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Abstract

In the task of incremental few-shot relation clas-
sification, model performance is always limited
by the incompatibility between the base feature
embedding space and the novel feature embed-
ding space. To tackle the issue, we propose a
novel model named ICA-Proto: Iterative Cross
Alignment prototypical network. Specifically,
we incorporate the query representation into
the encoding of novel prototypes and utilize
the query-aware prototypes to update the query
representation at the same time. Further, we im-
plement the above process iteratively to achieve
more interaction. In addition, a novel prototype
quadruplet loss is designed to regulate the spa-
tial distributions of embedding space, so as to
make it easier for the relation classification. Ex-
perimental results on two benchmark datasets
demonstrate that ICA-Proto significantly out-
performs the state-of-the-art baseline model.

1 Introduction

Relation classification (RC) is an important sub-
task of relation extraction (RE), aims at classifying
the relation between two marked entities in a given
sentence. For example, the instance “[Newton]e1
served as the president of [the Royal Society]e2"
expresses the relation member_of between the two
entities Newton and the Royal Society. Some con-
ventional methods (Zeng et al., 2014; Gormley
et al., 2015; Soares et al., 2019) for relation classifi-
cation adopt supervised training and usually suffer
from the scarcity of manually annotated data. To
alleviate this problem, distant supervision (DS) is
adopted to automatically label abundant training in-
stances by heuristically aligning knowledge graphs
(KGs) with texts (Mintz et al., 2009). However,
existing DS-based methods fail to deal with the
problem of long-tail relations in KGs and still suf-
fer from data deficiency (Han et al., 2018).
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Figure 1: Visualization of the representations of the
query instances and prototypes of BERT-IncreProto. We
randomly sampled three base relations and three novel
relations from the real-world dataset FewRel 1.0, each
relation with its corresponding prototype (triangles for
base relations and stars for novel relations) and eight
query instances (points).

To address the above long-tail problem, few-shot
RC was proposed, which formulates RC in a few-
shot learning scenario. This task requires the mod-
els trained with base relations to generalize well
to novel relations with only few labeled instances.
Base relations are those relations that contain ad-
equate instances and can be utilized effectively in
the training phase to mimic the test phase on novel
relations with few samples. Fine-tuning pre-trained
models (Bengio, 2012; Gao et al., 2020) is straight-
forward while suffering from the overfitting prob-
lem. Therefore, metric-based methods (Ravi and
Larochelle, 2017; Dong et al., 2020; Geng et al.,
2020; Liu et al., 2020b) were proposed to grasp
the fast-learning ability from previous experiences
and then quickly generalize to new concept. These
methods have been experimentally proven to be
effective.

Taking a step further, incremental few-shot RC
(Ren et al., 2020) considers a more realistic sce-
nario, where the model is required to dynamically
recognize the novel relations with a few samples,
without reducing the base relation identification
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capability learned on the large-scale data of base
relations. Hence in the test phase, the query set
consists of instances of not only base relations but
also novel relations, which is more challenging.
Several related works (Liu et al., 2020a; Chen and
Lee, 2020; Kukleva et al., 2021) have been pro-
posed in the field of computer vision, focusing on
image classification task. As for the task of in-
cremental few-shot RC, IncreProtoNet (Ren et al.,
2020) is the first work, which proposes a two-phase
prototypical network model.

Specifically, IncreProtoNet contains two sepa-
rate prototypical networks (Snell et al., 2017). One
is pre-trained in the first phase to acquire the base
prototypes and base feature extractor, and the other
obtains the novel prototypes and novel feature en-
coder with few-shot episode training in the second
phase. However, IncreProtoNet suffers from in-
sufficient interaction between the class prototypes
and the query instances. Therefore, in the embed-
ding space, the novel relations often overlap sig-
nificantly with the base relations, and the query
representations are scattered, as shown in Figure 1.
In addition, the triplet loss used by IncreProtoNet
may be affected by noise samples, and its effective-
ness decreases on tasks with domain shift. As a
result, a low accuracy in the recognition of novel
relationships has been observed.

