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Abstract
Recent studies have suggested that neural lan-
guage models learn and store a large amount of
facts and commonsense knowledge from train-
ing data. The ability of language models to
restore such knowledge is often evaluated via
zero-shot cloze-style QA tasks. However, such
evaluations rely only on prediction accuracy
without punishing the systems for their mis-
takes, e.g., simply guessing or hallucinating
likely answers. Selective prediction is a more
informative evaluation framework that takes the
confidence of predictions into account. Under
the selective prediction setting, a model is eval-
uated not only by the number of correct predic-
tions, but also by the ability to filter out dubious
predictions by estimating the confidence of in-
dividual predictions. Such confidence-aware
evaluation is crucial for determining whether to
trust zero-shot predictions of language models.
In this paper, we apply the selective predic-
tion setting to an existing benchmark, LAMA
probe, and conduct extensive experiments with
recent neural language models and different
confidence functions. We empirically show
that our Selective-LAMA evaluation is more
robust to the effect of simple guesses than the
conventional accuracy-based evaluation. Our
evaluation reveals the importance of the choice
of confidence functions by showing that sim-
ply relying on token probabilities is not always
the best choice. Further analysis shows that
various confidence functions exhibit different
preferences over predicted tokens for a given
context.

1 Introduction

Recently, knowledge stored in pre-trained lan-
guage models has been intensively investigated.
Many studies have suggested that language mod-
els trained on a large amount of textual corpora,
such as BERT (Devlin et al., 2019) and GPT (Rad-
ford et al., 2019; Brown et al., 2020), store both
linguistic knowledge (Warstadt et al., 2019; Mi-
aschi et al., 2020) and factual and commonsense

knowledge (Bosselut et al., 2019; Roberts et al.,
2020) during training. However, this knowledge
is embedded in the parameters of these language
models and thus is difficult to interpret, in contrast
to symbolic knowledge bases, which allows us to
inspect and edit stored facts explicitly.

Petroni et al. (2019) proposed a benchmark
task, the LAMA probe, that aims at evaluating the
amount of relational knowledge, such as common-
sense knowledge and facts, which is stored in a
language model. In LAMA probe, a relational fact
is converted into a cloze statement (query) and then
given to a language model as a fill-in-the-blank
question. If the language model fills in the blank
with the correct answer, the model is considered
to possess “knowledge” of the relation. According
to Petroni et al.’s experiments, the BERT language
model (Devlin et al., 2019) has a comparable perfor-
mance to a supervised relation extraction baseline,
with precision ranging from 10.5 to 32.3 depending
on the dataset type.

However, in many applications, we are con-
cerned not only with the amount of the knowledge
extracted from a language model, but also with
its reliability. This is because large pre-trained
language models are known to fluently generate
“facts” that they have never seen (Cao et al., 2018;
Rohrbach et al., 2018; Müller et al., 2020). There-
fore, it is crucial to know when we can trust the
output of a language model. The LAMA probe
framework does not cover this issue, as it always
forces the model to output an answer for all in-
stances, regardless of whether the model really
“knows” the answer to a query. This means that
it implicitly trusts all outputs of a language model
to the same degree.

Figure 1 shows an example suggesting that a
pre-trained language model is not always using
its knowledge for prediction. The figure shows
the distribution of predicted tokens for a particular
relation in the original LAMA probe benchmark
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(place-of-birth). We can see that three tokens
account for more than half of the wrong predictions.
This indicates that the model has a bias which it
acquired during training, probably due to the input
template used, rather than using actual question-
specific knowledge about individual facts.

To address this issue, we apply the selective pre-
diction (El-Yaniv and Wiener, 2010; Geifman and
El-Yaniv, 2017) setting to the LAMA probe and
propose a new evaluation framework, Selective-
LAMA, to evaluate both the amount of knowledge
in a pre-trained language model and the model’s
ability to estimate the reliability of its prediction.
Selective prediction is a framework by which a sys-
tem can choose whether to output the individual
predictions of a model based on the prediction re-
sults. Specifically, we consider the selection with
guaranteed risk control setting (Geifman and El-
Yaniv, 2017), where the system computes confi-
dence scores of individual predictions to determine
whether it outputs the predictions. A system is
evaluated by the number of predictions it can make
while maintaining a risk of error below a certain
level. To achieve high performance, a system is
required not only to answer many questions cor-
rectly, but also to accurately estimate the model’s
confidence about individual facts and determine
when the system should not answer a question.

