
Findings of the Association for Computational Linguistics: EACL 2023, pages 2054–2063
May 2-6, 2023 ©2023 Association for Computational Linguistics

AdapterSoup: Weight Averaging to Improve Generalization of Pretrained
Language Models

Alexandra Chronopoulou⋆†▽ Matthew E. Peters‡ Alexander Fraser▽ Jesse Dodge⋆‡
▽Center for Information and Language Processing, LMU Munich, Germany

▽Munich Center for Machine Learning, Germany
‡Allen Institute for Artificial Intelligence, Seattle, WA

Abstract

Pretrained language models (PLMs) are trained
on massive corpora, but often need to special-
ize to specific domains. A parameter-efficient
adaptation method suggests training an adapter
for each domain on the task of language mod-
eling. This leads to good in-domain scores
but can be impractical for domain- or resource-
restricted settings. A solution is to use a related-
domain adapter for the novel domain at test
time. In this paper, we introduce Adapter-
Soup, an approach that performs weight-space
averaging of adapters trained on different do-
mains. Our approach is embarrassingly par-
allel: first, we train a set of domain-specific
adapters; then, for each novel domain, we deter-
mine which adapters should be averaged at test
time. We present extensive experiments show-
ing that AdapterSoup consistently improves
performance to new domains without extra
training. We also explore weight averaging
of adapters trained on the same domain with
different hyper-parameters, and show that it
preserves the performance of a PLM on new do-
mains while obtaining strong in-domain results.
We explore various approaches for choosing
which adapters to combine, such as text cluster-
ing and semantic similarity. We find that using
clustering leads to the most competitive results
on novel domains.

1 Introduction

Large LMs are pre-trained using massive amounts
of data in a self-supervised way (Peters et al., 2018;
Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019) and obtain general-domain knowledge. In or-
der to adapt them to a new domain, continuing train-
ing using in-domain data has been shown to be help-
ful (Han and Eisenstein, 2019; Lee et al., 2020; Gu-
rurangan et al., 2020). To avoid fine-tuning all pa-
rameters, efficient methods such as domain-specific
mixtures-of-experts (Gururangan et al., 2022) and
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Figure 1: Illustration of AdapterSoup. Starting from
the same random seed, an adapter is trained for each
domain (domain adapter) on top of a PLM. Adapter-
Soup averages the weights of the adapters that are most
related to the new domain to improve out-of-domain
performance of a PLM at test time. The inference cost
is independent of the number of adapters (l or n) used.

hierarchical domain adapters (Chronopoulou et al.,
2022) have been proposed. Additional in-domain
gains can be obtained using weight-space averaging
(Wortsman et al., 2022a; Matena and Raffel, 2021).
Motivated by this, we propose using weight-space
averaging at test time to improve performance on
novel domains without extra training.

Our approach, AdapterSoup, ensembles adapters
in the weight space to improve performance on
novel domains at test time without parameter up-
dates. To this end, we train adapters on top of a
PLM, each in a different domain. We compare
several methods for selecting which adapters to
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use for each novel domain at test time and propose
weight-space averaging models selected using text
clustering. We find that AdapterSoup improves
performance on novel domains. We also explore
weight averaging adapters trained in the same do-
main, each with a different hyper-parameter con-
figuration, and find that combining models trained
with a low learning rate provides competitive in-
domain scores, while averaging models trained
with high learning rates performs similarly to a
general-purpose PLM on novel domains.

Our contributions are the following: 1) We pro-
pose combining domain-adapted PLMs at inference
time using adapters. Our approach leads to consis-
tent gains in novel domains. We compare several
methods for choosing the models of the Adapter-
Soup, concluding that text clustering provides the
best performance across all domains. 2) We per-
form weight-space averaging of PLMs adapted to
the same domain with varied hyper-parameters us-
ing adapters. We find that we can obtain competi-
tive in-domain scores but also preserve the general-
ization ability of a PLM.

2 Proposed Approach

Problem Statement. Assuming we have a PLM
adapted to k domains D1, ..., Dk, we want a model
that performs well in a novel domain Dk+1 without
training more parameters. We use the provenance
of a piece of text (that is, the website from which
the text was scraped) as a proxy for textual domain.
This follows Chronopoulou et al. (2022); Gururan-
gan et al. (2022).

If we assume that we have a PLM fine-tuned on a
single domain Di with different hyper-parameters,
we want to combine the fine-tuned models in order
to both obtain good in-domain performance and
preserve the generalization ability of the PLM to
novel domains.