To alleviate the above problem, we propose
a novel model named ICA-Proto that contains a
specially-designed ICA module. ICA module con-
sists of two sub-modules, i.e., Cross Alignment
(CA) and Iterative Alignment (IA). Specifically,
CA is built to to dynamically and interactively en-
code the novel prototypes and query instances. On
the one hand, the obtaining of novel prototypes is
query-aware, namely that the query-related support
instances contribute more to the final prototypes.
On the other hand, the encoding of query instances
is prototype-aware, since the query-related proto-
types have more influence on the query representa-
tions. Furthermore, to achieve sufficient interaction
and alignment, we construct IA, which is to imple-
ment the above CA iteratively. In addition, Proto-
type Quadruplet (PQ) loss is proposed to enlarge
the distance between different types of prototypes,
while making the distance between query and pro-
totype of the same class as close as possible.

The contributions of this paper can be summa-
rized below:

• We propose a novel incremental few-shot clas-

sification model ICA-Proto, which is able
to dynamically recognize the novel relations
with a few support instances.

• We design a novel and effective ICA mod-
ule which learns the representations of the
query instances and the novel prototypes in-
teractively and iteratively. Besides, a novel
prototype quadruplet loss is presented to regu-
late the feature space distribution.

• Experiments on FewRel 1.0 and 2.0 datasets
demonstrate that our method significantly out-
performs the state-of-the-art method.

2 Task Formulation

In the task of incremental few-shot RC,
first we are given a large dataset con-
taining Nbase base relations: Dbase =
∪Nbase
b=1 {Ib,i = (xb,i, hb,i, tb,i, rb)}Kb

i=1, in which
Kb is the number of instances of relation rb,
and Ib,i represents its i-th instance consisting
of the sentence xb,i and the mentioned entity
pair (hb,i, tb,i). Then we are given a support set

S = ∪Nnovel
n=1

{
I
′
n,i

}K
′
n

i=1
of Nnovel novel relations,

where K
′
n is the number of support instances of

novel relation r
′
n and I

′
n,i is the i-th supporting

instance. With Dbase and S, the task is to recognize
the relations of the instances in the query set

Q = ∪Nbase+Nnovel
q=1

{
I
′′
q,i

}K
′′
q

i=1
, in which K

′′
q is the

number of query instances of relation r
′′
q and I

′′
q,i

is its i-th query instance. Therefore, the model
is required to dynamically recognize the novel
relations based on a few novel support instances
while keeping the base relation identification
capability learned on the large base dataset.

3 Method

In this section, we elaborate on the details of our
proposed ICA-Proto model for incremental few-
shot RC. First, we give a brief introduction to the
IncreProtoNet in Section 3.1. Then, we introduce
the overall framework of our model in Section 3.2.
Next, we present the proposed ICA module with
CA and IA sub-modules in Section 3.3. Moreover,
the proposed PQ loss is discussed in Section 3.4.

3.1 Introduction to IncreProtoNet
IncreProtoNet (Ren et al., 2020) is the first work fo-
cusing on incremental few-shot RC. The proposed
model is a two-phase prototypical network.
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In the first phase, a deep prototypical network,
consisting of a convolutional neural network based
encoder and a prototype based classifier, is pre-
trained on a large training dataset for base relations
in a supervised manner to learn the feature embed-
ding space of base relations. Therefore, the base
prototypes, denoted Pbase = {p1, p2, . . . , pNbase },
can be obtained by averaging the representations
of all training instances within each base class b:

pb =
1

Kb

Kb∑

i=1

xb,i, (1)

where xb,i is the embedding of Ib,i through the base
encoder.

In the second phase, another prototypical net-
work, named incremental few-shot prototypical
network, is proposed to learn the feature embed-
ding space of novel relations. The support set is
encoded to obtain the novel prototypes Pnovel ={
p′1, p

′
2, . . . , p

′
Nnovel

}
as follows:

p′n =
1

K ′
n

K′
n∑

i=1

x′n,i, (2)

where x′n,i is the embedding of I ′n,i through the
novel encoder. For a query instance q from the
query set, the representation xq is calculated as the
weighted sum of the xbaseq from the base feature
embedding space and xnovelq from the novel feature
embedding space:

xq = ωbx
base
q + ωnx

novel
q , (3)

where the weights ωb and ωn are determined by
considering the similarity of the query represen-
tation with the base prototypes Pbase and novel
prototypes Pnovel, respectively. To better show the
relationships, we summarize and rewrite the query
representation calculation equation (3) as:

xq = f(xbaseq , xnovelq , Pbase, Pnovel), (4)

where f is a composite function and represents a
series of attention operations. More details can
be found in the original paper (Ren et al., 2020).
Lastly, the probability of q belonging to the i-th
relation ri can be measured as:

