacts their quality. InferSent (Con-
neau et al., 2017), a Siamese BiLSTM network
with max pooling, and Universal Sentence Encoder
(Cer et al., 2018), a transformer-based network, are
trained over the SNLI dataset which is suitable for
learning semantic representations (Bowman et al.,
2015).

These methods primarily work on a single lan-
guage but as multilingual representations have at-
tracted more interest, sentence-level embeddings
have been extended to obtain a wider language
coverage. Artetxe and Schwenk (2019) (LASER)
learn joint multilingual sentence representations
for 93 languages based on a single BiLSTM en-
coder with a shared BPE vocabulary trained on
publicly available parallel corpora. However, this
architecture was shown to underperform in high-
resource scenarios (Feng et al., 2022). LASER is
especially interesting for our work as, being LSTM-
based, it does not have the 512-length constraint.
Li and Mak (2020) introduce T-LASER, which is
a version of LASER that uses a transformer en-
coder in place of the original bidirectional LSTM.
However, this model was tested only on the Mul-
tilingual Document Classification (MLDoc) cor-
pus (Schwenk and Li, 2018), which does not have
significantly long documents. Similarly, Reimers
and Gurevych (2019) (sBERT in the following) ex-
tended a transformer-encoder architecture, BERT,
by using a Siamese network with cosine similarity
for contrastive learning in order to derive semanti-
cally meaningful sentence representations. More
recently, Feng et al. (2022) (LaBSE) explored cross-
lingual sentence embeddings with BERT by intro-
ducing a pre-trained multilingual language model
component and show that on several benchmarks,
their method outperforms many state-of-the-art em-
beddings such as LASER.

While sentence-level representations have been
widely explored in literature, document-level rep-
resentations are less well-explored. The earli-
est approaches in learning document-level vec-
tor representations included an extension of the
Word2Vec algorithm named Doc2Vec (Le and
Mikolov, 2014) with two variants proposed, a bag-
of-words and a skip-gram based model. However,
while these methods worked well at the word-level,
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the document-level counterpart led to issues in scal-
ing due to large vocabulary sizes (Lau and Bald-
win, 2016). Due to these limitations, further works
have attempted to improve the computational bot-
tlenecks involved with training on long sequences
such as documents. Linformer (Wang et al., 2020)
is a transformer-based architecture with linear com-
plexity due to a sparse self-attention mechanism
making it significantly more memory- and time-
efficient in comparison with the original trans-
former (Vaswani et al., 2017). Works such as Big
Bird (Zaheer et al., 2020) and Longformer (Beltagy
et al., 2020) introduced a sparse attention mecha-
nism and localised global attention respectively.
BigBird is able to handle sequences of up to 4,096
tokens and Longformer scales linearly with the se-
quence length, with experiments on sequences of
length upto 32,256. To the best of our knowledge,
to date not much has been done to extend them
beyond English. Shen (2021) and Romero (2022)
made available Chinese and Spanish Longformer
models, respectively, while Sagen (2021) trained
a multilingual version starting from a RoBERTa
checkpoint and not from scratch. We use Long-
former as a comparison system in our experiments
but we do not consider the multilingual model
given that multilinguality was achieved by fine-
tuning on question answering data and we do not
explore this task.

3 Sentence Embeddings

We use three multilingual sentence-level embed-
ding models that cover different languages, archi-
tectures and learning objectives:

LASER (Schwenk and Douze, 2017; Artetxe and
Schwenk, 2019) uses max-pooling over the output
of a stacked BiLSTM-encoder. The encoder is
extracted from an encoder–decoder machine trans-
lation setup trained on parallel corpora over 93 lan-
guages. Since it is not based on transformers but
on LSTMs, the maximum number of input tokens
can in principle be arbitrary and is set to 12,000.

LaBSE Feng et al. (2022) train a multilingual
BERT-like model with a masked LM and transla-
tion LM objective functions. A dual-encoder trans-
former is initialised with the model and fine-tuned
on a translation ranking task. The final model cov-
ers 109 languages. The maximum number of input
tokens is 512.

sBERT Reimers and Gurevych (2019) use the
output of BERT-base with mean pooling to create
a fixed-size sentence representation. A Siamese-
BERT architecture trained on NLI is used to obtain
the final sentence-embedding model. The maxi-
mum number of input tokens is 512, with a de-
fault value of 128. We use the multilingual version
(Reimers and Gurevych, 2020).