In this paper, we focus on masked language mod-
els and address the following research questions:
(1) whether the pre-trained language model has the
ability to estimate the confidence of individual pre-
dictions and (2) how various confidence metrics
affect the ability of a system to do that. With our
proposed Selective-LAMA framework, we exam-
ine several basic confidence functions that can be
computed using only language model predictions
and do not require additional datasets or external
knowledge sources. We empirically verify that
the selective prediction evaluation is less likely to
overestimate predictions with template-related bi-
ases than the conventional accuracy-based evalua-
tion. The results of the experiments suggest that the
choice of confidence functions also influences the
results, showing that simply using token probability
is a strong baseline but not always the best choice,
and that the optimal confidence function depends
on both the model and the dataset. We hope that the
selective prediction framework facilitates an under-
explored research direction of utilizing predictions
of language models in a more reliable way.

Dataset: Google-RE, Model: BERT-base
Relation: place-of-birth
Input: “X (Subject) was born in [MASK] .”

Correct (total: 439)

Wrong (total: 2,498)

Predicted tokens

Figure 1: Composition of predicted tokens in each of the
correct (top) and wrong (bottom) predictions by BERT-
base for the place-of-birth relation in the Google-RE
dataset (size: 2,937). Just three tokens account for more
than half of the wrong predictions, implying that the
model has a template-dependent bias.

2 Selective Prediction

Under the selective prediction setting (El-Yaniv
and Wiener, 2010; Geifman and El-Yaniv, 2017),
a selective classifier determines whether a system
should output the prediction of the model. We
consider a classification problem from an input
space X to a set of labels Y . A selective classifier
(f, g) consists of an original classification model
f : X → Y and a selection function g : X →
{0, 1}. Given an input example x ∈ X , a selection
function determines whether the system outputs the
prediction f(x) ∈ Y:

(f, g)(x) :=

{
f(x) if g(x) = 1

don’t know if g(x) = 0
. (1)

Geifman and El-Yaniv (2017) introduced the se-
lection with guaranteed risk (SGR) setting, which
uses a confidence-based selection function:

g(x) =

{
1 if ϕ(x) ≥ β

0 if ϕ(x) < β
, (2)
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where ϕ(x) : X → R is the confidence score func-
tion of f . The system outputs the prediction if
the confidence score exceeds the threshold β ∈ R.
This setting allows a user to adjust the error risk
generated by the system by appropriately setting
the value of β. Specifically, increasing β decreases
the number of cases predicted by the system while
reducing the risk of making a wrong prediction.

Under the SGR setting, there is a risk-coverage
trade-off between the risk (Npred −Ncorr)/Npred

that a selective classifier will make a wrong predic-
tion and the coverage Npred/N of the predictions
made by the system. Here, N,Npred, and Ncorr

denote the number of all examples, predicted exam-
ples, and correct predictions, respectively. The per-
formance of a selective classifier is evaluated based
on the AUC of the risk-coverage curve (RC-AUC)
obtained by changing β in the selection function
(2). A smaller RC-AUC value indicates a lower
risk of making a wrong prediction. In practice, the
threshold will be determined by the level of risk
acceptable to the users.

3 Selective-LAMA

3.1 LAMA Probe and Model Prediction

In the original LAMA probe, a relational fact is con-
verted into a natural sentence using templates and
input into the language model. For example, when
querying about an entity that has a relationship of
born-in with “Dante,” the input to the language
model will be “Dante was born in [MASK].,” where
[MASK] is a special token that represents the mask
token. The model output for the masked position is
considered the answer to the query.1 The templates
are manually designed for each relation type.

Following the original study (Petroni et al.,
2019), we focus on bi-directional language mod-
els. Given the input sentence with a mask
token at the t-th position x = W\t :=
(w1, . . . , wt−1, [MASK], wt+1, . . . , w|W |), the lan-
guage model predicts the probability distribution of
the t-th token PLM(wt|W\t). The model prediction
is the token w′ with the highest probability:

f(x) = w′ := argmax
wt

PLM(wt|W\t). (3)

We denote the sentence in which the masked posi-
tion is filled with w′ by W ′.

1For simplicity, the target is limited to entities comprising
a single word.

3.2 Confidence Functions
As the task is to evaluate the knowledge present in
a pre-trained language model, we select confidence
functions that use only the prediction of the lan-
guage model and do not require additional training
or external knowledge sources. The following is
the list of confidence functions that we investigate.

