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Abstract

The task of generating a database query from a
question in natural language suffers from am-
biguity and insufficiently precise description
of the goal. The problem is amplified when
the system needs to generalize to databases un-
seen at training. In this paper, we consider
the case when, at the test time, the system has
access to an external criterion that evaluates
the generated queries. The criterion can vary
from checking that a query executes without
errors to verifying the query on a set of tests. In
this setting, we augment neural autoregressive
models with a search algorithm that looks for a
query satisfying the criterion. We apply our ap-
proach to the state-of-the-art semantic parsers
and report that it allows us to find many queries
passing all the tests on different datasets.

1 Introduction

Generating a database query from a natural-
language description of the user’s intent is a long-
standing and important task. In the recent years,
most of the community focus was on the Spider
dataset (Yu et al., 2018), which poses the task in the
zero-shot regime, meaning that a method has to gen-
eralize to databases unseen at training. The Spider
dataset contains English questions and SQL queries.
The progress has been remarkable, and the accu-
racy has moved from below 30% to above 70%. A
part of this success can be attributed to the adoption
of pre-trained transformer models like BERT (De-
vlin et al., 2019) into most of the pipelines.

Given such progress, it is natural to ask whether
we are getting closer to solving the problem. Sev-
eral recent studies have noted that the task might be
harder than it looks. Finegan-Dollak et al. (2018)
found that many single-database datasets had iden-
tical queries in both train and test sets and showed
that using such splits effectively reduced the prob-
lem to classifying the queries from the train set.

∗* Equal contribution.

Shaw et al. (2021) continued the study in the multi-
database setting and showed that the compositional
generalization was hard to achieve, and even to
measure it, one should be very careful with splits.
In a different line of thought, Suhr et al. (2020)
examined how the models trained on Spider gen-
eralize to other datasets and reported that general-
ization was challenging. Even within one dataset,
many questions have several interpretations leading
to different queries, and annotation policies do not
cover these ambiguities or cover them differently.

Acknowledging that the zero-shot setting might
be too difficult to tackle as is, we aim to better
define and simplify the problem to achieve better
results in terms of the number of correctly gener-
ated queries. In this task, most modern models
produce a distribution over all possible outputs,
which can guide the search at the test time.

We observe that if the search algorithm has ac-
cess to a criterion that can evaluate the output by
treating it as a database query, the overall method
can produce much better results. We consider the
following criteria ordered by their “strength”: a
query is executed without errors, a query produces
output from correct columns, a query produces a
correct result on one test database, and a query pro-
duces correct results on a set of test databases. We
experiment with different search methods and re-
port that the complete anytime beam search (Zhang,
1998) outperforms sampling-based alternatives.

Many practical cases arise when the user is will-
ing to trade off some of their time to improve the
output query. Our approach allows the user to
obtain a better query by interactively guiding the
search via providing the target output columns or
the answer on one or more test databases. The user
is expected to supply this information without the
gold query. Notably, the execution criterion does
not require extra user input but relies on executing
generated queries.

In addition, the test time database can be out of
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domain w.r.t. the training set. One can annotate
gold queries for fine-tuning on new databases to
improve out-of-domain performance, but this can
be prohibitively expensive. Our approach gives a
way to improve out-of-domain results without extra
annotated training data. We view our approach as a
way to control the trained model leading to a more
reliable and responsible query synthesis.

For our studies, we used three state-of-the-art
models in terms of execution accuracy (with pub-
licly available implementations): T5-3B (Raffel
et al., 2020) fine-tuned to Spider by Scholak et al.
(2021), BRIDGE (Lin et al., 2020) and SQ-QDMR
(Saparina and Osokin, 2021).

In this paper, we make several observations. The
complete anytime beam search works with differ-
ent search criteria and with all the three models.
Reasonable results can be obtained with the max-
imum beam size of 100, which fits on a single
modern GPU. Searching with the execution crite-
rion can significantly improve the quality of the
decoders that generate output as an unconstrained
token sequence, e.g., T5, and using such criterion
does not require extra user input. Searching for the
queries that return a correct output on one database
allows finding many queries that provide a correct
output on that database. Therefore, such search-
ing w.r.t. one database can result in false positives,
and it is important to evaluate the queries on a
set of databases. Based on the method of Zhong
et al. (2020), we built the test suite of databases
for the evaluation. With these test suites, we show
that there are multiple false positives among the
queries that pass one test, while searching for the
queries that pass the test suite produces the outputs
of higher quality.

Finally, we experiment with the generaliza-
tion of the models trained on Spider to the Geo-
Query (Zelle and Mooney, 1996), IMDB, Yelp
(Yaghmazadeh et al., 2017) and Academic (Li and
Jagadish, 2014) datasets. We show that searching
w.r.t. different criteria still works under this distri-
bution shift, and searching w.r.t. the criteria with
tests is often comparable to fine-tuning the network
to a test dataset directly.

This paper is organized as follows. In Section 2,
we review our setting. In Section 3, we provide
the details of our method. Section 4 provides the
details of the test-suite construction procedure, Sec-
tion 5 describes the experimental setup. In Sec-
tion 6, we provide the experimental results and

discussion. We review some related works in Sec-
tion 7 and conclude in Section 8.

2 Preliminaries

We consider the problem of generating queries to
databases given the description of the user’s intent
in natural language in the cross-database setting
where the train, validation and test splits contain
different databases. Models trained in this setting,
in theory, can be evaluated on any database.

