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Abstract

The news subheading summarizes an article’s
contents in several sentences to support the
headline limited to solely conveying the main
contents. So, it is necessary to generate com-
pelling news subheadings in consideration of
the structural characteristics of the news. In
this paper, we propose a subheading generation
model using topical headline information. We
introduce a discriminative learning method that
utilizes the prediction result of masked headline
tokens. Experiments show that the proposed
model is effective and outperforms the compar-
ative models on three news datasets written in
two languages. We also show that our model
performs robustly on a small dataset and vari-
ous masking ratios. Qualitative analysis and hu-
man evaluations also show that the overall qual-
ity of generated subheadings improved over the
comparative models.

1 Introduction

The news headline summarizes the article to grab
the attention and interest of the readers (Dor, 2003;
Ifantidou, 2009; Ecker et al., 2014). However, the
headline is written in a brief form of short sen-
tences with topic-related phrases (Yamada et al.,
2021), making it hard for users to grasp the entire
content of the news article from the headline alone.
To tackle this problem, some news vendors pro-
vide a subheading, usually located right below the
headline, to convey its main content within several
sentences. This component can provide a core and
informative summary of a news article that cannot
be conveyed by the headline alone. Mainly, sub-
headings are written by professional news writers
with concise content that corresponds to the main
body of the news.

Recently, Hasan et al. (2021) released XLSum, a
multilingual news summary dataset, referring to
subheading as a summary of the article. Therefore,
generating subheadings can be considered an ab-
stractive summarization problem that needs to cap-
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ture the topical knowledge from the body of the
article. The main approach is to add auxiliary sig-
nals to make the model aware of topical knowledge.
Dou et al. (2021) and Aralikatte et al. (2021) add
an external guidance signal by lexical similarity be-
tween input text and summary. Yamada et al. (2021)
extracts the context word sequences from the refer-
ence to reflect some important phrases from the ar-
ticle. Although these external auxiliary sources pro-
vide diverse topical signals, they are cost-intensive
to heuristically manipulate and have limitations in
guiding the overall topical information of the arti-
cle. Other approaches incorporate contrastive learn-
ing into sequence-to-sequence (seq2seq) model,
allowing the model to learn topical representation
of the input text (Lee et al., 2021; Liu et al., 2021;
Wau et al., 2020). They explicitly constructs positive
or negative inputs to introduce contrastive loss as
an augmentation of MLE training.

In this work, we propose a novel framework
for generating compelling news subheadings by
discriminating whether each token in the recon-
structed headline is the same as the token in the
original headline. Unlike previous approaches that
use heuristically extracted topical information or
positive and negative pairs, we utilize headline that
fundamentally implies the topic of the entire article.
We make full use of this indispensable object as
a guide signal through token-based discriminative
learning. We conducted comparative experiments
on three datasets written in English or Korean to
evaluate the performance of our model and verified
our model through additional qualitative analysis
with human evaluations.

2 Datasets

We used one English news summarization dataset
and two Korean news summarization datasets.
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By Anthony Lake & Jakaya Kikwete Director of Unicef and President of Tanzania
The foundation of a healthy future for every child is the 1,000 days between a
mother's pregnancy and her child's second birthday. The right nutrition during this
critical period puts a child on track to be stronger, healthier and ready to learn. ......
Because good nutrition truly empowers children, families, communities and nations,
it's a cost-effective opportunity for major, sustainable, global development progress.
v | We know what to do. Countries are ready to do it. Let’s invest now.

RS Body

Early malnutrition can blight a child's development - and also that of their
community and nation, say Anthony Lake. director of Unicef and President
Jakaya Kikwete of Tanzania. In this week's Scrubbing Up column, they say
a new initiative called Scaling Up Nutrition - backed by the G8 - is crucially
important.

Subheading v

Figure 1: Framework of the proposed model. The lower part of the figure represents subheading generation, and the
upper part of the figure represents token-based discriminative learning. Prediction results of discriminator encourage

encoder to focus on the topical information.