Token (T) The simplest confidence function is to
use the log probability of the predicted token w′

(3) directly:

ϕT(x) = logPLM(w′|W\t). (4)

Sent (S) Sentence-level likelihood is widely
used in the context of sentence acceptability and
fact-checking (Lau et al., 2020; Lee et al., 2021).
This reflects how natural the entire sentence is
when the predicted token is substituted into the
mask position. Here, we adopt the pseudo-log like-
lihood (Salazar et al., 2020) for masked language
models normalized by sentence length:

ϕS(x) =
1

|W ′|

|W ′|∑

u=1

logPLM(wu|W ′
\u). (5)

Gap (G) Let w′′ be the token with the second-
largest probability by the model. The confidence
score is then calculated as follows:

ϕG(x) = logPLM(w′|W\t)− logPLM(w′′|W\t). (6)

This function is based on the assumption that a
model makes a confident prediction when the prob-
ability of the predicted token is significantly larger
than that of other tokens.

Reranking (R) The following function is based
on the assumption that, if the confidence of the
prediction is high, the score for the prediction is
consistently higher than those of other candidates
even when different metrics are used. First, we
obtain top-K predictions W based on the token log
probability (3). Then, we re-rank those candidates
using another score function ψ. Let rankψ(w′) be
the rank of w′ after the reranking. The confidence
score is subsequently computed as follows:

ϕR(x) = log2
K

rankψ(w′)
= log2 K − log2 rankψ(w

′).

(7)

The above score function is essentially a measure
based only on the new rank after the reranking and
has been used to assess the risk of language models
to memorize privacy information (Carlini et al.,
2019). In the experiments, we apply K = 100 and
use the Sent score ϕS(x) for ψ.
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DropoutMean (DM) Dropout-based metrics have
been widely used to estimate uncertainty of deep
neural network models (Gal and Ghahramani,
2016). The basic concept is to use dropout to
sample slightly different model parameters that
yield different predictions and to use stochastic
information to estimate the model uncertainty.
Following (Kamath et al., 2020), we adopt two
dropout-based measures. We apply M differ-
ent dropout masks to the language model’s lay-
ers and obtain different probability distributions.
Let P (m)

LM (w′|W\t) denote the m-th output (m ∈
{1, . . . ,M}). DropoutMean takes the mean of the
M outputs:

ϕDM(x) =
1

M

M∑

m=1

P
(m)
LM (w′|W\t), (8)

which can be considered an ensemble of the M
model predictions.

DropoutVar (DV) Similarly, DropoutVar uti-
lizes the variance of the outputs. As large vari-
ance implies high model uncertainty, we take the
negative variance of the outputs:

ϕDV(x) = − 1

M

M∑

m=1

(P
(m)
LM (w′|W\t)− ϕDM(x))2. (9)

In our experiments, we apply M = 30 differ-
ent dropout masks for each input, using the same
dropout ratios as those used to train the models.

TemplateDiff (TD) A large portion of the
LAMA probe benchmark consists of instances
based on subject-relation-object triples. These in-
stances share relation-specific templates, such as
“<subj> was born in [MASK].”, where the subject
of each triple is substituted for <subj>. Cao et al.
(2021) found that predictions of language models
are highly biased by templates and the impact of
subject entities are limited. Inspired by this ob-
servation, we define a confidence measure that as-
sesses the impact of subject entities to predictions.
LetWtemp be a template-only input sentence where
the subject of the inputW\t is replaced by the mask
token, e.g. “[MASK] was born in [MASK].” Then,
we calculate the confidence by comparing the log
probabilities of the prediction with and without the
subject entity mention:

ϕTD(x) = PLM(w′|W\t)− PLM(w′|Wtemp).
(10)

4 Experiments

The proposed Selective-LAMA framework allows
us to evaluate the ability of language models to
recognize questions for which they do not know
the answer. To see how the proposed framework
affects the evaluation of language models, in Sec-
tion 4.2, we first compare the evaluation based
on the Selective-LAMA framework with the con-
ventional accuracy-based evaluation, focusing on
the sensitivity to biased predictions. Then, in Sec-
tion 4.3, we present a comprehensive study of the
performance of three masked language models on
different datasets using the confidence functions
introduced in Section 3.2.