A typical model for the cross-database setting
is an encoder-decoder neural network. Encoders
typically consist of a pre-trained BERT-like trans-
former followed by a specialized encoder that can
incorporate the database structure in some form
(Guo et al., 2019; Wang et al., 2020; Cao et al.,
2021; Cai et al., 2021). Sometimes the BERT part
is further fine-tuned on database-related objectives
(Yu et al., 2021; Deng et al., 2021). The encoder in-
put is a concatenation of the tokenized question and
a sentence representation of the database schema
separated by the special delimiter token. The rep-
resentation of the database schema consists of the
tokenized table and column names and values re-
lated to the question. These values are commonly
extracted by string matching with question tokens
(Lin et al., 2020). Decoders are typically autore-
gressive based on LSTM or transformers. Some de-
coders do not check the syntactic correctness of the
output and its consistency with the database. Some
provide output w.r.t. a grammar (Yin and Neubig,
2017); some use post-hoc checks with parsers.

In this paper, we experiment with three models:
T5-3B fine-tuned on the Spider dataset by Scholak
et al. (2021), BRIDGE (Lin et al., 2020) and SQ-
QDMR (Saparina and Osokin, 2021). We provide a
detailed description of these models in Section 5.3.

3 Search with Models

We now describe our approach to searching for
queries on top of a learned model. We first generate
full query candidates using a search method and
then select the first one that passes the selected
search criterion. We show possible search criteria
in Section 3.1 and search methods in Section 3.2.

3.1 Search Criteria

Execution criterion. To avoid syntactically in-
correct queries, we can prune the search with the
execution criterion. The query passes this criterion
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if it can be executed on the input database with-
out errors. In particular, the query has to contain
valid table and column names. These properties are
not guaranteed for the unconstrained decoders as
T5. Thus the execution criterion can be extremely
useful for such models.

Output column match. With this criterion, we
compare the output columns (that the query will
select) with the correct ones. Firstly, wrong output
columns is a common mistake in the text-to-SQL
parsers (Guo et al., 2019; Lin et al., 2020; Suhr
et al., 2020). Secondly, the output columns can
provide domain knowledge and shed some light on
the user intent in a realistic scenario when the input
question is ambiguous (Suhr et al., 2020; Lee et al.,
2021).

One test. This criterion compares the result of
query execution on a given database (one test case)
with the correct one. With this criterion, we search
for a correct query in terms of execution accuracy
on the input database (Section 5.2).

Test suite. This criterion checks if a query
passes a set of tests. Each test case corresponds to
a particular database, and all test databases share
the same schema. This criterion is inspired by a
test suite of databases with high code coverage pro-
posed by Zhong et al. (2020). The set of databases
is designed to distinguish the correct queries from
potential false positives. Searching with this crite-
rion is equivalent to the search for a correct query
in terms of test-suite accuracy (Section 5.2) .

3.2 Search Methods

Top-k and Top-p (Nucleus) Sampling (Fan
et al., 2018; Holtzman et al., 2020) draw sam-
ples from the truncated distribution: the probability
mass is re-weighted between the k most probable
elements in top-k sampling and between the ele-
ments with cumulative probability mass exceeding
p in top-p sampling (k, p are hyperparameters).

UniqueRandomizer (Shi et al., 2020) is a
method to incrementally sample sequences without
replacement. The samples are drawn until the stop-
ping condition is reached (one of the search criteria
in our case). The probabilities of selected elements
are reduced after each iteration of sampling to im-
prove diversity in samples.

Complete Anytime Beam (CAB) Search of
Zhang (1998) extends the regular beam search by
running it several times with increasing beam sizes.
Importantly, the beams produced by beam search

Table 1: Comparison of the test suites’ statistics.
NoEmpty is the percentage of SQL queries for which at
least one test database with non-empty execution result
is found; Cover is the percentage of neighbor queries
distinguished by the test databases; Tests is the average
number of test databases per query; Time is the average
wall-clock execution time per query; Size is the total
size of all test databases.

Dataset NoEmpty Cover Tests Time Size
(%) ↑ (%) ↑ (Num) (Sec) ↓ (GB) ↓

Spider
1 test 96.7 89.1 1 0.1 3.25
Orig. 98.2 96.1 675 3.6 0.16
Our 99.3 98.8 1.8 0.2 0.04

GeoQuery
1 test 94.7 93.2 1 0.1 10–4

Orig. 66.7 52.6 108 12.6 0.01
Our 100 98.9 1.6 0.2 0.05

IMDB
1 test 75.2 14.9 1 8.7 1.49
Orig. 79.2 79.4 200 17.7 0.04
Our 100 99.6 2 0.3 0.03

Yelp
1 test 36.5 15.8 1 6.4 2.21
Orig. 84.1 80.6 282 30.9 0.03
Our 99.2 97.0 3.1 0.4 0.03

Academic
1 test 51.1 5.50 1 44.2 4.33
Orig. 97.9 92.1 411 44.3 0.07
Our 96.8 95.2 2.3 0.4 0.07

are known to have little diversity because of the
peaks in the softmax scores. We follow the ap-
proach of Zohar and Wolf (2018); Shrivastava et al.
(2021), who recently have used CAB to search for
programs on top of neural autoregressive models.
In these works, the authors limit the number of hy-
potheses coming from each element of the previous
beam (we will refer to this upper bound as the width
of the beam search). Between outer CAB iterations,
we also increase the width by a constant value and
multiply the beam size by a constant factor. The
schedules of the beam size and beam-search width
are important hyperparameters.

4 Test Suite Construction

Testing on one database is generally not enough to
ensure the semantic correctness of the generated
query, but running the query on too many databases
can be computationally inefficient. The inefficiency
problem is especially acute in our task due to the
large number of query candidates that should be
tested and several rounds of the searching process.