2.1 XLSum

XLSum (Hasan et al., 2021) is a highly abstract mul-
tilingual news summarization dataset containing
online articles crawled from the British Broad-
casting Corporation (BBC). They regard a bold
paragraph containing one or two sentences at the
beginning of each article as a summary, a sub-
heading. We use the English and Korean ver-
sions with train set, valid set, and test set pairs
of {306522, 11535, 11535} and {4407, 550, 550},
respectively.

2.2 YonhapNews

However, the size of the training dataset in XLSum’s
Korean version is insufficient for fine-tuning. We
construct a dataset from YonhapNews, one of the
most reliable news outlets in South Korea, to eval-
uate the performance of the model with a siz-
able Korean dataset. In YonhapNews, the subhead-
ing is located right below the headline to con-
dense the body in abstractly, like the BBC. Train
set, valid set, and test sets in YonhapNews are
{208750, 26094, 26094} and will be released for
academic use.'

lhttps ://github.com/Lainshower/Subheading-Gen

3 Proposed Method

As shown in Figure 1, our proposed model consists
of subheading generation (bottom) and token-based
discriminative learning (top) parts. The loss occur-
ring in each part is defined as Ly, and Lg;,, and
the model is trained by minimizing the following
loss:

L= Lgen +A- Lyis, (H

where ) is a weighted hyperparameter for the two
losses.

3.1 Subheading Generation

We use BART (Lewis et al., 2020) as our seq2seq
model, where the encoder takes a body B as an
input, generates an input representation of the body,
and passes it to the decoder, which outputs the
subheading S. The loss of subheading generation
is as follows:

M
Lgen = — Y _log(p(sils1i-1, B;6)), (2)
=1

where a body B = (b1, ba, ..., by) and its subhead-
ing S = (s1, s2, ..., Sar) consists of IV token vec-
tors b; and M token vectors s;, respectively, and
the seq2seq model is optimized to learn the 6 pa-
rameters to minimize the negative log-likelihood.
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Dataset Model Size  Rouge-I Rouge-2 Rouge-L  BERTScore
BART 139M 36.52 1533 30.49 77.68
MT5 582M 37.81 14.59 28.30 74.48
TS5 220M 37.87 15.97 29.09 75.96
KLSUm-ENG | pecasus  57IM 39.57 1663 3245 77.93
TS5 w/multi ~ 247M 35.37 14.71 29.84 75.74
Ours 282M 39.84 18.07 33.77 78.96
BART 124M 25.23 1591 23.37 74.60
MT5 582M 29.16 14.03 25.40 69.94
XLSum-KOR T5 247M 13.99 4.10 13.48 67.92
TS5 w/multi ~ 247TM 17.55 7.03 16.60 71.58
Ours 269M 27.41 17.56 25.48 75.58
BART 124M 2141 11.00 19.21 72.19
MTS5 582M 25.24 11.28 21.13 70.70
YonhapNews T5 247M 20.10 8.70 17.96 71.67
T5 w/multi ~ 247M 22.21 9.91 19.91 71.21
Ours 269M 24.15 13.21 21.93 73.08

Table 1: Subheading generation performance for each dataset. Size represents the number of parameters in each
model. Our model outperforms the comparative models except for Rouge-1 score for XLSum-KOR and YonhapNews.

3.2 Token-based Discriminative Learning

Inspiring by Chuang et al. (2022), we inject topical
knowledge of the article by discriminating whether
tokens in the reconstructed headline are the same
as the original. As described in Appendix A, head-
line has high lexical similarity with subheading
compared to other objects in the article. Therefore,
headline reconstruction helps model to aware of
topical information which is inherent in the head-
line. The loss of token-based discriminative learn-
ing is as follows:

L

Ldis:Z(_ ]l(h; :hz) IOgD(H,IB>H) (3)
1=1

1, % hy) log (1 — D(H’LB,H))) :

where a headline H = (hy,hg,...,hy) consist
of L tokens and the reconstructed headline H is
H = G(Hpasked) Where G is the generator and
a masked headline H,,,skeq 1S Obtained with ran-
dom mask M = [my, ma,....,mg],m; € [0,1],
Hpaskea = H - M. Using the compressed body
representation of the encoder, the discriminator D
predicts whether the tokens in the reconstructed
headline H are the same as the original headline
H. As shown in Figure 1, the generator predicts
the masked headline into “how improving adult’s
diet can aid condition”. Using the encoded body
representation and partially mispredicted headline,
the model trains the incorrectly predicted “adult”,
and “condition” and the correctly predicted rest of
the tokens, respectively. Back-propagated gradients
of the discriminator D cause the encoder to include
the topical information of the article in the body
representation by classifying whether the tokens

in the reconstructed headline H' come from the
original headline or not.