4.1 Experimental Settings

We used the same data set as the original LAMA
benchmark for our experiment and evaluated it
with our proposed Selective-LAMA framework.
The benchmark consists of four datasets: Google-
RE, T-REx, ConceptNet, and SQuAD. The Google-
RE and T-REx datasets contain relational facts ex-
tracted from Wikipedia. The ConceptNet dataset
contains relational knowledge about commonsense
extracted from the ConceptNet dataset (Speer and
Havasi, 2012). The SQuAD dataset (Rajpurkar
et al., 2016) is based on a question answering
dataset of the same name, but the questions are
rewritten in cloze style. As all these datasets, ex-
cept for ConceptNet, use Wikipedia as the knowl-
edge source, evidence for the correct answer should
be found in Wikipedia. For language models, we
use BERT-base (110 M parameters), BERT-large
(340 M parameters), and RoBERTa-base (Liu et al.,
2019). Because these models are trained using
Wikipedia, it is expected that the models have seen
the correct answers for the queries during training.

4.2 Template Bias Robustness

In the selective prediction framework, the perfor-
mance of language models is evaluated by RC-
AUC (Section 2), while the original LAMA bench-
mark uses the accuracy of the top-1 predictions as
the evaluation metric. A disadvantage of accuracy-
based evaluation is that the amount of knowledge
of a language model can be overestimated by count-
ing lucky guesses. Such lucky guesses can affect
the evaluation results, especially in cases where the
model’s predictions are biased by relation-specific
templates (Figure 1).

We investigate how these evaluation metrics are
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BERT-base BERT-large RoBERTa-base
CovA CovP CovA CovP CovA CovP

Accuracy 0.387 -0.247 0.469 -0.244 0.512 -0.224
RC-AUC Token 0.344 ↓ -0.316 ↓ 0.438 ↓ -0.292 ↓ 0.484 ↓ -0.277 ↓
(negative) Sent 0.355 ↓ -0.290 ↓ 0.441 ↓ -0.285 ↓ 0.499 ↓ -0.249 ↓

Gap 0.351 ↓ -0.314 ↓ 0.430 ↓ -0.294 ↓ 0.474 ↓ -0.285 ↓
Reranking 0.350 ↓ -0.286 ↓ 0.452 ↓ -0.283 ↓ 0.498 ↓ -0.266 ↓
DropoutMean 0.338 ↓ -0.319 ↓ 0.433 ↓ -0.293 ↓ 0.486 ↓ -0.280 ↓
DropoutVar 0.419 ↑ -0.125 ↑ 0.470 ↑ -0.124 ↑ 0.456 ↓ -0.166 ↑
TemplateDiff 0.349 ↓ -0.317 ↓ 0.427 ↓ -0.299 ↓ 0.486 ↓ -0.271 ↓

Table 1: Correlation between evaluation metrics and template bias metrics: answer coverage (CovA) and prediction
coverage (CovP) on the T-REx dataset. Here, we use the sign-reversed RC-AUC values for easier interpretation.

affected by template-related biases using the T-REx
subset of the LAMA benchmark, which contains
34k facts about 41 different relations with their cor-
responding templates. To quantify template-related
biases, we introduce two indicators: prediction cov-
erage and answer coverage.

Prediction coverage quantifies biases in model
predictions for a given template. If a model often
predicts the same answers for a template, it is likely
that the predictions are heavily influenced by the
template, rather than using knowledge of individ-
ual subject entities. Let Dr = ({(si, oi)}Nri=1, tr)
denote a relation subset containing Nr fact triples
(si, r, oi) of relation r and a template tr. We rep-
resent the input sentence corresponding to the i-th
fact by tr(si). For each relation subset Dr, we
first identify five most frequent tokens W freq(r)
predicted by a model. Prediction coverage is the
proportion of predicted tokens covered by these
tokens:

CovP(r) =
|{i | f(tr(si)) ∈ W freq(r)}|

Nr
. (11)

Answer coverage quantifies biases in a relation
subset in the test set. If the distribution of the cor-
rect answers for a relation subset is skewed towards
a few particular entities, the subset can be easily
answered by exploiting the bias without using the
knowledge of individual subject entities. Answer
coverage is calculated as the proportion of gold an-
swers covered by the frequently predicted tokens:

CovA(r) =
|{i | oi ∈ W freq(r)}|

Nr
. (12)

Table 1 shows the correlation between the bias
indicators and the evaluation metrics including ac-
curacy and (negative) RC-AUC calculated with
different confidence functions. Compared to the
conventional accuracy metric, all RC-AUC met-
rics except DropoutVar show a weaker positive

correlation with answer coverage and a stronger
negative correlation with prediction coverage, in-
dicating that the RC-AUC metrics are less likely
to overestimate template-biased predictions and re-
sults from intrinsically biased test examples.