4 Document Embeddings

We divide our approaches to build document em-
beddings into three families: in (i) Document Ex-
cerpts, we feed token sequences as they are di-
rectly into LASER, LaBSE and sBERT to obtain
a document-level representation, in (ii) Sentence
Weighting Schemes, we divide documents into sen-
tences represented using base sentence embeddings
and then explore different combination and weight
strategies to obtain document embeddings, in (iii)
Windowing Approaches, we study different distri-
butions to learn document-level positional and se-
mantic information.

(i) Document Excerpts

All Tokens: The full document is fed into the
system (no truncation). We explore this option
only with LASER which does not have the 510-
token-length restriction4 and when possible (En-
glish, Spanish and Chinese) with Longformer.

Top-N Tokens: The document is truncated to the
first n = 510 tokens.

Bottom-N Tokens: The last n = 510 tokens are
fed into the system.

Top-N + Bottom-M Tokens: We select N = 128
and M = 382 to use the first N and last M to-
kens of the documents. These values are based on
empirical explorations by Sun et al. (2019).

(ii) Sentence Weighting Schemes

Sentence Average: Each base sentence embed-
ding (obtained with LASER, LaBSE or SBERT) is
given a uniform weight. This computes the vanilla
average embedding vector of all sentences in the
document.

4That is the maximum length of tokens accepted by
transformer-style embedding models, 512 without the [CLS]
and [SEP] tokens.
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Top/Bottom-Half Average: Only the top (bottom)
half of the sentences in the document are consid-
ered for averaging.

TF-IDF Weights: We compute TF-IDF scores
for all terms in a document, and average their val-
ues at sentence level. The base sentence embed-
dings (LASER, LaBSE, SBERT) are then weighted
by the normalised value of the TF-IDF averages.
Following Buck and Koehn (2016b), we use dif-
ferent TF-IDF computations based on variations of
term frequency tf and inverse document frequency
idf definitions. For words w in a document d be-
longing to a collection D we report results using:

tf2(w, d) = freq(w, d) (1)

tf4(w, d) = 0.4 + 0.6
freq(w, d)

maxw̃freq(w̃, d)
(2)

idf4(w, d) = log(1 +
|D|

df(w, |D|)), (3)

with df(w,D) = |{d ∈ D|w ∈ d}|, and

tfiidfj(Sk) =

∑
w∈Sk

tfi(w, d)idfj(w, d)

#wk
, (4)

where Sk is a sentence in a given document d, and
#wk is the number of words in sentence Sk.

The weights of these models are fixed for the
static tasks and used as initialisation when training
a classifier.

(iii) Windowing Approaches

TK-PERT: Thompson and Koehn (2020) intro-
duced a windowing approach that weights the con-
tribution of each sentence according to the modified
PERT function (Vose, 2008) and a down-weighting
function for boilerplate text. The latter was intro-
duced to deal with webpages but it can be ignored
for other types of documents. The smoothed over-
lapping windowing functions based on a cache of
the PERT distribution (PERT-cache) encode fine-
grained positional information into the resultant
document vector.

A document with N sentences Si|i∈{0,...,N−1} is
split uniformly into J parts and the final representa-
tion D for a document is given by a concatenation
of normalised position-weighted (via PERT) sub-
vectors where each sub-vector Dj is

Dj =
N−1∑

n=0

emb(Sn)Pj(n)B(Sn), (5)

Figure 1: ATT-PERT model for classification. A
static modified PERT distribution is used to extend the
sentence embeddings to documents. Afterwards, an
attention-weighted classifier is learnt.

emb is the (LASER, LaBSE, SBERT) embedding
of sentence n, P is the modified PERT function for
part j and B is a boilerplate function if there is one.
In cases when no boilerplate text is present, we set
it to 1.

Following Thompson and Koehn (2020) setting
for the modified PERT distribution, we use J = 16
and set its shape parameter to γ = 20.

TF-PERT: is a new extension of TK-PERT to
further incorporate semantics. PERT focuses on
positional information encoded in the document
while TF-IDF focuses on the semantic information,
therefore a combined metric would likely be able
to consider both features. We combine the two con-
tributions with a multiplication at sentence level:

Dj =
N−1∑

n=0

emb(Sn)Pj(n)B(Sn)tfidf(Sn), (6)

where we use the same notation as in Eqs. 4 and 5.