We build our test suites by modifying the method
of Zhong et al. (2020), which relies on generating
the so-called neighbor queries from a given set of
gold queries and randomly sampling databases to
distinguish gold queries from as many neighbors
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as possible. We observed two key drawbacks of
the test databases generated by Zhong et al. (2020).
First, the test suites contained many databases, and
some were unnecessarily large, which resulted in
very long testing on them. Second, outputs of many
queries were often empty (or zero for queries with
aggregators) on these test databases. If the output
of the gold query is empty on all the elements of
the test suite, it cannot be distinguished from triv-
ial dummy queries. This effect is more salient if
the gold query returns empty output on the orig-
inal database. We alleviate these issues by inde-
pendently generating test databases for each gold
query, explicitly limiting the number of rows in
each table and putting extra effort into generating
at least one database where the gold query returns
a non-empty output. The details of our procedure
are provided in Appendix A.

We compare our test suites with the original
ones of Zhong et al. (2020) on the five considered
datasets described in Section 5.1. For a fair com-
parison, we generate the independent sets of neigh-
bor queries for each gold query. These neighbor
queries are different from the neighbors generated
in the process of creating the test suites. In Table 1,
we compare the initial databases (1 test), original
test suites and our test suites. It can be seen that,
in the space of neighbor queries, our test suites
have higher code coverage (Cover) than the origi-
nal databases and the original test suites. With new
test suites, the average query execution time (on all
the corresponding tests) is reduced 50x across the
datasets. We release the test suites we created.1

5 Experiment Setup

5.1 Data

We conduct our experiments on five text-to-SQL
datasets: multi-database Spider (Yu et al., 2018)
and single-database GeoQuery (Zelle and Mooney,
1996; Iyer et al., 2017; Finegan-Dollak et al., 2018),
IMDB, Yelp (Yaghmazadeh et al., 2017) and Aca-
demic (Li and Jagadish, 2014).

Spider. We use dev and test sets (451 and 521
examples) from the work of Saparina and Osokin
(2021): they are parts of the original Spider dev,
but some examples (from dev) were repaired.

GeoQuery, IMDB, Yelp and Academic. We
use query splits created by Finegan-Dollak et al.
(2018), additionally filtered from duplicates and

1github.com/ramild/TestSuite

examples with gold SQL queries that crash or exe-
cute longer than 5 minutes with the Python package
sqlite3. The dataset statistics are provided in Ta-
ble 7 of Appendix D.

We do not consider more single-database
datasets because ATIS (Price, 1990; Dahl et al.,
1994), Scholar (Iyer et al., 2017) and Advising
(Finegan-Dollak et al., 2018) database schemes
exceed 512 token limits of pre-trained encoders,
Restaurants (Popescua et al., 2003; Tang and
Mooney, 2001) contains too many duplicates.

5.2 Evaluation Metrics

Exact-set Match (Yu et al., 2018) is an SQL-
to-SQL comparison metric that reflects the fraction
of the predicted queries matching the ground-truth
queries. In the matching process, each query is
decomposed into fragments that are compared indi-
vidually so that the metric is not too sensitive to the
ordering of independent clauses. This metric does
not take into account predicted values and can give
a high score to incomplete queries. As SQ-QDMR
model produces queries in SPARQL, we cannot use
the exact-set match as a primary evaluation metric.

Execution accuracy is designed to compare the
queries by their execution output on an original
database. In contrast to the exact-set match, this
prevents false-negative queries but leaves space for
potential false positives. The version provided by
Yu et al. (2018) for Spider evaluation has issues in
SPARQL-SQL comparison, so we use the version
provided by Saparina and Osokin (2021) unless
explicitly mentioned otherwise.

Test-suite accuracy (Zhong et al., 2020) ap-
proximates the semantic accuracy of the query syn-
thesis models. This metric refers to the share of
predicted queries producing the correct answers on
all databases from the test suite. We build the test
suites for Spider dev and test sets and for all the
queries in the other four considered datasets.

5.3 Models

We consider three models: T5-3B fine-tuned on
Spider (Scholak et al., 2021), BRIDGE (Lin et al.,
2020) and SQ-QDMR (Saparina and Osokin, 2021).
These models have top execution accuracy among
publicly available models on Spider. We also tried
to search under our search criteria on top of the
bottom-up semi-autoregressive model of Rubin and
Berant (2021), but we could not make the search
increase the number of correct queries.
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For evaluation on Spider, we use the released
checkpoints of the best models. BRIDGE train-
ing data included question splits of single-database
datasets, so we re-train it on Spider-only data to
evaluate on query splits of these datasets. For re-
training BRIDGE and fine-tuning all models, we
use official implementations (see Appendix E).

T5 (Raffel et al., 2020) is a pre-trained seq2seq
model based on Transformer. Recently, Shaw et al.
(2021); Scholak et al. (2021) successfully applied
T5 for the text-to-SQL task. The input sequence
contains question tokens and tokens of column and
table names. The database values matched with the
question tokens are appended to the corresponding
column names (Lin et al., 2020). The output of the
T5 model is the sequence of tokens representing the
SQL query. Note that this model generates output
sequence without explicitly considering the SQL
grammar and schema consistency.

BRIDGE (Lin et al., 2020) consists of the
BERT-based encoder and pointer-generator de-
coder. The input sequence is formed from the con-
catenation of question, table and column names,
and relevant database values separated by special
token and encoded with BERT. The relevant val-
ues are selected with fuzzy string matching be-
tween question and database values. Column en-
codings are further enriched with meta-data fea-
tures such as primary or foreign keys and data types
obtained from the feed-forward layer. The LSTM-
based decoder with multi-head attention at each
step copies question or schema tokens or gener-
ates the SQL keywords. During decoding, model
chooses columns only from the predicted table to
provide schema consistency. An additional static
SQL analyzer filters incorrect output queries.