2.1 Cross-Domain AdapterSoup

An illustration of the cross-domain AdapterSoup
is provided in Figure 1. Let f(x, θm) be a PLM
with input data x and parameters θm ∈ Rd. We add
adapters with a parameter initialization θα. While
in this work we parameterize θα with adapters,
our method is general and could be extended to
other efficient fine-tuning methods. We only fine-
tune the adapters, without updating the parame-
ters θm of the PLM, for language modeling us-
ing cross-entropy loss. Let us assume that θ =

FineTune(θm, θα, ϕ,D) denote the parameters ob-
tained by fine-tuning a PLM with adapters in a
domain D, using hyper-parameters ϕ.

Let ϕ be a fixed hyper-parameter configuration.
We vary only the textual domain. We first train
k different adapters, one for each of the training
domains. Then, we combine their weights:

AdapterSoup(x) = f(x,
1

l

l∑

i=1

θi), (1)

i.e., we use the average of the parameters of l fine-
tuned models, selected by one of the methods de-
scribed in §2.3 (l <= k). If l = k, this model is a
uniform soup (Wortsman et al., 2022a).

2.2 Single-Domain AdapterSoup

In this setup, we want to learn an LM that performs
well in a single training domain D, while main-
taining the performance of the initial PLM θm in
novel domains. To this end, we train adapters on
the same domain, varying the hyper-parameter con-
figuration. Each of the n models is optimized with
different hyper-parameters ϕi, with i ∈ 1, ..., n.
We then compute the weight-space average follow-
ing Equation 1, with l = 3. This is similar to logit
ensembling, but only adds to the PLM the inference
cost of a single adapter, while the added inference
cost of logit ensembling scales linearly with the
number of adapters.

2.3 Model Selection for AdapterSoup

In this section we describe two methods for se-
lecting the combination of models to create our
AdapterSoup (by weight-space averaging) which
will be evaluated on a novel domain Dk+1. Follow-
ing standard practice (Gururangan et al., 2022; Li
et al., 2022) we use a small amount of validation
data from the novel domain Dk+1 for each of the
below approaches. We note that we keep the test
data unseen and only use it to perform our test-set
evaluations.
Sentence similarity. We use pretrained sentence-
BERT (Reimers and Gurevych, 2019), an approach
that modifies BERT (Devlin et al., 2019) using
siamese and triplet networks (Schroff et al., 2015)
to obtain sentence embeddings. We compute the
embeddings for 100 sentences from each of the
training domains D1, ..., Dk, plus the novel domain
Dk+1. Then we compute the average cosine sim-
ilarity between each of D1, ..., Dk and Dk+1. We
add up to 5 adapters to the AdapterSoup in order of
highest cosine similarity (only considering models
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10 Evaluation Domains
Method reuters techcrunch fastco nme fool inquisitr mashable tripadv ncbi yelp Avg.
GPT-2 (zero-shot) 21.5 27.7 27.9 28.2 23.8 22.4 27.1 40.4 20.7 36.2 27.6
Single Adapter Chosen Using:

- Sentence similarity 18.9 22.0 22.0 23.1 22.9 18.4 25.3 37.0 18.2 49.4 24.4
- Clustering 17.6 22.4 24.0 21.1 23.3 18.7 23.6 37.7 18.2 44.3 24.0

AdapterSoup (Weight-space average):
- Uniform 18.2 23.1 22.9 22.2 22.4 18.4 23.1 37.0 19.1 36.2 24.3
- Sentence similarity 17.6 22.0 21.3 20.7 22.2 18.4 22.4 36.2 17.6 35.2 23.4
- Clustering 17.3 21.8 21.3 21.1 22.2 17.8 22.2 34.8 17.6 34.8 23.1

Oracle
- Best adapter per domain 17.6 22.0 21.5 21.1 22.9 17.8 22.2 37.0 18.2 35.9 23.6
- Clustering + 2 best 17.3 21.8 21.3 20.7 22.0 17.6 22.0 33.4 17.6 33.4 22.7

Hierarchy adapter 16.4 20.1 20.1 20.1 22.2 16.4 22.2 33.1 18.2 34.5 22.3

Table 1: Perplexity (↓) scores on 10 evaluation domains. All single adapter and AdapterSoup experiments have
the same inference cost; bold indicates the best perplexity for each novel domain and best average. We find that
AdapterSoup using clustering as a selection method on average leads to the best out-of-domain performance.