ATT-PERT: is a new extension of TK-PERT to
further incorporate a global learnable attention. Fig-
ure 1 illustrates the basic architecture. The PERT
distribution encodes global positional information
of the document. By adding an attention layer over
it, we introduce a global attention that weights the
different parts of the document and that is com-
bined with the standard local attention at word
level performed by the sentence encoder. Mathe-
matically,

Dj =
N−1∑

n=0

emb(Sn)Pj(n)aj(n), (7)

where Sn refers to the sentence embedding that has
been trained for a classification task and aj(n) is
the respective global attention weight.

In TK-PERT, the static PERT distribution is mul-
tiplied by the fine-tuned sentence embeddings. In
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# Documents Length
Train Test Avg. Max.

Document Alignment, WMT2016

English 349k 682k 737 43.3k
French 225k 522k 842 45.2k
Web Domains 49 203 - -
Gold Pairs 1624 2402 - -

Multi-label Classification, ICD Code Classification

Spanish 1001 1600 792 4352
German 8385 407 876 2249

Document Classification, MLDoc

English 10k 4000 275 576
German 10k 4000 342 675
French 10k 4000 445 782
Italian 10k 4000 376 765
Spanish 9458 4000 354 778
Japanese 10k 4000 327 897
Russian 5216 4000 235 967
Chinese 10k 4000 562 983

Table 1: Number of documents and average tokenised
document length in sentencepiece units (prior to boiler-
plate downweighting for Document Alignment) for the
three tasks used in the experiments.

contrast, in ATT-PERT, the distribution is multi-
plied with the embeddings prior to training a clas-
sifier without freezing the embedding layer, as this
allows the positional weights in the PERT distribu-
tion to be trained for the specific task.

ATT-TF-PERT: is a new extension of TF-PERT
to further incorporate a global learnable attention as
in ATT-PERT. In this configuration, we learn com-
bined TF-IDF-PERT weighted embeddings whose
attention weights are further updated while training
the classifier. We use the same global attention
aj(n) as in ATT-PERT, however here it is multi-
plied with both the TF-IDF weight of the sentence
tfidfj(w, Sn) as computed in the TF-IDF set up
and the PERT distribution Pj(n) as in TK-PERT:

Dj =
N−1∑

n=0

emb(Sn)Pj(n)aj(n)tfidf(Sn). (8)

5 Evaluation Tasks

We apply the different configurations discussed
above across the following tasks:

Bilingual Document Alignment aims at align-
ing documents from two collections in language
L1 and language L2 according to whether they are

parallel or comparable. In our experiments, we
use the data given for the WMT 2016 Shared Task
on Bilingual Document Alignment to align French
web pages to English web pages for a given crawled
webdomain (Buck and Koehn, 2016a). In these ex-
periments we do not perform any learning using
the training data, but just estimate document-level
semantic similarity between the pairs of documents
in the test set. To compute this, we find the top
K=32 candidate translations using approximate
nearest neighbor search via FAISS5 as in (Buck
and Koehn, 2016a). We use cosine similarity to
quantify semantic similarity on the document em-
beddings.

Multi-label ICD Code Classification aims at
assigning one or more ICD-10 codes to medical-
domain texts (electronic health records). Here there
can be an arbitrary number of ICD-10 codes as-
signed to the input text. In particular, out of all the
possible ICD-10 Codes, 4 account for more than
90% of the documents, making this an imbalanced
classification task and leading to the ’tail end prob-
lem’ (Chapman and Neumann, 2020). We use the
CLEF eHealth 2019 task for German non-technical
summaries (Neves et al., 2019) and CANTEMIST-
CODING (Miranda-Escalada et al., 2020) for Span-
ish electronic health records. Here, we learn a
weighted-attention classifier layer (Lee et al., 2022)
on top of the base document embeddings consist-
ing of a feed-forward neural network with a single
hidden layer of 10 units.

Cross-lingual Document Classification aims at
classifying documents in a set of predefined cat-
egories in a language (usually English) and then
transfer the model to unseen languages. We use
the MLDoc dataset for this purpose (Schwenk and
Li, 2018). The corpus contains 1,000 development
documents and 4,000 test documents in eight lan-
guages (English, German, French, Italian, Spanish,
Japanese, Russian and Chinese), divided in four
different genres with uniform class priors. For
zero-shot transfer, we train a classifier on top of the
multilingual document representations estimated
as described in Section 4 by using only the English
training data and the hyperparameters optimised
in Artetxe and Schwenk (2019). Similar to the
previous classification task, we use a feed-forward
neural network with one hidden layer with 10 units.