SQ-QDMR (as we refer to the model of Sapa-
rina and Osokin (2021)) contains RAT-transformer,
GraPPa encoders (Wang et al., 2020; Yu et al.,
2021) and a grammar-guided LSTM-based decoder
(Yin and Neubig, 2017). The SQ-QDMR decoder
produces output in the form of grounded interme-
diate representations derived from QDMRs of the
Break dataset (Wolfson et al., 2020). The grounded
QDMRs are not directly related to any execution
engine and cannot be executed as is, but Saparina
and Osokin (2021) implemented a non-trainable
translator from grounded QDMR to the SPARQL
query language, in which queries can be executed.
We can think of grounded QDMRs augmented with
this translator as executable database queries.

Table 2: Comparing the execution accuracy of differ-
ent search approaches under the 1-test criterion on the
Spider dev split.

Model Greedy CAB Sample Top-p UniRand

T5-3B 77.0 94.4 93.0 93.0 94.1
BRIDGE 66.8 91.0 87.1 84.9 86.2
SQ-QDMR 80.4 98.0 98.0 98.0 98.2

6 Results & Analysis

6.1 Impact of the Search Methods
We compare different decoding strategies in our
setting (Table 2): top-k and top-p (nucleus) sam-
pling (Fan et al., 2018; Holtzman et al., 2020), Uni-
queRandomizer (Shi et al., 2020) and CAB search
(Zhang, 1998). We measure the execution accuracy
of these search methods under the 1-test criterion
on Spider dev. We use the same sampling budgets
(1000 for BRIDGE and SQ-QDMR and 800 for
T5-3B due to the memory limits), tune p in top-p
sampling and the temperature for all methods, more
implementation details in Appendix B).

The results demonstrate that a significant num-
ber of output queries pass one test after searching
with any of these methods, so different decoding
strategies can be compatible with our approach.
UniqueRandomizer is very time-consuming since it
generates samples sequentially in contrast to other
methods that generate beams of samples in parallel.
CAB search is demanding in terms of the device
memory as it has to process the whole beam jointly.
For further experiments, we choose CAB search
because it works best for two models.

6.2 Impact of the Search Criteria
We apply search under different selection crite-
ria (execution, output column match, test on one
database) to T5-3B, BRIDGE and SQ-QDMR on
Spider dataset and compare with the greedy and
beam search baselines. Table 3 shows the results
measured with execution accuracy. Searching on
top of all models with different selection criteria
increases execution accuracy in almost all cases.

One exception is the search with the execution
criterion on top of BRIDGE and SQ-QDMR, the
results of which are close to the greedy decoding.
The outputs of these systems are almost always
executable because BRIDGE runs a static SQL an-
alyzer for filtering, SQ-QDMR decodes accord-
ing to the QDMR grammar and both models have
schema-consistent decoding. The T5 model, in
contrast, does not have any grammar or schema
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Table 3: Execution accuracy of search under different
selection criteria (execution, output column match and
1 test) on Spider; beam s. refers to beam search.

Model Split Greedy Beam S. Exec Cols 1 Test

T5-3B
dev

77.0 77.4 83.1 84.2 94.4
BRIDGE 66.8 68.8 68.4 72.0 91.0
SQ-QDMR 80.4 80.6 80.4 83.6 98.0

T5-3B
test

70.8 71.0 73.7 77.4 90.7
BRIDGE 64.0 66.2 64.6 67.9 83.4
SQ-QDMR 65.6 65.8 65.6 68.9 86.7

constraints in decoding. For language model de-
coders that do not explicitly check grammar and
schema consistency, the execution criterion can
significantly improve the quality.

For T5-3B, we also compare the results of the
search with PICARD (Scholak et al., 2021), our
search with the execution criterion, and greedy de-
coding. For a fair comparison with Scholak et al.
(2021), we use the same data, the official Spider
dev set, and the same metrics: exact-set matching
accuracy and execution accuracy provided by Yu
et al. (2018):

Method EM Exec

Greedy 71.5 74.4
PICARD 75.5 79.3
CAB+execution 74.5 78.7

The results obtained with PICARD and with
searching under the execution criterion are com-
parable – our search gets most of the benefit over
the baseline. PICARD provides slightly better qual-
ity and works with smaller beams but requires more
effort to incorporate because it is tightly connected
with the decoder output vocabulary and grammar.
For both approaches, the percent of output queries
with execution errors is around 2% in contrast to
the baseline T5-3B decoding with 12%.

The search criterion based on the matching
of output columns provides even better results.
As Table 3 shows, all models benefit from this
criterion: execution accuracy increases by 3-4%
nearly everywhere. This criterion largely simplifies
the task with extra information at the test time.

Search for the queries that pass one test allows
finding a significant number of such queries.
Passing one test means correct execution result on
the input database, so all the queries found with this
criterion are correct in terms of the execution accu-
racy. Thus, these results indicate that our searching
approach works, and we can find the correct queries
with the corresponding criterion. However, we ob-

Table 4: Test-suite accuracy of search under different
selection criteria (execution, output column match, 1 test
and test suite) on Spider.

Model Split Greedy Exec Cols 1 Test Test Suite

T5-3B
dev

72.2 77.7 78.3 86.9 90.1
BRIDGE 63.2 64.8 68.2 81.9 84.0
SQ-QDMR 72.5 72.2 75.4 84.0 94.4

T5-3B
test

68.9 73.7 75.4 84.7 86.8
BRIDGE 61.9 62.5 65.4 76.6 77.8
SQ-QDMR 62.3 62.1 65.4 75.2 84.1

serve that more than 10% of queries found with
one-test criterion are false-positive according to the
test-suite accuracy (Table 6 in Appendix C).