Figure 2 shows the output of the BERT-base
model for two relation subsets P36 and P1412. Al-
though the accuracy scores for both subsets are
around 0.6, for P1412, both the prediction and
answer distributions are biased towards a small
number of entities, leading to high prediction and
answer coverage. The Token confidence scoring
fails to discriminate between correct and incorrect
predictions in this subset, resulting in high risk
at a low coverage point. Evaluation based on the
RC-AUC score successfully captures the difference
between these two cases and avoids overestimating
the results from biased predictions.

4.3 Selective-LAMA Evaluation and Analysis

Overall performance on different datasets

Table 2 shows the RC-AUC scores achieved by dif-
ferent confidence functions on various datasets. We
also calculate the performance lower bound based
on an oracle confidence function that gives 1 to all
correct predictions and 0 to incorrect ones. While
the simple Token metric constantly performs well,
the best confidence function depends on the model
and dataset. Notably, Gap and TemplateDiff per-
form better on the datasets of Wikipedia fact triples,
Google-RE and T-REx, than on ConceptNet and
SQuAD, outperforming the Token metric in some
cases. The breakdown of the results on the T-REx
dataset indicates that the performance of confi-
dence functions also depend on relation templates.
We further investigate this phenomenon below.
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Subject Gold Predict 𝜙𝑇

Adrianus Valerius Dutch Latin -0.490

Muhammad Ali English Arabic -0.575

Gloria Estefan Spanish Spanish -0.587

Imre Nagy Hungarian Hungarian -0.610

Sextus Pompeius Festus Latin Latin -0.619

Hieronymus Fabricius Latin Latin -0.635

Infante Juan, Count of Barcelona Spanish Spanish -0.637

Ramon Llull Catalan Spanish -0.665

Lau Kar-leung Chinese Cantonese -0.724

Juan Bautista Villalpando Spanish Spanish -0.749

r = P1412 (“X (Subject) used to communicate in [MASK] .”) Accuracy = 0.650, RC-AUC = 0.278

𝒲freq 𝑟 : English (38.6%), French (15.9%), Spanish (10.0%), Italian (9.4%), Russian (4.5%)

Prediction coverage: 0.784, Answer coverage: 0.687

r = P36 (“The capital ofX (Subject) is [MASK] .”) Accuracy = 0.621, RC-AUC = 0.121

𝒲freq 𝑟 : Rome (1.9%), Baghdad (1.7%), Paris (1.7%), Bangor (1.7%), Kabul (1.4%)

Prediction coverage: 0.084, Answer coverage: 0.047

Coverage

Ri
sk

Ri
sk

Coverage

Subject Gold Predict 𝜙𝑇

Sri Lanka Colombo Colombo -0.001

Bratislava Region Bratislava Bratislava -0.001

Albania Tirana Tirana -0.002

Tirana District Tirana Tirana -0.002

Hiroshima Prefecture Hiroshima Hiroshima -0.002

Brest Region Brest Brest -0.003

South Korea Seoul Seoul -0.003

Afghanistan Kabul Kabul -0.003

Bosnia and Herzegovina Sarajevo Sarajevo -0.003

Democratic Republic of Afghanistan Kabul Kabul -0.003

Figure 2: BERT-base results for relation subsets r = P36 and r = P1412. While the model performance is similar
in terms of accuracy, the RC-AUC scores exhibit a large difference. Left: Risk-coverage curves of Token and the
Oracle confidence scores. Right: Top 20 predictions sorted by the Token confidence score ϕT. The gray-shaded
rows indicate incorrect predictions. Many incorrect predictions for P1412 indicate that the model suffers from high
risk even at a low coverage point.

When does a confidence function beat another?

For the T-REx dataset in Table 2, Gap and
TemplateDiff outperform the Token metric for
BERT-base and RoBERTa-base, respectively. We
choose these two cases and perform a pairwise
comparison for each relation type to identify the
properties that determine the preference for one
confidence function over the other. The results in
Table 3 show that Gap is preferred over Token for
easier relations with high accuracy and low RC-
AUC for BERT-base, whereas TemplateDiff is
preferred over Token for more difficult relations
for RoBERTa-base. The subset where Gap is pre-
ferred over Token also shows lower prediction cov-
erage, which might be because the Gap function is
not good at handling overconfident predictions by
definition.