pθ(ri | q) =
exp

(
−d

(
xq,p

all
i

))
∑Nbase +Nnovel

j=1 exp
(
−d

(
xq,pall

j

)) ,

(5)

where pall
i is the i-th prototype in P all =

{Pbase, Pnovel}.
Although IncreProtoNet performs well in recog-

nizing instances of base relations, it is still difficult
for this model to deal with novel relations. The ex-
perimental results in Ren et al. (2020) show that the
accuracy for novel relations is much lower than that
of base relations, which is unsatisfactory. There
are several reasons as follows. First, IncreProtoNet
obtains the novel prototypes independent of the
query instance, lacking interaction between them.
Second, IncreProtoNet ignores the alignment be-
tween base relations and novel relations, which is
vital in incremental learning scenarios. Third, there
is no effective regulation to the feature embedding
spaces of base relations and novel relations, which
causes discrepancy between them.

3.2 Overall Framework of ICA-Proto

To tackle the above issues, we propose the ICA-
Proto model on the basis of IncreProtoNet. Similar
to IncreProtoNet, our model contains two stages, in-
cluding the base pretraining stage and the few-shot
episode training stage. Furthermore, we innova-
tively propose the ICA module and PQ loss, of
which ICA module is demonstrated in the dashed
boxes in Figure 2.

3.3 Iterative Cross Alignment

In the task of incremental few-shot RC, it is im-
portant to make an alignment between the base
feature embedding space and the novel feature em-
bedding space so as to flexibly encode the query
instance and further make correct relation classifi-
cation. This requires full interaction between base
relations and novel relations. To this end, we pro-
pose the ICA module, which consists of CA and
IA sub-modules.

Cross Alignment. To this end, the CA sub-
module is designed to encode the novel prototypes
and the query instance in an interactive manner.
To be specific, we first initialize the novel proto-
types Pnovel and the query instance embedding xq
with equations (2) and (4), respectively. Then, CA
updates p′n ∈ Pnovel, encouraging the model pay
more attention to those query-related supporting
instances,

p′n =

K′
n∑

i=1

γn,ix
′
n,i, (6)
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Figure 2: The framework of ICA-Proto. In the dashed box representing ICA module, the yellow arrows refer to the
process of the query representation calculation, while the purple arrows means the process of the novel prototypes
update. The green loop arrows represents the iteractive refining of both query representation and novel prototypes.

where γn,i is defined as:

γn,i =
exp

(
−d

(
xq, x

′
n,i

))

∑K′
n

i=1 exp
(
−d

(
xq, x′n,i

)) , (7)

where d is the euclidean distance. In short, the
novel prototype embedding process can be summa-
rized as:

Pnovel = g(xq,∪Nnovel
n=1

{
I
′
n,i

}K
′
n

i=1
). (8)

Correspondingly, the query instance representa-
tion xq is further updated with equation (4), which
requires the model to pay more attention to the
query-related base prototypes and novel prototypes.
Since most of the query instances belong to base
relations, CA actually enhances the interaction be-
tween instances of base relations and novel rela-
tions, achieving better alignment between the two
feature embedding spaces.

Iterative Alignment. The aligned query repre-
sentation can help group the different support sam-
ples from the same novel class together to optimize
the novel prototype. Meanwhile, the optimized
novel prototype can further help align query rep-
resentations from different encoders. Inspired by
traditional iterative cross-optimization algorithms,
such as the EM (McLachlan and Krishnan, 2007)
or k-means (Hartigan and Wong, 1979) algorithms,
we further propose to carry out the above CA in an
iterative way, namely Iterative Alignment (IA). The
implementation is straightforward, since we just
need to iteratively update Pnovel and xq with equa-
tions (6) and (4), respectively, until the predefined

Algorithm 1 Iterative Cross Alignment
Input: Base prototypes Pbase, support set S, query
instance q and predefined maximum iteration
number N .
Parameter: Base encoder Θ1 and novel encoder
Θ2.
Output: Novel prototypes Pnovel, query instance
representation xq and probability distribution for
relation of q: pθ(r | q).

1: Initialize novel prototypes Pnovel with equa-
tion (1).

2: Initialize query instance representation xq with
equation (2).

3: for t = 1 → N do
4: Update query representation xtq:

xtq = f(xbaseq , xnovelq , Pbase, P
t−1
novel),

5: Update novel prototypes P t+1
novel:

P t+1
novel = g(xtq,∪Nnovel

n=1

{
I
′
n,i

}K
′
n

i=1
).