These results motivate us to evaluate the test-
suite accuracy of criterion-guided search. Table 4
confirms our findings: searching with the execution
criterion helps T5-3B, and searching for correct
output columns improves the results of all models.
Search for the queries that pass one test results
in a significant number of false-positive queries.
The correct queries can be found by searching
with the test-suite criterion directly.

6.3 Efficiency
Time Measurements. The running time during

the search is dominated by the time of the decoder
for all three models: executing each considered
query takes 3% of the decoder time for T5-3B,
which is 0.01 sec per run; 53%, 0.02 sec – for
BRIDGE; 72%, 0.03 sec – for SQ-QDMR. The
total running time depends on the effective beam
size used during the search.

The T5-3B model with the execution criterion
on top runs in 1.7 sec compared to 3.1 sec reported
by the PICARD paper, where both systems were
run on 1 NVIDIA A100 GPU. The main reason is
that due to CAB, we do not set one beam size in
advance and thus, process at least 70% of examples
with an effective beam size of 1.

Impact of the Maximum Size of Beam. The
maximum size of the beam is an important param-
eter. Figure 1 shows the dependence between the
obtained test-suite accuracy on the Spider dev set
and the maximum beam size in the search under the
test suite criterion. For all models, we start with the
maximum beam size equal to 1, which is equivalent
to the greedy decoding and finish with the maxi-
mum beam size allowed by our implementation
and hardware: 10k for BRIDGE and SQ-QDMR
on 1 NVIDIA V100 GPU and 800 for T5-3B on 8
NVIDIA A100 GPUs.
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Figure 1: Test-suite accuracy on the dev set for the T5-
3B, BRIDGE and SQ-QDMR models tested with CAB
for the test-suite criterion.

Test-suite accuracy improves as the maximum
beam size increases. BRIDGE with the maximum
beam size equal to 10k achieves 86% of test-suite
accuracy and SQ-QDMR — 94%. However, the
search works well enough even with smaller beams:
with the maximum beam size of 100, BRIDGE
achieves almost 80%, SQ-QDMR — 92%, and T5-
3B achieves 88% (with 800, T5-3B achieves 90%).
Importantly, the search with the beam size of 100
does not require multiple GPUs for T5-3B.

6.4 Experiments on Single-Database Data

To show more benefits of searching under selec-
tion criteria, we evaluate it on single-database
datasets, GeoQuery, IMDB, Yelp and Academic,
with test-suite accuracy (Table 5; see Appendix F
for execution accuracy). We use query splits of
Finegan-Dollak et al. (2018) and two model types:
trained on Spider only and fine-tuned on a particu-
lar dataset. The Academic database is very large, so
we cannot evaluate one-test criterion on this dataset
and fine-tune SQ-QDMR (other datasets do not
have QDMR annotation required for fine-tuning).
More fine-tuning details are in Appendix E.

The results show that models trained on Spider
struggle to generalize to other datasets, which is
consistent with the findings of Suhr et al. (2020).
More information about the problem (in the
form of additional train data or selection crite-
ria) helps improve the quality.

IMDB, Yelp and Academic are more challenging
datasets for cross-database semantic parsers than
GeoQuery, but they are significantly smaller (Ta-
ble 7), and the models are less stable while testing
on them (with all random seeds fixed). Stronger cri-
teria, such as passing one test or test suite, do work
even with datasets of such difficulty, when weaker
criteria fail. On GeoQuery, the search under the
one-test and test-suite criteria leads to even better

Table 5: Different search criteria (execution, output
column match, 1 test and test suite) on top of pre-trained
models on the query test splits of different datasets with
the test-suite accuracy.

Dataset
(test size) Model Greedy Exec Cols 1 test Test

Suite

GeoQuery
(182)

T5-3B 55.5 56.6 63.7 67.6 72.5
+ fine-tune 64.3 70.9 85.2 88.5 94.5
BRIDGE 55.9 50 62.6 74.7 74.7
+ fine-tune 65.4 66.5 81.9 86.8 91.8
SQ-QDMR 37.4 37.4 41.8 65.9 81.9
+ fine-tune 56.0 56.0 59.9 76.9 83.0

IMDB
(17)

T5-3B 5.9 11.8 17.6 29.4 41.2
+ fine-tune 52.9 52.9 52.9 52.9 58.8
BRIDGE 11.8 11.8 17.6 17.6 17.6
+ fine-tune 52.9 52.9 52.9 52.9 52.9
SQ-QDMR 5.9 5.9 11.8 29.4 47.1

Yelp
(10)

T5-3B 20 20 10 30 10
+ fine-tune 20 30 20 50 40
BRIDGE 0 0 0 20 10
+ fine-tune 30 40 50 60 70
SQ-QDMR 10 10 10 10 40

Academic
(15)

T5-3B 6.7 13.3 26.7 - 33.3
+ fine-tune 60 53.3 53.3 - 80
BRIDGE 0 0 6.7 - 20
+ fine-tune 33 40 40 - 80
SQ-QDMR 13.3 13.3 6.7 - 66.7

quality than fine-tuning. Our test-suite criterion is
especially useful when one test is difficult to run
on the large original database, e.g., on Academic.

As a result, we conclude that criterion-guided
search on top of a pre-trained model is a good
alternative to fine-tuning in cases when training
data is not available, but the user is ready to provide
more information on each test question.