Model Generated Subheading

The UKs oil and gas industry generated nega-
tive tax receipts in 2015-16, according to HM
Revenue and Customs (HMRC).

Have Ied to a fall in tax receipts from UK oil
and gas production, according to HM Revenue
and Customs (HRMC)

revenues have fallen to their Towest level
T5 since records began in the 1960s, according
to new figures from HM Revenue and Customs
(HMRC)

tax receipts from oil and gas production in the
UK have fallen to their lowest level, according
to HM Revenue and Customs (HMRC)
Revenues from the NorthSea oil
and gas industry have fallen to
their lowest level since records began, ac-
cording to HM Revenue and Customs
(HMRO).

BART

MTS

Pegasus

Ours

Table 2: Example of generated subheading for each
model. The original headline is “North Sea receipts hit
record low” and the reference subheading is “The UK
government has incurred a loss from North Sea oil and
gas production for the first time since records began
nearly 50 years ago”. The body of the article can be
found in the XLSum-ENG test set with the corresponding
id=‘uk-scotland-scotland-business-36388621".

4 Experiments

4.1 Experimental Setting

We use pretrained models BART and ELEC-
TRA (Clark et al., 2020). Unlike [CLS] repre-
sentation of BERT (Devlin et al., 2019), BART
doesn’t have a special input representation token.
As such, we use an average pooler to compress
the output of the encoder and freeze the genera-
tor to keep generating noise headline for token-
based discriminative learning. Optimal parameters
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were obtained in the search spaces with learning
rate {le—5,2e—5,3e—5,4e—5}, masking ratio
{0.1,0.2,0.3,0.4,0.5}, and lambda {0.1,0.01}.

4.2 Comparative Models

BART, T5 (Raffel et al., 2020), and MT5, (Xue
et al., 2021) were used as comparative models in
all datasets. Also, Pegasus (Zhang et al., 2020) for
English were used as comparative models. For a
fair comparison, we use the concatenated body with
a headline in the input of the comparative models.

4.3 Experimental Results

Table 1 shows the results of subheading genera-
tion performance for each dataset. Model perfor-
mance was evaluated using Rouge (Lin, 2004) and
BERTScore (Zhang et al., 2019). In XLSum-ENG,
our model outperforms all comparative models. In
particular, our model performs better than MT5 or
Pegasus, which have more than double the model
size. In other words, token-based discriminative
learning can improve generation performance more
efficiently than simple concatenation. Our model
outperforms the comparative models in all other
metrics except the Rouge-1 score for the Korean
language datasets. MT5 records the highest Rouge-
1 score on both Korean datasets. However, because
Korean is decomposed into many sub-words due to
its morphological richness, it is not suitable to eval-
uate performance with Rouge-1 score alone. In par-
ticular, in terms of BERTScore, our model scored
5.64% and 2.32% higher than MT5 in XLSum-KOR
and YonhapNews, respectively. This indicates that
our model can generate semantically relevant sub-
headings. Moreover, good performance on small
datasets (i.e., XLSum-KOR) demonstrate the robust-
ness of our model.

Table 2 shows an example of the generated sub-
headings for each model. We can see that our model
utilizes “North Sea” and “record low” from the
headline to better condense topical information in
the article. Additional qualitative results are de-
scribed in Appendix C.