trained on domains with cosine similarity greater
than 0.15 to Dk+1). We experimented with several
values to define the threshold (3, 5, 10, 15). We did
not observe significant improvement when scaling
up from 5 to 10 adapters and for that reason, we
used up to 5 adapters in each AdapterSoup.
Domain clustering. Our domain clustering ap-
proach follows Aharoni and Goldberg (2020). We
encode 100 sequences from each of the training
domains using a PLM and fit a Gaussian Mixture
Model (GMM) with 21 components (equal to the
number of training domains), which gives us a do-
main clustering. We then use 100 sequences from
our held-out set (not used for test-set evaluation)
and find which clusters they are closest to. We
add up to 5 adapters to the AdapterSoup in order
of which clusters the most held-out domain text is
mapped to. If at least 10% of the sequences of the
Dk+1 is mapped to the cluster of Di, we add the
model trained on Di to the AdapterSoup.
In-domain. To select the models that perform best
in-domain, we exhaustively combine all models
trained on a single textual domain (in this case, text
found in the website booking.com), using combina-
tions of size 3. Each model has been trained with
a different hyper-parameter configuration. Specifi-
cally, we vary the learning rate and data order. We
compare them to the best-performing single model
per domain and to a uniform soup.

3 Experimental Setup

Datasets. We assume that text found in a specific
website (e.g., tripadvisor) can be used as a proxy
of a textual domain. We use 21 training domains
and 10 evaluation domains (text from 21 and 10
websites accordingly) from the released version

(Dodge et al., 2021) of C4 (Raffel et al., 2020)
(details in the Appendix). We hypothesize that the
variety of training domains plays an important role
in this setting. We randomly sampled domains that
belong to the 100 high-resource domains of C4,
but further work could consider using M2D2 (Reid
et al., 2022), a multi-domain language modeling
dataset released concurrently to this work.
Model Architecture. We use GPT-2 (Radford
et al., 2019); specifically, we use a publicly avail-
able pretrained checkpoint of the small version, i.e.,
gpt2 from the HuggingFace library (Wolf et al.,
2020). We add an adapter to each Transformer
(Vaswani et al., 2017) layer after the feed-forward
layer. We train only the adapters for language mod-
eling in each training domain. The adapters follow
the Bapna and Firat (2019) architecture and have
bottleneck size 64. For the cross-domain Adapter-
Soup, we train all models with an initial learning
rate 1e-4. For the single-domain AdapterSoup, we
use different learning rates and data seeds shown
in the Appendix.

4 Results

Results are presented in Table 1. For each experi-
ment, we evaluate both perplexity and efficiency.

4.1 Cross-domain

As a first baseline, we use GPT-2 (zero-shot), with-
out further training or additional parameters. This
has worse perplexity than all other approaches but
is most efficient at inference.
Single Adapters. We then evaluate Sentence simi-
larity and Clustering in the scenario where only a
single adapter is chosen using each approach (this
can be thought of as a soup of size 1). This is an
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evaluation of how well these two approaches mea-
sure similarity between the novel domain Dk+1 and
the training domains; this baseline shows the per-
formance of a single model which can be directly
compared to AdapterSoups. Both approaches are
significantly better than GPT-2 (zero-shot), and
Clustering outperforms Sentence similarity, sug-
gesting it is better at identifying related domains.

AdapterSoup. We evaluate three types of Adapter-
Soup which differ only in how the models added
to the soup are selected. All three are equally
as efficient at inference as using a single adapter.
Uniform is a uniform soup (weight-averaging all
trained models). This performs worse than all ap-
proaches except GPT-2 (zero-shot); we hypoth-
esize that it performs worse due to negative in-
terference between adapters trained on unrelated
domains. Using Sentence similarity as described
in §2.3 leads to marginally better scores than the
single-best adapter per domain, indicating even rel-
atively naively-created soups can outperform the
best (oracle) single model. On 8/10 novel domains,
the sentence similarity AdapterSoup outperforms
the single adapter chosen by Sentence similarity,
indicating that the soup leads to better performance.
Next, using Clustering as described in §2.3 leads
to perplexity improvements in 8/10 novel domains
compared to sentence similarity, indicating that the
method for selecting models for the soup has a
large impact. On 9/10 novel domains, the Cluster-
ing AdapterSoup outperforms the single adapter
chosen by clustering, indicating that our approach
leads to better performance.