Confidence functions and relation templates

To understand whether and how different confi-
dence functions prioritize one relation over another,
we visualize in Figure 3 the composition of the
relation types of input examples sorted by the con-
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Figure 3: Breakdown of relation types of BERT-base
predictions on Google-RE, sorted by confidence scores
(left is the largest).

fidence scores in the Google-RE dataset predicted
by the BERT-base model. The Google-RE dataset
contains three relation types, date-of-birth,
place-of-birth, and place-of-death. Evi-
dently, the BERT-base language model tend to pro-
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Model Conf. Google-RE T-REx ConceptNet SQuAD All
1-1 N-1 N-M All

Token .775 .118 .434 .611 .478 .686 .755 .545
Sent .834 .163 .549 .776 .594 .797 .815 .652
Gap .798 .133 .422 .604 .470 .714 .794 .548

BERT-base Reranking .835 .248 .580 .623 .597 .834 .798 .633
DropoutMean .775 .123 .425 .609 .473 .690 .762 .543
DropoutVar .962 .525 .834 .883 .850 .918 .912 .886
TemplateDiff .778 .119 .427 .603 .472 .782 - -

Oracle .663 .070 .301 .456 .344 .551 .583 .413

Token .763 .085 .409 .575 .445 .616 .669 .506
Sent .815 .119 .520 .740 .560 .738 .768 .614
Gap .801 .092 .412 .597 .456 .650 .712 .525

BERT-large Reranking .826 .170 .552 .610 .576 .792 .785 .609
DropoutMean .762 .086 .402 .572 .441 .616 .670 .504
DropoutVar .960 .370 .775 .894 .817 .881 .907 .858
TemplateDiff .763 .084 .406 .574 .444 .730 - -

Oracle .648 .048 .277 .459 .327 .489 .522 .388

Token .818 .191 .540 .635 .562 .618 .741 .599
Sent .876 .267 .631 .761 .657 .754 .780 .716
Gap .827 .197 .545 .632 .565 .657 .782 .610

RoBERTa-base Reranking .865 .276 .637 .627 .636 .804 .828 .669
DropoutMean .815 .201 .536 .633 .562 .615 .744 .599
DropoutVar .979 .643 .924 .920 .920 .896 .907 .923
TemplateDiff .813 .189 .537 .626 .558 .744 - -

Oracle .730 .106 .416 .492 .432 .503 .571 .474

Table 2: RC-AUC calculated on each dataset (lower is better). For T-REx, the results on three splits divided
by the property of the relations are also provided: one-to-one relations (1-1), many-to-one relations (N-1) and
many-to-many relations (N-M). “Oracle” represents the best possible performance that could be achieved by an
oracle confidence function that gives 1 to all correct predictions and 0 to incorrect ones. TemplateDiff cannot be
calculated for SQuAD as the instances do not contain subject entities.

duce high probability outputs for a certain rela-
tion type, namely, place-of-birth. While Gap,
DropoutMean, and TemplateDiff follow the same
trend as that of Token, Sent and Reranking are
less sensitive to relation types. DropoutVar shows
the opposite trend. While the Token metric is ef-
fective in many cases, one should be aware of the
potential bias this confidence function may intro-
duce.

Table 4 compares the most frequent predic-
tions of BERT-base on the Google-RE dataset
ranked top by two different metrics: Token and
Reranking. We can observe similar distributions
for the date-of-birth relation type. This indi-
cates that the model is strongly biased toward a
limited vocabulary for this particular relation type.
For the other two relation types, the frequent words
in the top predictions are clearly different between
Token and Reranking. However, while the over-
lap of the top-ranked predictions between them
are small, both results have strong preference to-
ward a few particular tokens for each relation type.
For place-of-birth, five tokens account for more

than 50% of the top-ranked predictions for both
Token and Reranking. In place-of-death, just
one token occupies around 40% of the top predic-
tions. The results indicate that these confidence
functions produce different template biases rather
than that one is more robust to template biases than
the other.

Using confidence functions for prediction

In the experiments above, model predictions are
always determined by the token log probability as
in (3). However, some of the confidence functions
introduced in Section 3.2 can also be used directly
to determine the prediction as an alternative to (3).
Therefore, we investigate whether effective con-
fidence functions are also effective in improving
prediction accuracy (P @ 1) when used directly for
token prediction. For Gap, we extend the original
definition (6) so that we can apply the function to
token candidates that are not ranked first in terms
of token probability. Let w(k) denote the k-th best
prediction based on the model’s predicted token
probability. Then, the extended Gap function is
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BERT-base
All Token-win Gap-win ∆

Accuracy 0.311 0.283 0.413 -0.130
RC-AUC Token 0.558 0.577 0.466 0.111
RC-AUC Gap 0.566 0.597 0.443 0.154
Answer Cov. 0.285 0.276 0.334 -0.058
Prediction Cov. 0.547 0.579 0.464 0.115