7 Related Works

Search for Database queries. The task of trans-
lating NL questions into database queries implies
the ability to query databases with natural language.
To ensure this, it is essential to generate syntacti-
cally correct queries that refer to valid table and col-
umn names for the given database schema. Wang
et al. (2019) noticed that a partially decoded SQL
query can be executed, and thus, the result of this
execution can guide the decoding process. At each
decoding step, partial queries that crush or give
an empty result during the execution are removed
from beams. In this work, we also consider the exe-
cution criterion of search but apply it to the finished
hypotheses, which allows us to search on top of
the models with different output formats, including
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intermediate representations.
Lin et al. (2020) generated SQL queries in the

execution order to keep the consistency between
the predicted database entities and checked output
correctness with the static SQL parser. Suhr et al.
(2020) executed the top-10 generated queries in
beam search to filter the inexecutable ones, which
is close to checking the execution criterion in our
work but differs by the search method.

Task-specific decoders such as autoregressive
grammar-based (Yin and Neubig, 2017; Lin et al.,
2018) and tree decoders (Dong and Lapata, 2016),
semi-autoregressive decoder (Rubin and Berant,
2021) provide some guarantees as they control the
output structure. However, as noticed by Scholak
et al. (2021), these decoding methods are incompat-
ible with pre-trained decoders of language models.
These pre-trained decoders, like the one of T5, can
also be successfully applied to the text-to-SQL task
(Shaw et al., 2021). Scholak et al. (2021) proposed
to check hypotheses in beam search on the lexical
and grammatical levels at each step of the beam
search. However, compared to us, their approach
required heuristics to prune incomplete queries.

The concurrent work by Wolfson et al. (2022)
uses several components similar to ours but in a
very different way. They use the QDMRs of Wolf-
son et al. (2020) with textual arguments as a form
of weak supervision to generate SQL queries for
the training set. Their synthesis process results in
many candidate SQL queries and relies on tests to
select the one as an annotation. Such a process
is similar to the method of Saparina and Osokin
(2021) for constructing groundings of QDMR ar-
guments. However, the search process of Wolfson
et al. (2022) is not connected to any neural model
and is not used at the test time.

Search for Programs with Neural Networks.
Our approach to searching for queries is closely
related to the field of program synthesis if we in-
terpret queries as programs. Recently, neural net-
works have been applied in a wide range of pro-
gram synthesis tasks, see the excellent work of
Chaudhuri et al. (2021) for a recent review.

When programs are synthesized from large lan-
guage models generating multiple outputs, select-
ing the one that, e.g., passes some or all tests
is a common practice. For example, the Codex
model (Chen et al., 2021) for synthesizing Python
code includes some sample tests into the input
prompt to give the model more information to de-

fine the user intent. Chen et al. (2021) following
Kulal et al. (2019), among others, also uses the
pass@k metric, which effectively means that the
model generates k outputs, and the best ones are
selected based on tests. The pass@k metric can be
interpreted as test-suite accuracy after search w.r.t.
the tests with the beam of size k.

Overall, it is widely accepted that tests are use-
ful to precisely define the user intent. However,
they are hard to collect at a large scale, especially
when coupled with a description in natural lan-
guage. Because of this, large-scale benchmarks
related to code, e.g., CodeXGLUE (Lu et al., 2021),
primarily used text-based metrics like BLEU. The
attempts to specialize BLEU to code by combining
it with abstract syntax trees extracted from code,
like CodeBLEU (Ren et al., 2020), are in some
sense similar to the SQL-based exact match metric
of the Spider dataset (Yu et al., 2018).

Approaches to Simplify the Cross-database
Setting. The community has made multiple at-
tempts to modify the cross-domain setting to make
the problem easier to solve. Yu et al. (2019b) col-
lected the SParC dataset with coherent question
sequences, which can allow sharing of information
between the sequences. Yu et al. (2019a) collected
the CoSQL dataset with an interactive conversa-
tional setting with SQL queries, making it possible
to explore user interactions with the system. Lee
et al. (2021) collected KaggleDBQA with database
documentation in the form of textual description
for database columns that can potentially allow lan-
guage models to provide outputs better correspond-
ing to the user’s intent. Our approach provides
users with a way to interact with the model by sup-
plying tests. Given the initial question in natural
language, the users can provide extra tests until
they are satisfied with the generated query.

8 Conclusion

We studied the search over the outputs of the neu-
ral autoregressive models for better database query
generation. We considered three state-of-the-art
models: T5-3B, BRIDGE and SQ-QDMR. We ob-
served that the search algorithms work with mul-
tiple criteria for selecting the output query. We
also compared the search-augmented methods with
the fine-tuned models on the GeoQuery, IMDB,
Yelp and Academic datasets (under the distribution
shift) and observed that the method with search can
sometimes work even better than fine-tuning. Com-
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pared to fine-tuning, the search-based method does
not require additional training data but relies on
additional information on each test example. With
such properties, our search based methods might
be helpful for use cases like interactive query gen-
eration or annotating new datasets.

Limitations

In our experiments, we work only with the datasets
where the user question was written in English.
This might have simplified the task for T5 as the
keywords and entity names of the query languages
were also in English.

The test suites we built were still not perfect. In
particular, it was hard to generate a test database
such that the query SELECT year FROM concert GROUP

BY year HAVING count(*) >= 50 had non-empty out-
put because it needed at least 50 rows with the same
value in the column year. We also noticed that the
value 1 as the gold query output also caused many
false positives and should probably have been con-
sidered the empty value for the queries outputting
the count aggregator.