Oracle Experiments and Larger Models. Best
adapter per domain shows the performance of the
single-best adapter on each novel domain. This is
the upper bound for a single adapter, and we see
that our Single Adapter Chosen Using Clustering
matches these scores on 3/10 novel domains, and
is close on the rest, suggesting the clustering ap-
proach is reasonably good. Clustering + 2 best
shows the performance of adding the two (oracle)
best models to our AdapterSoup made by cluster-
ing; our clustering approach is close to these scores,
but there is room for future work on better choosing
models for the AdapterSoup. Hierarchy adapter is
taken from Chronopoulou et al. (2022), and is less
efficient in terms of both data and parameters.

Selecting Models for the Soup. We qualita-
tively compare the selection methods for choosing
adapters to include in the AdapterSoup for 3 novel

Novel Domain i Sentence Sim. Clustering
tripadvisor booking booking

insiderpages insiderpages
lonelyplanet

ncbi journals journals
frontiersin frontiersin

springer springer
reuters csmonitor dailymail

wired express
entrepreneur

Table 2: Domains of models selected for the Adapter-
Soup using either sentence similarity or clustering. The
clustering method seems to more accurately match each
novel domain to training domains that are similar to it.

booking frontiers journals yelp
ID OOD OOD OOD

GPT-2 (zero-shot) 29.7 22.2 24.5 36.2
Best single adapter 10.2 27.7 30.3 49.4
AdapterSoup:
- lr 7e-3 27.7 23.3 24.8 37.7
- lr 4e-3 24.5 23.8 25.5 39.6
- lr 1e-3 11.5 24.0 26.3 42.5
- lr 5e-4 10.0 26.3 29.1 47.5
- lr 1e-4 10.4 27.4 30.0 48.9

Best AdapterSoup:
- in-domain 10.0 26.3 29.1 47.5
- out-of-domain 26.8 22.9 24.5 37.3

Logit ensemble 9.2 25.0 27.7 47.7

Table 3: Perplexity scores in- and out-of-domain (re-
spectively ID and OOD) of models trained on book-
ing.com. Low learning rates lead to good in-domain
scores, while high learning rates improve the out-of-
domain performance.

domains in Table 2. In the case of tripadvisor, 2/3
domains Sentence similarity and Clustering select
are identical, while for ncbi (science domain) both
methods select the same domains. When select-
ing domains similar to reuters (news), clustering
seems to find a good match, choosing news do-
mains. However, Sentence similarity selects do-
mains that are not quite as related to the novel
domain. Reuters contains heterogeneous data, so
the average cosine similarity on the sentence level
is not a suitable metric to find related domains.

4.2 Single-domain
In this section we evaluate how models trained on
the same domain can be combined into an Adapter-
Soup. We train a set of models using adapters
on booking.com by varying the data order and the
learning rate (see Appendix A.3, note our experi-
ments kept the initialization of each adapter fixed),
then evaluate all combinations of adapters of size 3,
and evaluate the performance of the AdapterSoup
both in-domain (booking.com) and on 3 held-out
domains. We explore this controlled setting to bet-
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ter understand the setup described in Wortsman
et al. (2022a), who also noted that the learning
rate is important; their experiments indicated that
smaller learning rates led to better model soups.

Our experiments in Table 3 show a more nuanced
result: AdapterSoups made from adapters trained
with small learning rates (5e-4) performed best in-
domain (confirming the result from Wortsman et al.,
2022b), but AdapterSoups made from adapters
trained with larger learning rates (7e-3, 4e-3, and
7e-4) generalize better to novel domains. The num-
ber of updates for each adapter is the same, and they
all have the same initialization, so we hypothesize
that AdapterSoups made from small learning rates
act similarly to averaging across steps in gradient
descent, leading to a model that is closer to a local
optimum. As for why larger learning rates leads to
better generalization to novel domains, we hypoth-
esize that each model in the AdapterSoup travels
a farther distance from the initialization, leading
to learning somewhat more diverse representations.
We leave further exploration to future work.

5 Related Work

As training large models from scratch has a severe
computational and environmental cost (Strubell
et al., 2019; Dodge et al., 2022), efficient meth-
ods such as mixtures-of-experts (MoE) (Shazeer
et al., 2017; Fedus et al., 2021; Artetxe et al., 2022),
adapters (Rebuffi et al., 2017; Houlsby et al., 2019;
Pfeiffer et al., 2020), and LoRA layers (Hu et al.,
2022) have recently been proposed. Both adapters
and MoEs have shown to work well for domain
adaptation (Cooper Stickland et al., 2021; Gururan-
gan et al., 2022; Chronopoulou et al., 2022). The
hierarchy adapter (Chronopoulou et al., 2022) out-
performs our approach but is significantly more
expensive. It adds a training cost of 4LdmodeldT
(following Kaplan et al., 2020) over the cost of
running GPT-2 for a model with L layers, dimen-
sion dmodel, adapter bottleneck size d, average tree
depth T (T = 8 in the hierarchy adapter paper),
while AdapterSoup needs 4Ldmodeld flops. As a
result, training the hierarchy adapter is a factor of
T slower than our approach. At inference time, the
hierarchy adapter activates 2 paths in the tree and
invokes a cost 4LdmodeldT × 2, i.e., inference is a
factor of 2T slower than our approach.