5https://github.com/facebookresearch/
faiss
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LASER LaBSE sBERT

All tokens 81.2+0.3
−0.4 — —

Top-510 tokens 70.8+0.2
−0.3 71.2+0.5

−0.4 72.3+0.2
−0.4

Bottom-510 tokens 65.8+0.5
−0.3 66.3+0.7

−0.8 67.1+0.6
−0.7

Top-128 + Bot-312 75.3+0.5
−0.5 76.1+0.3

−0.5 74.2+0.3
−0.3

Sentence Average 81.8+0.7
−0.5 83.4+0.6

−0.5 82.3+0.4
−0.6

Top-Half Avg. 82.2+0.3
−0.5 81.3+0.6

−0.8 81.7+0.7
−0.6

Bottom-Half Avg. 67.8+0.8
−0.7 66.5+0.4

−0.3 65.3+0.5
−0.4

TF-IDF Weighted
tf2 − idf4 80.2+0.7

−0.4 80.5+0.7
−0.6 79.3+0.2

−0.4

tf4 − idf4 86.3+0.5
−0.4 87.2+0.3

−0.4 85.4+0.6
−0.5

TK-PERT (Euclidean) 93.2+0.7
−0.8 93.5+0.6

−0.5 92.8+0.5
−0.4

TK-PERT (cosine) 96.4+0.6
−0.5 94.2+0.5

−0.4 95.3+0.8
−0.9

TF-PERT (cosine) 93.4+0.5
−0.3 92.5+0.3

−0.4 93.1+0.4
−0.4

Table 2: Document recall on WMT-16 Shared Task on
English–French document alignment. Best score for
each family is in bold.

We use this classifier on top on the multilingual em-
beddings to evaluate the system on the remaining
languages.

Table 1 shows the statistics for the datasets used
in the three tasks as well as an average length of
training instances in terms of sentencepiece to-
kens.6 The average document length in the doc-
ument alignment and ICD code classification tasks
is larger than 512 tokens, making the usage of sen-
tence embeddings alone insufficient. This is not the
case for document classification, but we still con-
sider it in order to compare the different approaches
and add a highly multilingual setting.

6 Results and Discussion

Thompson and Koehn (2020) empirically obtained
the best trade-off between accuracy and inference
time when using PCA-reduced sentence embed-
dings of 128 dimensions in the bilingual document
alignment task. We performed equivalent experi-
ments with 128 and 256 dimensions for selected
configurations in the three tasks and confirmed the
trend. As we obtained no major gains in using more
dimensions, we report all the results for the three
tasks with 128-dimensional sentence embeddings.

We report confidence intervals at 95% confi-
dence level using bootstrap resampling with 1000
samples for document alignment, 500 samples for
ICD code classification and 1000 samples for doc-
ument classification.

6https://github.com/google/
sentencepiece

Bilingual Document Alignment quality ranges
from 65% to 96% recall depending on the docu-
ment embedding method. Table 2 shows the results
obtained for all the configurations considered. A
simple sentence average achieves a recall around
82% (depending on the sentence embedding used).
When using LASER, the only method that allows
the comparison, the recall with sentence average
is larger but not statistically significantly over em-
bedding the full document as a single unit (81.8%
vs 81.2%). Taking a token-based excerpt of the
document is 10 percentage points below sentence-
averaging the same excerpt. The information in
webpages seems to be more densely distributed
towards the top of the page. Looking at the top-
half versus the bottom-half of the sentences of the
webpages, there is a 17% reduction in the scores
obtained. In these unweighted and average con-
figurations in both the token and sentence-based
methods, we do not encode any positional infor-
mation: sentence order and semantic relevance is
not considered in the final document embeddings.
However, intuitively, these factors are indicative of
each sentence’s contribution to the larger document
embedding. In order to incorporate semantic rele-
vance into our final embeddings, we consider the
weighted average using TF-IDF. We explore sev-
eral TF-IDF forms and obtain a difference of 7%
on average among them. Table 2 shows the 2 most
promising ones. With the best option (tf4 − idf4),
TF-IDF weighting improves between 3 and 5 per-
centage points with respect to the sentence averag-
ing which uses uniform weights. We use tf4− idf4
for the next experiments when required as these
formulae empirically performed the best. To in-
clude sentence order, we use the PERT-window
based approach. TK-PERT outperforms all other
methods by a margin of 11.7%. This result attests
the relevance of contextual information, sentence
order, and positional importance. Although we find
improvements over the baseline models by intro-
ducing TF-IDF weights and the PERT distribution,
a combination of the two in TF-PERT does not lead
to further improvements.