The results of the search methods were also not
perfect for out-of-domain data, even with strong
search criteria based on tests. One reason for that
was that we started to hit the limitations of the
models, which were built with mostly Spider in
mind. In particular, the database preprocessing
stage to select values for the query was, in some
cases, slow and inaccurate.
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A Construction of Test Suites

The method of Zhong et al. (2020) relies on gener-
ating the so-called neighbor queries from a given
set of gold queries Q. A set of neighbors Nq is ob-
tained through slightly changing the original query
q ∈ Q. Now, a database w distinguishes q and
g ∈ Nq if their execution results on w are different.
The suite S is formed greedily: a new sampled
database is added to S if it distinguishes a pair in
N = {(q, g) | q ∈ Q, g ∈ Nq} that is not distin-
guished by any database previously added to S.

In the algorithm above, to sample the databases,
the original queries are parsed to derive the constant
values and the corresponding columns from the
WHERE clauses. For instance, in a query SELECT *
from cars WHERE mpg > 20, the constants 20 and
21 are assigned some probability to be generated as
values of the cars.mpg column. We improve the
query parser so that it accounts for common cases
when table aliases are used (e.g., SELECT * from
cars as T WHERE T.mpg > 20). Still, if a gold
query has too many WHERE clauses, its execution
on a randomly generated database is likely to be
an empty table or, in the case of SELECT-ing an
aggregate function, zeros or NULL values. This
issue causes many potential false positives.

For this reason, for every query, we first search
for a test database on which the query execution
is not empty and only then proceed to check if the
database distinguishes the query and its neighbors.
This way, the chances are higher to sample at least
one database yielding non-empty output on a gold
query, leading to better code coverage. We also
propose to build a separate test suite for each query.
This modification allows dramatically reducing the
time of the test-suite evaluation of a query.

Additionally, we make several important
changes to the original implementation:
• We limit the number of rows in the tables to 100.

As a result, the test suite databases are smaller in
size and faster in evaluation.

• We adjust the types of the columns in the original
and the sampled databases so that they match the
type of the corresponding values. In the float
type columns, we also reduce the precision of
numbers to 16-bit. These changes are crucial for

SPARQL language, as it is more sensitive to data
types than SQL.

• If a column has only unique values in the original
database and its name contains special substrings
such as ‘Name’, ‘ID’, and ‘Phone’, we treat it as
a unique key and generate its values accordingly.
This heuristic allows performing the GROUP BY
operations on any unique key.

B Implementation Details of Search

For the search on top of T5-3B, we use the (Scholak
et al., 2021) model provided in the Transformers li-
brary (Wolf et al., 2020). To search with large beam
sizes, we modify the Transformers implementation
of T5 inference: instead of caching keys and values
in attention blocks, we cache the attention outputs,
which reduces memory usage at the cost of speed.

For working with SQL queries outside the Spider
dataset, we had to replace the SQL parsing coming
with Spider due to its limited functionality. We use
the mo-sql-parsing library instead.2 We execute all
SQL queries in the sqlite3 3 package for python.
For executing SPARQL queries, we use the open-
source version of the Virtuoso system.4 During our
search, the system generated many cumbersome
queries, so we had to impose a strict time limit for
each query and make our implementation robust
to the database engine crashes. The time limit for
Spider queries is 30 seconds and for other datasets
is 300 seconds.

The grid of beam sizes for CAB search on top
of T5-3B is 2, 10, 100, 800, the corresponding
widths are 2, 2, 2, 5, the grid for BRIDGE is 1, 10,
100, 1000 and the widths are 1, 2, 2, 5, the grid
for SQ-QDMR is 1, 100, 1000 and the widths are
1, 5, 10. We infer BRIDGE and SQ-QDMR on
one NVIDIA V100 GPU and T5-3B on 8 NVIDIA
A100 GPUs (while searching with maximum beam
size). For the search with the sampling methods,
we use the same schema: we run sampling several
times, increasing the number of samples (k in top-
k) until the selection criterion is passed. The grids
for all the methods are the same. For searching with
UniqueRandomizer, we run the methods until the
selection criterion is passed or the maximum num-
ber of iterations is reached (equal to the maximum
beam size: 800 for T5-3B and 1000 for BRIDGE
and SQ-QDMR). We tune the temperature and p

2github.com/klahnakoski/mo-sql-parsing
3docs.python.org/3/library/sqlite3.html
4github.com/openlink/virtuoso-opensource
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on Spider dev (the grid for temperature tuning was
from 0.5 to 3.5 with 0.25 step; the grid for p was
0.85, 0.9, 0.95). The best p = 0.95 and the best
temperature values are the following:

Model CAB Sample Top-p UniRand

T5-3B 2.7 2.4 3.1 2.7
BRIDGE 2.6 3.4 3.7 3.5
SQ-QDMR 1.0 1.3 1.9 1.2

While testing on single-database data, we use
the same temperature parameters for the models
trained on Spider only. For the fine-tuned models,
we also tune temperature on dev sets and choose
the values 2.0 for BRIDGE and T5-3B and 1.0 for
SQ-QDMR.

C Execution (1-test) Accuracy vs.
Test-suite Accuracy

In Table 6, we show the results of the search on
Spider with two criteria: passing one test and pass-
ing the test suite. For both criteria, we compute
execution accuracy (checks the execution result on
one database) and test-suite accuracy (checks the
execution results on the test suite). For all the mod-
els, test-suite accuracy is significantly lower than
execution accuracy for the search with the one-test
criterion.

Table 6: Execution (EX) and test-suite (TS) accuracy of
search with 1-test and test-suite criteria on Spider dev
and test.