6: end for
7: return Pnovel, xq and pθ(r | q).

maximum number of steps is reached. Finally, the
refined novel prototypes and query instance repre-
sentations are obtained. The IA expands CA from
single round to multiple rounds, further promoting
the interaction and alignment.

Algorithm 1 outlines the key steps of our ICA
module.

ICA for Increment Few-Shot Domain Adap-
tation. In the real world, especially in the few-shot
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scenario, the test domain (new classes) and train-
ing domain (base classes) are often different, so
how to improve the ability of our model to transfer
across domains is also very important. Since the
test domain usually has no annotations and could
differ vastly from the training domain, we first ini-
tialize novel class prototypes with average repre-
sentation of support set instances and query repre-
sentations with initialized novel class prototypes.
Then CA cross-aligns novel support instances and
query from different domains. Furthermore, in the
cross-domain scenario, the initial query and the
novel prototypes are more likely to be incompat-
ible; therefore, the ICA module can significantly
improve the representations of the novel prototypes
and the query from different domains.

3.4 Prototype Quadruplet Loss
In our method, there are two feature embedding
spaces for base and novel classed separately and
the query instance is encoded by the two jointly.
Therefore, it is important to measure which embed-
ding space contributes more and further estimate
which prototype is the nearest. In addition, the
feature spaces of base classes and novel classes
should be separated as much as possible when they
are embedded into the same space. To this end, we
design a novel Prototype Quadruplet loss (LPQ),
denoted as follows:

LPQ =

M∑

i=1

Nnovel∑

k=1

max (0, δ1 + d1 − d2)

+ max (0, δ2 + d1 − d3) ,

(9)

where δ1 and δ2 are hyper-parameters, M is the to-
tal number of training episodes, and three distances
d1, d2, d3 are defined as follows:

d1 = d
(
f
(
aki

)
, P k

p,i

)
, (10)

d2 = d
(
f
(
aki

)
, P k

n,i

)
, (11)

d3 = d
(
P k
n,novel,i, P

k
n,base,i

)
, (12)

where
(
aki , P

k
p,i, P

k
n,novel,i, P

k
n,base,i

)
is a quadru-

plet consisting of the anchor instance, the positive
prototype from the same novel class, the first neg-
ative prototype from another novel class and the
second negative prototype from one of the base
classes, f(·) is the feature extractor, and P k

n,i is

randomly selected from P k
n,novel,i or P k

n,base,i. Un-
like IncreProtoNet, inspired by the triplet-center
loss (He et al., 2018), which can further enhance
the discriminative power of the features, we also
learn the center representation of each class and
then require that the distances between anchors and
centers from the same class are smaller than those
from different classes. Note that P k

p,i, P
k
n,novel,i,

P k
n,base,i are all virtual instances and denote the

corresponding prototypes.
In addition, to enhance the abilities of our model

to transfer across domains, inspired by the quadru-
plet loss (Chen et al., 2017) which introduces the
absolute distance between the positive and negative
sample pairs, we add d3 to better align different do-
mains, which narrows the domain gap and further
alleviates the issue of incompatible feature embed-
ding between base classes and novel classes, so as
to achieve more effective domain adaptation.

Finally, the joint loss function L is a trade-off
between the cross-entropy loss LCE and the above
LPQ by a hyper-parameter λ:

L = LCE + λ · LPQ. (13)

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We carry out extensive experiments on
two benchmark datasets. The first one is FewRel
1.0 (Han et al., 2018), which contains 80 relations
and provides 700 instances for each relation. We
adopt the same split as Ren et al. (2020). To be
specific, 54 relations are randomly selected as the
base relations each with 550 instances for base pre-
training, 50 instances for episode training and 100
instances for testing. 10 other relations each with
700 instances are sampled as the novel relations
for the episode training. The rest 16 relations each
with 700 instances are used as the novel relations in
testing. The other dataset is FewRel 2.0 (Gao et al.,
2019b), which is constructed on top of the FewRel
1.0 by adding a new test set in a quite different
domain (i.e., medicine), requiring the models to
transfer across domains.
Evaluation Metrics. To compare our proposed
method with the state-of-the-art methods, we adopt
the same evaluation metrics as Ren et al. (2020),
namely, three kinds of classification accuracy, in-
cluding classification accuracy for instances of base
relations, novel relations, and all relations. Since
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Table 1: Average classification accuracy (%) on the FewRel 1.0 dataset.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
Proto 43.20 ± 0.12 39.86 ± 0.26 42.91 ± 0.22 66.74 ± 0.05 57.33 ± 0.15 65.94 ± 0.11