The other dimension of the study, the particu-
lars of sentence embeddings, is less important to
the recall. LASER, LaBSE and sBERT achieve
similar results. As we are working with French
and English documents, both languages being high-
resource, all base sentence embeddings are high-
quality and therefore they do not impact the final
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LASER LaBSE sBERT
de es de es de es

All tokens 73.1+0.5
−0.6 18.4+0.4

−0.3 – – – –
Top-510 tokens 65.6+0.8

−0.7 16.5+0.5
−0.8 68.2+0.5

−0.5 19.2+0.6
−0.4 63.2+0.7

−0.8 18.3+0.5
−0.6

Bottom-510 tokens 67.8+0.4
−0.9 17.5+0.4

−0.9 66.7+0.8
−0.6 17.4+0.7

−0.6 61.5+0.8
−0.6 16.8+0.5

−0.7

Top-128 + Bot-312 66.4+0.8
−0.6 17.2+0.8

−0.7 69.1+0.7
−0.9 18.7+0.7

−0.8 64.8+0.7
−0.5 17.5+0.6

−0.8

Sentence Average 72.1+0.9
−0.8 17.0+0.7

−0.6 74.5+0.8
−0.9 24.2+0.8

−0.6 68.9+0.7
−0.6 20.3+0.8

−0.4

Top-Half Avg. 68.4+0.7
−0.9 16.5+0.5

−0.6 68.3+0.4
−0.8 18.9+0.5

−0.5 61.5+0.7
−0.6 16.4+0.8

−0.6

Bottom-Half Avg. 63.1+0.7
−0.6 15.8+0.8

−0.7 67.4+0.8
−0.9 15.2+0.6

−0.7 58.6+0.9
−0.8 17.9+0.7

−0.6

TF-IDF Weighted 65.3+0.5
−0.4 17.2+0.7

−0.8 68.2+0.9
−1.0 19.2+0.9

−0.7 63.2+0.6
−0.8 18.3+0.7

−0.6

TK-PERT 68.2+0.8
−0.6 22.1+0.7

−0.4 70.1+0.8
−0.7 20.1+0.7

−0.4 65.2+0.8
−0.6 19.5+0.7

−0.8

TF-PERT 68.5+0.4
−0.3 23.4+0.6

−0.6 68.6+0.3
−0.7 21.3+0.5

−0.4 65.4+0.6
−0.7 18.7+0.4

−0.3

ATT-PERT 70.7+0.7
−0.9 32.2+0.7

−0.4 72.1+0.8
−0.6 30.1+0.7

−0.8 66.3+1.1
−1.3 27.4+0.8

−0.7

ATT-TF-PERT 70.3+0.5
−0.4 31.4+0.8

−0.7 73.2+0.4
−0.8 29.7+0.6

−0.5 66.1+0.9
−0.8 27.1+0.5

−0.6

Table 3: F1 scores for the Multi-label ICD code classification task for German (de) and Spanish (es) documents.
Best scores are in bold, and best scores per family are in italics.

model strongly in a consistent way.

Multi-label ICD Code Classification shows the
same trend with respect to different sentence em-
beddings as above for German and Spanish, with a
slight preference towards LaBSE embeddings. Ta-
ble 3 shows the results for this task. There is a large
discrepancy between the scores for the German and
the Spanish datasets, as already noticed by the eval-
uations in the original corresponding shared tasks.
The classification in Spanish achieves much lower
results probably because of a very small training
corpus. Our results indicate that the information is
spread throughout documents in this case. The dif-
ference between only using the top of the document
and only using the bottom part is small, and using
the whole document either by sentence averaging or
considering it a single unit is always better than any
of its parts at a 95% significance level. Semantic
(TF-IDF) and positional (TK-PERT) information
is less relevant. For the German task, either con-
sidering the full document as a whole (All tokens)
or averaging all the sentences gives the highest
performance. For the Spanish task, even with a
very low overall quality, learning specific weights
for different parts of the document (ATT-PERT)
boosts the quality. Comparing ATT-PERT with
TK-PERT, we find that the trainable alternative
performs better for all languages and base embed-
dings considered, however, the improvements are
not statistically significant for all base embeddings
in the case of German. In general, the windowing
approaches that combine semantics with position
(TF-PERT and ATT-TF-PERT) do not perform sig-
nificantly better than the pure positional methods