Averaging weights of models independently fine-
tuned on the same task (Wortsman et al., 2022a) has
shown to improve in-domain performance. Matena

and Raffel (2021) weight-average fine-tuned PLM
models using Fisher merging to avoid intermediate
task training and then perform downstream fine-
tuning. Wang et al. (2022) fine-tune MoEs using
adapters on a downstream task and average their
weights at test time. Our paper, however, focuses
on improving test-time scores of a model on novel
domains.

Wang et al. (2021) improve performance in an
unseen (target) language by ensembling the source
language adapter and language adapters similar to
the target language. This approach uses weighted
ensembling of the outputs of adapters, whereas we
ensemble the weights of the adapters. AdapterSoup
has the inference cost of a single adapter, while
Wang et al. (2021) require inference time that scales
linearly to the number of adapters.

Contemporaneous work (Li et al., 2022) also ex-
plores performance in novel domains using weight
averaging, but uses MoEs instead of adapters.

6 Conclusion

A PLM can be adapted to new domains using
adapters. However, this requires training a new set
of adapters for each domain. We propose a method
based on weight-space averaging of adapters se-
lected using text clustering. Our approach improves
performance on novel domains without updating
parameters or increasing the inference cost. Future
work could explore more sophisticated selection
methods to try to match the performance of the
oracle experiments.

Limitations

The conclusions we draw in this work about how
our approach compares to other approaches (e.g.,
our baselines) are only supported by evidence on
the task of language modeling, with textual do-
mains taken from the C4 dataset. We expect such
results to hold more generally, but do not have ex-
perimental evidence to support any other scenarios.
As with all work on language modeling, the models
we have trained could be used to generate language,
but we do not have evaluations of generated text
(e.g., on fluency, factuality, or other common met-
rics used to evaluate generated language). Our
paper focuses on using adapters; while we expect
similar approaches to work for other types of mod-
els, we only have evidence to support AdapterSoup
working for adapters.
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A Appendix

A.1 Training details
We build our code using PyTorch (Paszke et al.,
2019) and the HuggingFace library (Wolf et al.,
2020). Each model is trained on a single NVIDIA
A100 GPU with 40GB of RAM, batch size 64 and
gradient accumulation over 5 steps. We train each
model for 20 epochs, without using early stopping.
We compute semantic similarity using sentence-
transformers1 and a publicly available pretrained
model.2

We noticed from preliminary experiments that
the choice of random seed is important when aver-
aging weights of domain adapters. We empirically
found that averaging domain adapters initialized
from different random seeds led to poor perfor-
mance of AdapterSoup. We suggest initializing
the adapters from the same random seed in order
to effectively combine adapters trained on various
domains.

A.2 Dataset sizes
We use textual corpora from 31 of the 100 most
high-resource internet domains of C4. The sizes of
the training domains are shown in Table 4, while
the sizes of the evaluation domains are shown in
Table 5.

A.3 Single-domain AdapterSoup
We present the hyper-parameters we tried in Ta-
ble 6. In this setup, we computed in- and out-
of-domain scores for 455 different combinations
(there are 15 models and computed all Adapter-
Soups of size 3). The trend we observed is
that higher learning rates improved results out-of-
domain, while lower learning rates provided the
best in-domain scores.

A.4 Cross-domain AdapterSoup
We present in Table 7 the evaluation scores of each
of the single adapter models. Each adapter has
been trained in a different training domain (column
1), and evaluated in 10 novel domains.