RoBERTa-base
All Token-win TD-win ∆

Accuracy 0.242 0.315 0.231 0.085
RC-AUC Token 0.643 0.545 0.657 -0.112
RC-AUC TD 0.638 0.546 0.650 -0.103
Answer Cov. 0.237 0.285 0.235 0.050
Prediction Cov. 0.562 0.586 0.541 0.045

Table 3: Comparison of two confidence functions on the
T-REx dataset (Token–Gap for BERT-base and Token–
TemplateDiff (TD) for RoBERTa-base). The average
value of each metric is displayed for the entire T-REx
dataset (All) and the subset for which the confidence
function X outperforms the other (X-win). ∆ stands for
the difference between the two subsets.

defined as follows:

ϕG(x) =
1

k
(logPLM(w(k)|W\t)−logPLM(w(k+1)|W\t)).

(13)

The Gap score for the lowest ranked prediction is
defined as zero. The computation of the Sent score
requires O(|W ′|·V ) forward computations for each
instance, where V is the vocabulary size. To save
computational cost, we approximate the prediction
results by limiting the token candidates to the top
100 results based on the Token score (3).

Table 5 shows the results. For all models,
the best performance on all data is achieved by
DropoutMean. However, all functions, except
for DropoutVar, show a quite competitive perfor-
mance in terms of precision. Unlike for confidence
estimation, no advantage is observed for Gap and
TemplateDiff on the T-REx dataset. Overall, the
performance of these confidence functions is flat
when they are used directly for token prediction.
Furthermore, there is no strong correlation between
the performance of each confidence function as a
predictor and a confidence estimator. The results
suggest that effective metrics for inference and con-
fidence estimation should be designed based on
different strategies.

5 Related Work

In NLP, the reliability of the model responses has
been discussed mainly in the field of question an-
swering. Estimating the confidence of an answer
is critical in quiz competitions, such as Jeopardy,

since the system has to decide when to answer the
questions (Ferrucci et al., 2010). Kamath et al.
(2020) recently introduced a selective prediction
setting to question answering tasks and then eval-
uated the performance of the models on out-of-
domain questions. Jiang et al. (2021) addressed
a similar problem, but focused on a calibration of
the model prediction on QA tasks. While they fo-
cused on extractive or multiple-choice QA tasks
where a limited number of candidate answers are
available, our focus is on the knowledge probing
of language models where the candidate answer is
the entire vocabulary and, thus, false positives are
more frequent.

Several studies have addressed the reliability is-
sue of pre-trained language models as a calibration
problem; the goal of these studies is to train a well-
calibrated language model that makes accurate con-
fidence estimation. Desai and Durrett (2020) inves-
tigate the calibration level of pre-trained language
models, focusing on BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019). They evaluate
the “out-of-the-box” performance of these mod-
els without post-processing, as well as the perfor-
mance of post-hoc calibration methods (e.g., tem-
perature scaling and label smoothing). Kong et al.
(2020) proposed regularization methods to better
calibrate pre-trained language models. Both stud-
ies assume access to (at least in-domain) training
data of the target tasks on which parameterized
calibration models can be trained. In contrast, our
study primarily aims to explore better signals in
pre-trained language models to estimate the knowl-
edge they store. Thus, we focus on methods that do
not require additional training data or an external
knowledge source. Although training-based meth-
ods (e.g., temperature scaling) have the potential to
achieve better performance in terms of calibration,
optimal parameters vary depending on models and
tasks, especially when evaluated in out-of-domain
datasets (Desai and Durrett, 2020).

In our experiments, all queries have at least one
correct answer. Therefore, when a model cannot
answer a question correctly, this implies that it
did not acquire the correct knowledge during train-
ing or that its knowledge was not elicited by the
natural language query because of a sub-optimal
prompt (Jiang et al., 2020). However, there are
also cases where the question is essentially impos-
sible to answer due to ambiguity (Zhang and Choi,
2021) or false presupposition (Kim et al., 2021).
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Relation Confidence Top predictions

date-of-birth Token 1979 (47), 1944 (33), 1988 (10), 1990 (8)
Reranking 1979 (44), 1944 (32), 1953 (13), 1970 (3), 1949 (2)

place-of-birth Token Budapest (18), Prague (10), Istanbul (8), Athens (8), Paris (7), Moscow (7), Helsinki (6),
Bucharest (6), Tehran (5), Stockholm (4)