(TK-PERT and ATT-PERT). This can be explained
by looking a concrete example. Figure 2 shows the
distribution of weights across a document from the
CANTEMIST health record corpus for 8 configu-
rations based on LASER embeddings. The exam-
ple shows that the effect of the tfidf component
in ATT-TF-PERT (configuration 7) is equivalent
to move weight mass from ATT-PERT (configura-
tion 6) into TF-IDF (configuration 3). When this
happens, the result is a score in the middle of the
way between ATT-PERT and TF-IDF. In this doc-
ument, a medical diagnostic evaluation is detailed
and includes patient information, past diagnoses,
family medical history, as well potential evolution
of the disease. We observe that while the ‘Sentence
average’ configuration places largely equivalent
weights on all the sentences, the TF-IDF weights
place more emphasis on the beginning and end of
the document which stores information about the
patient and the evolution of the disease respectively.
This behaviour is similar to the one exhibited by
the PERT family of methods: the weight pattern
observed for configurations 3-7 remain quite con-
sistent but vary in their intensity.

Cross-lingual Document Classification data al-
lows us to test the embedding methods on 8 lan-
guages (Table 4). The languages belong to three
families, Indo-European (Germanic, Romance and
Slavic), Japonic and Sino-Tibetan. All languages
are high-resourced and included in our pre-trained
sentence representation models. MLDoc docu-
ments are shorter than 1,000 tokens with an av-
erage length of 275 tokens for English and 562 for
Chinese; the other languages stay in the middle.
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Figure 2: Sentence weights for an example document with LASER embeddings and the configurations: 0-Sentence
average, 1-Top-Half, 2-Bottom-Half, 3-TF-IDF weighted, 4-TK-PERT, 5-TF-PERT, 6-ATT-PERT, 7-ATT-TF-PERT.

Given that length, the methods that use different
510-sized excerpts of the documents do not dif-
fer much as all the excerpts are —for most of the
documents— the same.

Accuracies in Table 4 show that the documents
convey slightly more meaning at the top part than
at the bottom (Top-Half Avg. vs Bottom-Half Avg.).
The sentence average is a very strong baseline and,
for half of the languages (English, German, Rus-
sian and Chinese), this is statistically significantly
better at 95% confidence level than treating the doc-
ument as a single unit with LASER. The TF-IDF
version is worse than the simple sentence average
except for Japanese. Japanese has the lowest accu-
racy for all the languages and a high difference be-
tween the information at the top and the bottom of
its documents. In general, position (TK-PERT) is
more important than semantics (TF-IDF) and learn-
ing task-specific weights (ATT-PERT) further in-
creases accuracy. Additional experiments with TF-
PERT and ATT-TF-PERT do not show statistically
significant improvements over their counterparts
TK-PERT and ATT-PERT, similarly to the trend ob-
served in the previous tasks. For English, Chinese

and Spanish, we are further able to compare the
performance of pre-trained large-input transform-
ers. Longformer achieves 92.3% of accuracy for
English, which is 4.1% better than the 88.7% that
LASER achieves in the All tokens configuration and
about 2% better than the best performing architec-
ture, the sentence average of LaBSE embeddings
(90.9%). However, the latter is not statistically
significant at 95% confidence level. The result is
different for Chinese and Spanish. In both cases,
considering all tokens with LASER and sentence
average are better than Longformer, although the
difference is not statistically significant for Spanish.
This indicates that smaller amounts of training data
can prevent native full document-level embeddings
to be extended to languages other than English.

7 Summary and Conclusions

In this work, we studied effective methods for de-
veloping multilingual document-level representa-
tions. We used state-of-the-art sentence-level em-
beddings as basic units and systematically compare
different pooling methods to evaluate these repre-
sentations at the document level. We performed
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en → xx
en de es fr it ja ru zh