XLSum-ENG | XLSum-KOR | YonhapNews
BART 2.53(0.64) 2.00 (0.38) 3.53(0.92)
MT5 2.71 (0.61) 2.07 (0.59) 2.60 (0.51)
T5 2.64 (0.74) 2.20 (0.41) 2.73 (0.46)
Pegasus 3.64 (0.50) - -
Ours 4.21 (0.70) 3.67 (0.49) 3.40 (0.74)

Table 3: The average score of human evaluation for
XLSum-ENG, XLSum-KOR, and YonhapNews. Numbers in
parentheses indicate the standard deviations.

4.4 Human Evaluations

We conduct human evaluations to verify whether
the subheadings of the proposed method are more
topically relevant than the baselines. Three samples
were randomly selected from each test dataset, and
subheadings generated along with their correspond-
ing headlines and body were shown to the workers
and evaluated on a five-point Likert scale. Table 3
shows that our model generates topic-relevant sub-
headings better than the baselines on two datasets,
and is particularly robust on a small dataset (i.e.,
XLSum-KOR). In the case of YonhapNews, BART
showed the hightest score, but the independent t-
test showed that the average difference between
Ours and BART was insignificant (p>0.663).

4.5 Comparison with Multi-task Learning

To verify whether our model effectively learns top-
ical information from the headlines, we conduct
additional experiments with a multi-task learning.
Different prefixes were used to know the model
what the current training task is. One task maps
news body text to subheading, and the other maps
news body text to headline. We experiment with
TS5 because it has less discrepancy with our pre-
training objectives. T5 w/multi rows in Table 1
show the multi-task learning results, demonstrat-
ing that our method is more effective in learning
headline information.

4.6 Ablation Studies

We perform ablation studies in terms of masking
ratio to analyze the effectiveness of token-based
discriminative learning. Figure 2 shows the results
of the Rouge-2 score and BERTScore according to
the masking ratio for each dataset. We also plot the
performance of the T5 with similar parameter sizes
to ours. Our model outperforms T5 in all masking
ratio ranges. This indicates that our model is not
significantly sensitive to masking ratio. In particu-
lar, the large performance difference of XLSum-KOR
demonstrates the robustness of our model on the
small dataset. The original headline is completely
incorrectly reconstructed if the masking ratio ex-
ceeds 0.4, limiting ability of the model to learn
crucial topical information from the headline con-
sidering the token length of the headline. However,
for small masking ratios such as 0.1, the genera-
tor can completely reconstruct the original head-
line, but it is limited in maximizing the benefits of
token-based discriminative learning. Headline to-
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Figure 2: Rouge-2 score and BERTScore according to masking ratio for (a) XLSum-ENG, (b) XLSum-KOR, and (c)
YonhapNews. The performance of the TS in two Korean datasets is plotted with a ‘x’ marker. The masking ratio
between 0.2 and 0.3 shows the best performance in all datasets.

ken length distribution is described in Appendix B.
Therefore, it is recommended to set the masking
ratio between 0.2 and 0.3 in order to utilize the
token-based discriminative learning for subheading
generation entirely.

5 Conclusions

In this paper, we propose a novel model for gen-
erating a subheading for news article. Along with
token-based discriminative learning, our model can
effectively utilize topical information from a head-
line that is essential in articles and does not require
additional manipulated information. Experiments
on three datasets written in two different languages
show the effectiveness of the proposed model. Also,
qualitative results and human evaluation show that
the overall quality of generated subheadings is im-
proved compared to comparative models. We ex-
pect that our model will be extended in future re-
search to an abstractive summarization task that
include both a headline and a body text, such as
legal texts or papers.

Limitations

Our study outperformed all comparative models in
generating subheadings through token-based dis-
criminative learning. However, the experiments
mainly used limited languages such as English
and Korean due to a lack of large-scale multi-
lingual training data and the need for significant
GPU resources. We, therefore, encourage further
investigations to expand the versatility of the pro-
posed model by utilizing large-scale multilingual
language datasets to verify expandable applications
in various morphological characteristics.