HATT-Proto 51.58 ± 0.11 45.16 ± 0.18 51.03 ± 0.15 67.77 ± 0.13 61.12 ± 0.09 67.20 ± 0.08
BERT-PAIR 76.03 ± 0.05 58.29 ± 0.13 75.30 ± 0.11 80.01 ± 0.03 64.34 ± 0.14 78.68 ± 0.12

ProtoNet (Increment) 75.63 ± 0.04 18.44 ± 0.02 70.78 ± 0.03 75.07 ± 0.03 47.11 ± 0.04 72.70 ± 0.02
Imprint 62.62 ± 0.13 16.79 ± 0.34 58.73 ± 0.27 67.72 ± 0.09 16.49 ± 0.31 63.38 ± 0.25

AttractorNet 66.48 ± 0.19 5.32 ± 0.25 61.29 ± 0.23 68.26 ± 0.22 6.45 ± 0.26 62.78 ± 0.24

GloVe-IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
GloVe-ICA-Proto 72.15 ± 0.18 54.47 ± 0.04 70.65 ± 0.08 72.70 ± 0.06 71.91 ± 0.10 72.63 ± 0.13

BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08
BERT-ICA-Proto 82.56 ± 0.02 63.25 ± 0.09 80.93 ± 0.08 84.89 ± 0.05 69.49 ± 0.06 83.59 ± 0.04

the number of base relations is much larger than
that of novel relations, the classification accuracy
for instances of all relations depends largely on that
of base relations.

4.2 Implementation Details

To systematically validate the effectiveness of the
proposed ICA-Proto model, we experiment with
two kinds of word embedding initialization meth-
ods, namely, GloVe (Pennington et al., 2014) and
BERT (Devlin et al., 2019). Besides, the compared
methods are all evaluated in both 1-shot and 5-shot
learning. The hidden dimension of feature extrac-
tor is 230, as well as the prototype dimension. The
stochastic gradient descent (SGD) is employed for
optimization and the initial learning rate in episode
training is set as 0.1, except for BERT as 0.001. For
the PQ loss, the two margins δ1 and δ2 are set as
5.0 and 10.0 respectively, while the balance weight
λ is set as 1.0.

4.3 Comparison Methods

First of all, we compare with several few-shot
learning models, namely, Proto (Han et al., 2018),
HATT-Proto (Gao et al., 2019a) and BERT-PAIR
(Gao et al., 2019b) and the incremental few-shot
learning model ProtoNet (Increment) (Snell et al.,
2017). Besides, following (Ren et al., 2020), we
compare with Imprint (Qi et al., 2018) and LwoF
(Gidaris and Komodakis, 2018), which are the in-
cremental few-shot learning models in the com-
puter vision field. Finally, we take IncreProtoNet
as our baseline, which is the current state of the art.

4.4 Main Results

Our model gains significant improvement in in-
cremental few-show learning tasks. From Table
1, we can observe that for the FewRel 1.0 dataset,
our model achieves the best in both 1-shot and 5-
shot tasks. Compared with the best baseline model
IncreProtoNet, our model remarkably improves the
novel class classification accuracy by 3-10%, while
maintaining high accuracy on base class recogni-
tion. This shows that the proposed ICA module
and PQ loss can greatly promote the models’ recog-
nition capabilities for novel classes. We conjecture
this is because the ICA module can obtain more ef-
fective novel prototypes and better align the query
representations from different encoders.
The more support set instances, the larger the
improvement for novel class classification. As
can be seen from Table 1, using either GloVe or
BERT as the initial text encoder, the improvement
on the 5-shot learning is more significant than that
of 1-shot learning for novel class. This is because
when there are more support set samples, the ICA
module and PQ loss can help separate the base and
novel classes, reduce the distance between similar
classes, and make the query of novel class and
corresponding prototype as close as possible.