Longformer 92.3+0.7
−0.8 – 76.9+0.6

−0.7 – – – – 68.5+0.4
−0.5

L
A

SE
R

All tokens 88.7+1.1
−0.8 83.6+0.5

−0.4 77.4+0.9
−0.8 78.1+0.7

−0.8 65.1+0.6
−0.7 61.8+0.6

−0.4 66.6+0.5
−0.6 70.1+0.9

−0.8

Sentence Average 89.9+0.9
−0.8 84.8+0.7

−0.6 77.3+0.9
−0.7 77.9+0.5

−0.9 64.9+0.4
−0.8 60.3+0.8

−0.7 67.8+0.8
−0.9 71.9+0.8

−0.7

Top-Half Avg. 86.4+0.3
−0.9 83.5+0.4

−0.5 75.8+0.9
−0.6 76.2+0.8

−0.5 63.2+0.7
−0.9 56.5+0.7

−0.6 64.1+0.7
−0.8 67.5+0.8

−0.7

Bottom-Half Avg. 83.2+0.4
−0.6 81.4+0.7

−0.8 71.2+0.7
−0.6 70.5+0.8

−0.9 59.2+0.5
−0.4 50.4+0.6

−0.7 56.2+0.6
−0.4 60.3+0.6

−0.7

TF-IDF Weighted 86.3+0.8
−0.8 85.1+0.5

−0.8 75.3+0.7
−0.4 74.1+0.7

−0.8 56.4+0.5
−0.7 61.4+0.6

−0.8 60.2+0.7
−0.6 71.5+0.4

−0.5

TK-PERT 89.1+0.4
−0.7 85.2+0.6

−0.6 75.6+0.8
−0.7 78.2+0.8

−1.1 63.6+0.9
−0.7 62.3+0.8

−0.4 67.8+0.6
−0.7 71.1+0.4

−0.6

TF-PERT 88.7+0.6
−0.5 84.8+0.8

−0.6 75.4+0.5
−0.4 77.9+0.6

−0.4 61.2+0.9
−0.8 61.8+0.3

−0.4 67.2+0.5
−0.5 70.8+0.6

−0.5

ATT-PERT 89.2+0.7
−0.8 86.2+0.6

−0.5 77.5+0.8
−0.7 79.1+1.0

−0.8 64.0+0.3
−0.9 62.5+0.6

−0.4 66.2+0.8
−0.9 71.3+0.7

−0.6

ATT-TF-PERT 88.5+0.6
−0.5 86.0+0.4

−0.3 76.7+0.4
−0.5 78.9+0.5

−0.5 63.8+0.5
−0.6 62.8+0.5

−0.4 66.5+0.4
−0.7 70.5+0.3

−0.5

L
aB

SE

Sentence Average 90.9+0.6
−0.3 85.2+0.8

−0.7 75.6+0.5
−0.8 79.9+0.5

−0.3 66.9+0.9
−0.6 58.3+0.7

−0.6 65.4+0.5
−0.5 70.1+0.5

−0.6

Top-Half Avg. 86.1+0.7
−0.8 80.5+0.5

−0.9 73.2+0.7
−0.8 76.5+0.9

−0.7 62.5+0.6
−0.8 56.1+0.7

−0.6 61.8+1.0
−0.9 67.3+0.6

−0.7

Bottom-Half Avg. 85.4+1.2
−1.1 78.7+0.5

−0.6 71.4+0.6
−0.7 73.3+0.8

−0.6 59.6+0.4
−0.7 50.7+0.3

−0.8 58.9+0.7
−0.6 61.4+0.9

−1.1

TF-IDF Weighted 86.2+0.2
−0.6 84.1+0.5

−0.4 73.9+0.6
−0.3 77.1+0.3

−0.4 62.6+0.2
−0.5 59.3+0.3

−0.6 65.4+0.5
−0.4 68.1+0.8

−0.7

TK-PERT 87.1+0.5
−0.9 83.6+0.8

−0.6 75.8+0.5
−0.4 79.1+0.7

−0.8 62.5+0.3
−0.8 60.0+0.6

−0.7 64.9+0.6
−0.4 70.6+0.7

−0.6

TF-PERT 86.2+0.5
−0.4 84.7+0.4

−0.7 77.3+0.7
−0.6 76.3+0.6

−0.5 62.8+0.5
−0.5 61.2+0.7

−0.6 64.5+0.6
−0.5 69.2+0.5

−0.6

ATT-PERT 88.9+0.8
−0.6 84.3+0.7

−0.8 77.3+0.5
−0.5 79.4+0.7

−0.9 63.8+0.6
−0.7 62.2+0.8

−0.5 65.9+0.7
−0.9 71.2+0.8

−0.7

ATT-TF-PERT 88.4+0.4
−0.3 85.4+0.9

−0.6 77.2+0.5
−0.4 78.2+0.4

−0.5 65.7+0.5
−0.3 61.3+0.7

−0.5 65.3+0.7
−0.8 67.4+0.6

−0.8

sB
E

R
T

Sentence Average 85.1+0.6
−0.7 85.2+0.6

−0.7 75.7+0.6
−0.8 78.2+0.6

−0.7 64.5+0.7
−0.5 60.4+0.8

−0.6 66.4+0.8
−0.7 69.5+0.8

−0.7

Top-Half Avg. 83.2+0.8
−0.6 84.1+0.7

−0.6 71.3+0.5
−0.6 76.5+0.8

−0.6 60.8+0.7
−0.9 60.4+0.9

−1.2 62.8+0.8
−0.7 63.5+0.9

−0.8

Bottom-Half Avg. 80.6+0.7
−0.6 81.3+0.5

−0.8 66.5+0.4
−0.4 70.1+0.6

−0.4 56.5+0.4
−0.8 58.7+0.5

−0.6 56.1+0.7
−0.6 60.5+0.5

−0.4

TF-IDF Weighted 84.2+0.4
−0.5 82.8+0.5

−0.4 75.1+0.6
−0.7 74.3+0.4

−0.6 63.2+0.3
−0.2 61.2+0.4

−0.5 63.4+0.5
−0.3 65.8+0.7

−0.6

TK-PERT 86.2+0.6
−0.7 84.1+0.8

−0.7 73.9+0.6
−0.6 77.1+0.8

−0.6 62.6+0.6
−0.8 59.3+0.7

−0.5 65.4+0.8
−0.6 68.1+0.6

−0.7

TF-PERT 85.8+0.5
−0.4 83.7+0.2

−0.4 72.7+0.6
−0.5 76.5+0.4

−0.3 62.0+0.6
−0.5 60.4+0.3

−0.6 64.3+0.4
−0.8 68.2+0.7

−0.8

ATT-PERT 88.5+0.7
−0.6 85.8+0.5

−0.5 76.2+0.8
−0.4 77.4+0.5

−0.6 62.1+0.6