Ethics Statement

As YonhapNews is one of the most reliable media
outlets in South Korea, articles from YonhapNews
are published through a rigorous verification pro-
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lected is three years, and there may be past article
content that has not been modified by new facts, so
we cannot guarantee that all articles in YonhapNews
dataset are completely unbiased. Nevertheless, this
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ous studies and thus is released for academic uses.
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A Similarity between Subheading and Headline
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Figure A.1: Cosine similarity between the TF-IDF values of subheading-headline (0 index in X-axis) and between
the TF-IDF values of the subheading-body sentences (1 to N indexes in X-axis) of the news article. Each figure (a),
(b), and (c) represents for dataset XLSum-ENG, XLSum-KOR, and YonhapNews, respectively.
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Figure B.1: Distribution of the token length in the headline of (a) XLSum-ENG, (b) XLSum-KOR, and (c) YonhapNews.

C Qualitative Results

Model Generated Subheading
A% ST URFOTo = AAE (S IH0) 9l 7o ASFS B2 G AT £ F ol T EE |
BART E5) WAL 7| 5E AL £t (The British government, which signed a contract to purchase a
new coronavirus infection (COVID-19) vaccine, urged Prime Minister Johnson to donate the vaccine
through COVAX.)

TAEO] A1 A2l A S (FETHY) WS et $ofke oJof 9] iFES ¥
MT5 | §& Zo]gtal &3} (Organizations urged that they will share most of the surplus even after
purchasing a new coronavirus infection (COVID-19) vaccine.)

TS A= iibﬂﬂ'olvﬂii\_ @'0‘5%(_?_21%19) ‘ﬂ.*ﬂ—‘% AFES 4 QIttal gF g (It was announced that a
new coronavirus infection (COVID-19) vaccine can be used.)

F=ol A ZEUHOT A A HFS(FEUH9) WAT9] o] ExFS A/ E=rol 7 Fshalthal 3l
Ours | r}. (The UK has announced that it will donate remaining of COVID-19 vaccine to underdeveloped
countries.)

Table C.1: Example of generated subheading for each model in XLSum-KOR. The original headline is “ZZ1}9
HR] A2l JESFIE 19 E X Y ot ‘e diR] 7] 2 2’ (COVID-19 Vaccine: 100 million doses of
UK left after national vaccination... ‘Donate the remaining vaccines.’)” and the reference subheading is “=24] 725
HAlEo] He]~ E& G FelollAl F=ro] A =T 72 e 4 Qs FELH9 Wiilo] Hupif HE=XE
Z=5] ghe] 218 Z75F 1 Itk (International aid organizations are urging British Prime Minister Boris Johnson
to reveal as soon as possible how many COVID-19 vaccines Britain can donate to underdeveloped countries.)” The
body of the article can be found in the test set with corresponding id=‘international-56553770’ .
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Model Generated Subheading
119 718 FE T 7o 31 HEIct (Donating 11 billion won ... The military unit also helped

BART . .
with quarantine)
MTS O TA. . AEEWSH, T 13067 EJ5] 579 A (Continuous sponsorship ... Gyeongbuk
Provincial Office of Education dispatched 130 soldiers to provide quarantine support)
T5 ZIATA A2 - AF SIThef (a series of donations from all walks of life)

2Rt el 25 S AR0I 5o, A - w2 E ) B 29 (Spreading the Good Renters

Ours | Movement ... The 201st Special Forces Brigade, provide quarantine support to Gyeongsan Station and
Bus Terminal)

Table C.2: Example of generated subheading for each model in YonhapNews. The original head-
line is “FZLH9 JFE SR ... g]F. FEo] AF - E&F YX (‘Let’s overcome COVID-19
together’...Daegu and Gyeongsangbuk-do collect donations to deliver goods)’ and the reference subhead-
ing is “ZFot QJjol 25 -] 7ol BRE .. A E = HFY 2]l (The Good Renters Movement Spreads to Public
Institutions. . . Military units provide quarantine support)” This news article covers the quarantine support from vari-
ous industry fields, including the rental industry and the military service, in response to the COVID-19 in Daegu and
Gyeongsangbuk-do, city and state located in Korea. Subheading generated by our model include “Gyeongsan”, lo-
cated in Gyeongsang-do, showing that it reflects the locational information of quarantine support that occurs through

the headline. The body of the article can be found in ‘https://www.yna.co.kr/view/AKR20200309146000053’
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