4.5 Domain Adaptation Results

To further demonstrate the superiority of our
method, we extend the few-shot domain adapta-
tion (few-shot DA) task in FewRel 2.0 (Gao et al.,
2019b) to the incremental few-shot domain adapta-
tion (incre-few-shot DA) task in our work. Differ-
ent from the original incre-few-shot RC, the novel
instances in the test set are replaced by new in-
stances from the medical domain. Since the do-
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Table 2: Results (%) of incre-few-shot DA on the FewRel 2.0 dataset.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
GloVe-IncreProtoNet 71.37 ± 0.25 36.85 ± 0.13 68.44 ± 0.18 71.71 ± 0.22 49.15 ± 0.14 69.80 ± 0.17

GloVe-ICA-Proto 71.39 ±0.11 37.03 ± 0.15 68.48 ± 0.14 73.11 ± 0.15 55.58 ± 0.10 71.63 ± 0.11
BERT-IncreProtoNet 86.27 ± 0.06 52.68 ± 0.20 83.42 ± 0.11 87.83 ± 0.05 56.70 ± 0.14 85.19 ± 0.09

BERT-ICA-Proto 86.72 ± 0.04 52.85 ± 0.16 83.85 ± 0.12 87.49 ± 0.16 65.27± 0.08 85.60 ± 0.14

Table 3: Ablation Studies. † indicates ICA-Proto without the ICA module; and ‡ indicates ICA-Proto without the
PQ loss.

Models
1-shot learning 5-shot learning

Base Novel Both Base Novel Both
GloVe-IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
GloVe-ICA-Proto † 72.03 ± 0.12 52.47 ±0.05 69.42 ± 0.01 72.32 ± 0.04 67.36 ± 0.10 71.94 ± 0.08
GloVe-ICA-Proto ‡ 71.15 ±0.03 53.97 ± 0.12 69.82 ± 0.10 71.12 ± 0.06 69.14 ± 0.16 71.64 ± 0.11
GloVe-ICA-Proto 72.15 ± 0.18 54.47 ± 0.04 70.42 ± 0.08 72.70 ± 0.06 71.91 ± 0.10 72.63 ± 0.13

BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08
BERT-ICA-Proto † 82.20 ± 0.13 62.72 ± 0.15 80.67 ± 0.08 84.04 ± 0.12 68.06 ± 0.28 82.15 ± 0.10
BERT-ICA-Proto ‡ 82.15 ± 0.14 63.07 ± 0.09 80.92 ± 0.13 84.98 ± 0.10 69.36 ± 0.12 83.25 ± 0.15
BERT-ICA-Proto 82.56 ± 0.02 63.25 ± 0.09 81.50 ± 0.08 84.90 ± 0.05 69.50 ± 0.06 83.64 ± 0.04

main of novel instances in the test set is no longer
consistent with the training set, the models are re-
quired to be able to transfer across domains, which
is more challenging.

Table 2 illustrates the comparison results of
Incre-ProtoNet and our model, and we have two
observations: (1) Huge drops on almost all met-
rics have been witnessed for both IncreProtNet and
our model, which demonstrates the difficulty of
incre-few-shot DA. However, the performance of
our method deteriorates much slower than that of
IncreProtoNet. (2) Our model outperforms Incre-
ProtoNet on all metrics. Especially in 5-shot set-
tings, the accuracy of novel relation recognition is
improved by more than 7% in absolute percentage.
It indicate that our proposed ICA module provides
more accurate, robust and general representations
for the relation prototypes and query instances.

4.6 Ablation Studies

As shown in Table 3, on the FewRel 1.0 dataset,
compared with the baseline IncreProtoNet, our
model can get a large improvement with either the
ICA module or the PQ loss. Especially for the ICA
module, benefited from the full interaction brought
by it, better query representation and novel pro-
totype representation greatly improve the model’s
ability in incremental few-shot learning tasks. Fur-

thermore, these two designs are complementary to
each other, and combining them together, we can
achieve even larger improvement.

4.7 Visualization Analysis

We visualize different types of query representa-
tions and prototype representations. As shown
in Figure 3, benefited from the ICA module and
PQ loss, prototypes of different classes are pushed
apart, and the representations of different queries
are more accurate and fall close to the correspond-
ing prototype of the same class.

4.8 Impact of the Iteration Number in ICA

As shown in Table 4, the ICA module with two
(N=2) or three (N=3) iterations achieves better re-
sults than the single iteration (N=1). This shows
that the ICA module which optimizes query repre-
sentation and novel prototype representation step
by step can effectively improve the accuracy of in-
cremental few-shot learning. In addition, when N is
greater than 3, the accuracy of the model decreases.
The reason is probably that larger N leads to over-
fitting of the model. Finally, it can be seen from
Table 4 that no matter how many times the model
is iteratively aligned, our models are significantly
better than the current best baseline IncreProtoNet.
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(c)  BERT-ICA-Proto(b)  BERT-ICA-Proto w/o PQ loss
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(a)  BERT-ICA-Proto w/o ICA module
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novel2-P800

novel3-P466

Figure 3: Visualization of the representations of the query instances and prototypes when BERT-ICA-Proto is
equipped (a) without ICA module and (b) without PQ loss.