1https://github.com/UKPLab/
sentence-transformers

2huggingface.co/sentence-transformers/
all-mpnet-base-v2

Ind Training Domain Train (Eval.) Tokens
1 dailymail.co.uk 25M (3M)
2 wired.com 18M (2M)
3 express.co.uk 16M (2M)
4 npr.org 25M (3M)
5 librarything.com 3M (500K)
6 instructables.com 25M (3M)
7 entrepreneur.com 16M (2M)
8 link.springer.com 28M (4M)
9 insiderpages.com 8M (1M)

10 ign.com 10M (1M)
11 eventbrite.com 11M (1M)
12 forums.macrumors.com 22M (3M)
13 androidheadlines.com 14M (2M)
14 glassdoor.com 4M (500K)
15 pcworld.com 14M (2M)
16 csmonitor.com 23M (3M)
17 lonelyplanet.com 6M (1M)
18 booking.com 30M (4M)
19 journals.plos.org 53M (6M)
20 frontiersin.org 38M (6M)
21 medium 22M (3M)

Table 4: Sizes of training corpora. We fine-tune GPT-2
using adapters on each of these domains. We perform
weight-averaging of these 21 domain-adapted LMs.

Ind Novel Domain Train (Eval.) Tokens
1 reuters.com 17M (2M)
2 techcrunch.com 13M (2M)
3 fastcompany.com 14M (2M)
4 nme.com 5M (1M)
5 fool.com 34M (4M)
6 inquisitr.com 13M (2M)
7 mashable.com 14M (2M)
8 tripadvisor.com 7M (1M)
9 ncbi.nlm.nih.gov 23M (3M)

10 yelp.com 68M (6M)

Table 5: Sizes of held-out corpora.

Hyper-parameter Value

learning rates 7e-3, 4e-3
1e-3, 5e-4, 1e-4

random seed 1, 2, 3

Table 6: Hyper-parameters for single-domain Adapter-
Soups. We exhaustively compute the AdapterSoup for
every combination of 3 models in this set.
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Evaluation Domains
Training Domain reuters techcrunch fastco nme fool inquisitr mashable tripadv. ncbi yelp Avg
dailymail 17.6 23.6 24.0 21.1 23.3 18.4 23.6 39.6 20.5 44.3 25.6
wired 18.0 22.0 21.5 22.0 22.9 18.2 22.2 40.0 19.9 41.3 24.8
express 19.5 25.8 26.0 22.6 25.8 20.1 26.3 42.9 23.3 48.9 28.1
npr 20.1 25.5 25.0 27.7 23.3 20.5 23.6 42.1 21.1 42.9 27.2
librarything 19.5 24.5 24.0 24.8 23.6 19.7 24.8 38.9 21.1 39.3 26.0
instructables 20.5 25.5 25.5 25.5 24.5 20.5 25.5 40.0 21.1 41.7 27.0
entrepreneur 18.2 22.4 22.0 22.6 22.9 18.4 23.1 40.9 21.1 43.4 25.5
springer 19.7 25.0 24.5 24.5 25.3 19.9 26.8 42.9 18.4 43.8 27.1
insiderpages 23.1 28.8 29.1 32.1 25.5 23.1 27.9 37.7 23.3 35.9 28.7
ign 18.9 23.8 23.6 22.6 23.3 18.7 23.6 40.9 21.1 39.6 25.6
eventbrite 19.1 24.3 23.8 23.1 24.3 19.3 25.0 39.6 20.9 41.7 26.1
macrumors 20.3 26.0 26.3 26.3 24.5 20.9 25.5 41.3 22.4 43.4 27.7
androidheadlines 20.7 24.8 25.8 26.0 24.5 20.1 25.3 44.7 22.6 42.9 27.8
glassdoor 20.7 26.0 25.8 27.7 24.8 21.1 26.8 42.5 22.0 42.5 28.0
pcworld 18.7 22.6 22.9 23.6 23.1 18.7 23.1 42.1 21.5 42.9 25.0
csmonitor 18.9 24.0 23.8 24.0 23.6 18.9 23.8 41.3 21.5 43.4 26.3
lonelyplanet 20.7 26.0 25.8 25.0 25.3 20.7 26.6 40.4 22.6 42.9 27.6
booking 27.4 33.4 33.1 35.9 31.5 27.4 35.5 37.0 30.6 49.4 34.1
journals 21.3 26.8 26.0 27.4 26.0 21.5 28.2 46.1 18.2 46.5 28.8
frontiersin 21.1 26.8 25.5 27.7 26.0 27.7 26.0 45.6 19.3 46.5 29.2
medium 17.8 22.2 21.8 21.3 25.0 17.8 25.3 39.3 19.9 43.4 25.4

Table 7: We show the performance of each trained adapter (for the cross-domain setting) on the 10 evaluation
domains. Each model has been trained for language modeling with an initial learning rate 1e− 4 for 20 epochs.
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