−0.7 60.8+0.3

−0.6 66.1+0.7
−0.4 69.5+0.8

−0.6

ATT-TF-PERT 85.6+0.5
−0.6 84.3+0.3

−0.4 75.1+0.6
−0.6 76.8+0.5

−0.6 61.3+0.8
−0.5 62.7+0.4

−0.5 65.8+0.5
−0.3 66.4+0.6

−0.6

Table 4: Accuracy for MLDoc classification on the zero-shot transfer task. Best results per language are shown in
bold and per family in italics.

exhaustive evaluations across three sentence em-
beddings models, three tasks and eight languages.

Our experiments show that specific base sen-
tence embedding models (LASER, LaBSE,
sBERT) do not impact the performance of the
document-level embeddings much. We observe
similar performance amongst them across all ex-
periments. However, it is to be noted that we ex-
periment with languages that while being morpho-
logically distinct, are well resourced and covered
by the three base sentence-embedding models. It
would be interesting to explore how models behave
when embeddings have a lower quality. For this,
one would need to create evaluation datasets at the
document level for low-resourced languages but
this is out of the scope of this work.

We observed that a simple sentence average is a
very strong pooling strategy, specially for classifi-
cation tasks. Positional and contextual information
is more important than semantic information for
the final performance as exemplified by the fact
that PERT-based weightings perform better than
TF-IDF’s in all the tasks. When combining both,

positional and semantic information, we do not ob-
serve statistically significant improvements with
respect to only including positional information.
For the classification tasks which include a learn-
able layer, we extend TK-PERT to ATT-PERT (and
the semantic counterparts) and include global train-
able attention on the positional information. This
global attention is beneficial in all the cases.

The type of document is also relevant to chose
the best method. Long documents might have the
most crucial information stored in different parts.
For instance, webpages have a majority of their
information in the first half of the document as
we observed in the document alignment task. In
this case, the positional information significantly
outperforms any model that does not take it into
account.

Limitations

One of the main focal points of this work is mul-
tilinguality. In the presented approaches, the mul-
tilinguality of the resultant document embeddings
depends solely on the language coverage and cross-
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lingual transfer ability of the pre-trained sentence
embeddings used as basic units. Document-level
representations are as robust to new languages and
scripts as the base sentence embeddings are. Cross-
lingual transfer is a perpendicular dimension not
studied in this work.

We introduce ATT-PERT, a new learnable ap-
proach for the combination of sentence embed-
dings. This model is therefore of use for tasks with
a learning/fine-tuning phase but it is not intended
for ready-to-use multilingual document-level em-
beddings in contrast to the existing pre-trained
sentence-level counterparts.
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