Table 4: Impact of the iteration number in ICA module.

Models
5-shot learning

Base Novel Both
GloVe-IncreProtoNet 72.43 61.57 71.54

GloVe-ICA-Proto (N=1) 72.33 69.91 72.12
GloVe-ICA-Proto (N=2) 72.55 68.91 72.24
GloVe-ICA-Proto (N=3) 72.70 71.91 72.63
GloVe-ICA-Proto (N=4) 72.77 70.01 72.53

BERT-IncreProtoNet 84.54 65.77 82.26
BERT-ICA-Proto (N=1) 84.25 67.50 82.83
BERT-ICA-Proto (N=2) 84.36 69.50 83.10
BERT-ICA-Proto (N=3) 84.89 69.49 83.58
BERT-ICA-Proto (N=4) 84.43 68.10 82.06

5 Related Work

RC is a fundamental task in natural language pro-
cessing, aiming to recognize the semantic relation
between two marked entities in a sentence. With
the development of deep learning in recent years,
many models based on neural networks have been
proposed for this task and achieved great progress.
For example, Zeng et al. (2014) and dos Santos et
al. (2015) utilized convolutional neural networks
to capture the global and local semantic informa-
tion. Later, some attention-based models (Wang
et al., 2016; Zhou et al., 2016; Jin et al., 2020) have
been proposed to better capture the more useful
semantic information. These models are may suf-
fer from the scarcity of high-quality training data.
To mitigate the problem, some works (Mintz et al.,
2009; Jia et al., 2019; Qin et al., 2018) adopt DS
to construct large-scale datasets, while ignore the
effect of long-tail relations.

Few-shot RC aims to learn high-quality features
with only a small number of training samples. Early

works employed the paradigm of pretraining and
fine-turning (Bengio, 2012; Donahue et al., 2014;
Gao et al., 2020), which aimed to acquire and
transfer konwledge from support set containing in-
stances of common relations. Later, metric learning
methods (Vinyals et al., 2016; Snell et al., 2017)
were proposed to learn different representations
across relations. One representative work is pro-
totypical networks (Snell et al., 2017), aiming to
learn robust class representations and classify the
query set based on the distance to the class pro-
totypes in the feature space. A series of works
(Han et al., 2018; Gao et al., 2019a,b) employed
prototypical network in few-shot RC and achieved
excellent performance.

Incremental learning is a setting where new infor-
mation is arriving continuously while prior knowl-
edge needs to be maintained. Combining incre-
mental learning with few-shot RC, incremental
few-shot RC constitutes a more realistic scenario,
where the model is required to leverage the rep-
resentations of base relations learned from large-
scale training dataset meanwhile effectively learn
the representations of novel relations from a few
support instances. To deal with this task, Ren et
al. (2020) proposed a prototypical network based
model consisting of two encoders for base relations
and novel relations, respectively. In this paper, we
argue that the previous work (Ren et al., 2020) is
sub-optimal and introduce a preferable solution.

6 Conclusion

In this paper, we presented a novel and effective ap-
proach with iterative cross alignment module and
prototype quadruplet loss for the task of incremen-
tal few-shot learning. Benefit from the extensive
interaction offered by the iterative cross alignment
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and the feature space regulation brought by the pro-
totype quadruplet loss, our method outperformed
the state-of-the-art baseline method significantly,
as verified in our extensive experiments. In future
work, we aim to further improve the performance
of our model under the one-shot task setting, as
well as accelerate the training process.

Limitations

In this paper, we propose a novel model named
ICA-Proto for the task of incremental few-shot
relation classification. Experimental results have
shown that our method outperforms the existing
best baselines. However, there are two major lim-
itations. First, our method iteratively caculates
the representations of query instances and relation
prototypes, which is more time-consuming. Sec-
ond, the best iteration number in ICA module may
vary with different datasets. Therefore, we should
conduct extra experiments to determine the best
iteration number when applying our method in a
new dataset, which is not convenient enough to
some degree.
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