Reranking London (30), Dublin (12), Paris (12), Moscow (5), Madrid (4), Philadelphia (4), Chicago
(4), Warsaw (3), Tehran (3), Berlin (2)

place-of-death Token Paris (38), Rome (32), Moscow (6), Madrid (4), infancy (4), office (3), Athens (2), Helsinki
(2), Warsaw (2), Amsterdam (2)

Reranking London (46), Paris (14), Rome (7), office (6), Moscow (4), Munich (3), Amsterdam (3),
infancy (2), prison (2), Stockholm (2)

Table 4: Comparison of the most frequent tokens among the top-100 predictions based on different confidence
scores. Based on the results on the Google-RE dataset with the BERT-base model. The numbers in parentheses
represent the frequency of the predictions.

Model Pred. GRE TREx CNet SQ All

T 10.3 29.6 15.8 14.1 24.3
S 10.5 29.6 14.6 14.4 24.1

BERT-base G 9.7 28.6 15.3 15.1 23.5
DM 10.3 29.8 15.4 14.1 24.4
DV 0.2 0.1 0.1 0.0 0.1
TD 9.6 29.4 14.2 - -

T 11.0 31.0 19.3 17.4 26.1
S 11.2 31.5 17.6 15.7 26.1

BERT-large G 10.4 29.6 18.6 17.4 25.0
DM 10.9 31.7 19.6 17.7 26.7
DV 0.2 0.0 0.0 0.0 0.1
TD 10.6 30.5 17.0 - -

T 7.5 23.0 18.5 14.7 20.2
S 8.2 24.3 17.0 12.2 20.7

RoBERTa-base G 7.6 22.0 17.4 14.7 19.3
DM 8.0 24.4 18.3 15.7 21.1
DV 0.1 0.1 0.1 0.0 0.1
TD 7.5 23.2 16.4 - -

Table 5: P@1 based on different prediction scores
for each dataset. Bb: BERT-base, Bl: BERT-large,
T: Token, S: Sent, G: Gap, DM: DropoutMean, DV:
DropoutVar, TD: TemplateDiff, GRE: Google-RE,
CNet: ConceptNet, SQ: SQuAD. We omit the result of
using the Reranking score because the results are the
same as those of Sent by definition.

An investigation of such cases remains a direction
of future research.

6 Conclusion

In this paper, we introduced the selective prediction
setting to the LAMA probe benchmark to evaluate
both the amount of relational knowledge stored in
a language model and the ability of the models to
effectively filter out unconfident predictions. We
compared different confidence functions that can
be calculated using only the model parameters and
the output information. The experimental results
are summarized as follows:

• The selective prediction evaluation is more
robust to template-related biases than the con-
ventional accuracy-based evaluation (Table 1).

• The token log probability is not always the
best choice, and the best confidence func-
tion depends on the language model and the
dataset (Table 2).

• Different confidence functions have different
preferences over relation types and predicted
tokens, even though all functions are based
solely on the model output (Figure 3, Table 4).

• There is no strong correlation between the
performance of each confidence function as a
predictor and a confidence estimator (Table 5).

Future studies will include a detailed analysis of the
relationship between tasks, models, and confidence
scores. Moreover, more sophisticated methods will
be explored to ensure the reliability of language
model predictions under various tasks. The code
for our work is attached as supplementary material.

Limitations

In this paper, we focused on evaluating the predic-
tions of masked language models on the LAMA
probe bencmhark. Although our proposed frame-
work is easily applicable to other kinds of lan-
guage model with small adjustments, some of
the confidence functions we investigated require
properties specific to particular language models
and datasets. For instance, Token and Gap func-
tions require the prediction to be a single token,
and TemplateDiff requires templates for subject-
relation-object triples.
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Ethics Statement

Data and code
In our experiments, we use the original LAMA
benchmark dataset from Petroni et al. (2019) as
is. All data are based on publicly available data
sources and data statistics can be found in the orig-
inal paper. Parts of the code are based on LAMA2.
The license of the code can be found in the supple-
mentary material.

Details of experiments
The experiments were conducted using a 2.4GHz
CPU and an NVIDIA TESLA P100 GPU. Infer-
ence time was 1–1.5 s per instance for BERT-base
and 2–3 s per instance for BERT-large.

Potential risks
This study evaluates the knowledge stored in lan-
guage models considering the reliability of model
predictions. However, it should be emphasized that
the outputs of the selective classifier constructed by
the proposed method do not guarantee the correct-
ness of the model predictions. For the validation
of each fact, this method should only be used as an
aid, and the final decision should be made by the
user.
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