Model Split 1 test Test Suite

EX TS EX TS

T5-3B
dev

94.4 86.9 91.4 90.1
BRIDGE 91.0 81.9 87.4 84.0
SQ-QDMR 98.0 84.0 93.7 94.4

T5-3B
test

90.7 84.7 85.5 86.8
BRIDGE 83.4 76.6 77.4 77.8
SQ-QDMR 86.7 75.2 79.7 84.1

D Single-database Datasets

We use the query splits provided by Finegan-Dollak
et al. (2018) for four single-database datasets:
GeoQuery, IMDB, Yelp and Academic. We
choose query splits because they are more diffi-
cult than question splits, according to the findings
of Finegan-Dollak et al. (2018). We exclude du-
plicates and examples with gold SQL queries that
crash or execute longer than 5 minutes with sqlite3.
The statistics of resulted datasets are presented in
Table 7.

Table 7: Statistics of single-database data.

Dataset Train Dev Test

GeoQuery 536 159 182
IMDB 103 9 17
Yelp 104 11 10
Academic 142 18 15

E Fine-tuning Details

For fine-tuning on single-database data, we use
official implementations of all the models.5 We
experimented with different training strategies: ini-
tializing from released checkpoints of the models
trained on Spider and training from scratch (in this
case, models contain transformers pre-trained on
textual data). We choose the best approach for each
model and refer to it as fine-tuning.

We fine-tune T5-3B pre-trained on textual data
(Raffel et al., 2020) for 300 epochs on one NVIDIA
A100 GPU with the same parameters as Scholak
et al. (2021) used: Adafactor optimizer (Shazeer
and Stern, 2018) with learning rate 1e-4 and batch
size 625.

The released checkpoint of the BRIDGE model
was trained on data that includes question splits of
single-database data that we consider. We re-train
this model on Spider-only data to evaluate it on
query splits of single-database datasets. We use
the same training parameters as Lin et al. (2020)
used: Adam optimizer (Kingma and Ba, 2014) with
the same scheduler (L-inv learning rate decay) and
batch size 32. We choose the best checkpoint on
the development set as Lin et al. (2020) did in their
work (execution accuracy and test-suite accuracy
of our and authors’ checkpoints are the same on
Spider dev and test). We use the same training
procedure for fine-tuning on single-database data
but create training data from both Spider train set
and the train set of a particular dataset.

For fine-tuning SQ-QDMR on GeoQuery, we
use the corresponding part of the Break dataset
(Wolfson et al., 2020) and generate the 366 train
groundings using the automatic annotation model
of Saparina and Osokin (2021). We cannot fine-
tune on the Academic dataset because its database
is large and preprocessing of Saparina and Osokin
(2021) failed. QDMR forms for other datasets were
not provided in the Break dataset, so we could not
fine-tune on them. For fine-tuning on GeoQuery,
we start with the released checkpoint and param-

5github.com/ElementAI/picard;
github.com/salesforce/TabularSemanticParsing;
github.com/yandex-research/sparqling-queries;
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eters saved on 73000 iterations of Spider training
and continue up to 81000 iterations with GeoQuery
train data. We also use the same parameters as
Saparina and Osokin (2021) used: the optimizer
is Adam (Kingma and Ba, 2014) with polynomial
decay scheduler used by (Wang et al., 2020), the
batch size is 24.

We use 1 NVIDIA A100 GPU for training T5-
3B, 1 NVIDIA V100 GPU for BRIDGE and 4
NVIDIA V100 GPUs for SQ-QDMR.

F Execution Accuracy of Search on
Single-Database Data

Table 8 shows execution accuracy of search on
different single-database datasets. We consider
two types of models: trained only on Spider data
and fine-tuned on single-database data. Comparing
with Table 5, the figures are higher because many
false-positive queries pass one test (the execution
accuracy metric) and do not pass the test suite. For
this reason, the results of searching with the test-
suite criterion are lower in terms of execution ac-
curacy: if no tested query satisfies the test-suite
criterion, the system defaults to the result of the
greedy decoding, which may fail one test, while
the one-test criterion would select a false positive.

Table 8: Different search criteria (execution, output
column match, 1 test and test suite) on top of pre-trained
models on the query test splits of different datasets with
execution accuracy.

Dataset
(test size) Model Greedy Exec Cols 1 test Test

Suite

GeoQuery
(182)

T5-3B 56.6 59.3 69.8 80.2 74.7
+ fine-tune 69.8 76.4 88.5 97.8 97.3
BRIDGE 57.6 51.1 63.7 86.8 74.7
+ fine-tune 71.4 72.5 86.3 96.7 93.4
SQ-QDMR 40.7 40.7 45.6 92.3 75.8
+ fine-tune 61.5 61.5 64.8 90.7 84.1

IMDB
(17)

T5-3B 5.9 17.6 17.6 35.3 35.3
+ fine-tune 52.9 52.9 52.9 58.8 52.9
BRIDGE 17.6 17.6 23.5 35.3 23.5
+ fine-tune 52.9 52.9 52.9 58.8 52.9
SQ-QDMR 11.8 11.8 11.8 41.2 35.3

Yelp
(10)

T5-3B 30 60 50 10 30
+ fine-tune 40 50 40 10 70
BRIDGE 10 30 30 90 30
+ fine-tune 40 80 80 100 70
SQ-QDMR 40 40 40 80 40

Academic
(15)

T5-3B 6.7 13.3 26.7 - 26.7
+ fine-tune 53.3 53.3 53.3 - 73.3
BRIDGE 6.7 6.7 6.7 - 20
+ fine-tune 33 40 40 - 80
SQ-QDMR 5.6 5.6 11.1 - 55.6
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