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Abstract

Training end-to-end speech translation (ST)
systems requires sufficiently large-scale data,
which is unavailable for most language pairs
and domains. One practical solution to the data
scarcity issue is to convert text-based machine
translation (MT) data to ST data via text-to-
speech (TTS) systems. Yet, using TTS systems
can be tedious and slow. In this work, we pro-
pose SpokenVocab, a simple, scalable and ef-
fective data augmentation technique to convert
MT data to ST data on-the-fly. The idea is to
retrieve and stitch audio snippets, correspond-
ing to words in an MT sentence, from a spoken
vocabulary bank. Our experiments on multiple
language pairs show that stitched speech helps
to improve translation quality by an average of
1.83 BLEU score, while performing equally
well as TTS-generated speech in improving
translation quality. We also showcase how Spo-
kenVocab can be applied in code-switching ST
for which often no TTS systems exit.!

1 Introduction

End-to-end (E2E) speech-to-text translation (ST)
models require large amounts of data to train (Sper-
ber and Paulik, 2020). Despite the emerging
ST datasets (Cattoni et al., 2021; Wang et al.,
2021), their size is considerably smaller compared
to text-based machine translation (MT) data. A
common remedy to tackle the data scarcity is-
sue is to leverage text-based MT data in train-
ing ST systems. Common approaches include
multi-task learning (Anastasopoulos and Chiang,
2018; Ye et al., 2021), transfer learning & pretrain-
ing (Bansal et al., 2019; Wang et al., 2020) and
knowledge distillation (Inaguma et al., 2021; Tang
etal., 2021).

A more straightforward alternative is to convert
text-based MT data to ST via text-to-speech (TTS)
synthesis engines (Pino et al., 2019; Jia et al., 2019).

'Our code is available at https://github.com/
mingzil51/SpokenVocab
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Figure 1: Overview of generating synthetic speech from
SpokenVocab on-the-fly. The first step is to prepare
the SpokenVocab bank offline and the second step is
to retrieve and stitch audio snippets from the bank by
words in a sentence.

This method is less commonly used despite its sim-
plicity and effectiveness,” mainly due to practical
reasons: (1) TTS models have slow inference time
and may incur monetary costs; (ii) the conversion is
required for each MT datasets. Recently, Lam et al.
(2022) proposed to generate synthetic speech with-
out using TTS models. However, their approach is
based on real ST data, and thus cannot be extended
to MT data.

In this work, we propose a simple, effective and
efficient data augmentation approach to convert
MT data to ST data on-the-fly. The idea is to pre-
pare a set of spoken words, forming a spoken vo-
cabulary (SpokenVocab) bank, and then generate
synthetic speech by retrieving and stitching spoken

2Only one work out of 8 uses TTS to augment data in the
IWSLT2022 offline speech translation track.
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words based on a text sequence, as shown in Figure
1.3 Our experiments show that this method is as
effective as TTS-generated speech, at a much lower
computational and financial cost. For instance, aug-
menting ST data on-the-fly with 100k of stitch-
converted MT data, boosts translation quality by an
average of 1.83 BLEU over 3 language pairs from
Must-C (Cattoni et al., 2021) with no additional
cost, memory, or speed footprints. Comparing the
real ST data vs. our converted version from the
same transcripts, to our positive surprise, revealed
that our synthetic data outperforms its real coun-
terpart by 0.41 BLEU score. We conduct thorough
experiments to examine SpokenVocab in boosting
translation and further showcase its use and benefit
in the context of code-switching (CS) ST.

We hope this simple technique to ease the use of
MT data for ST in practice as well as other tasks
where synthetic speech is useful.

2 SpokenVocab

We describe our methodology in creating effective
synthetic ST data based on MT data in this section.
The core step is the preparation of a SpokenVocab
bank offline and stitching sounds on-the-fly.
Concretely, we first use a TTS engine to convert
items in a word vocabulary to speech to obtain a set
of SpokenVocab offline.* Next, we can configure
the TTS engine to generate different speaker voices
and thus curate a SpokenVocab bank in which each
set corresponds to a "speaker". The purpose is to
simulate, to the greatest extent, a realistic speech
dataset consisting of various speakers. At training,
assume we have access to an MT dataset and each
pair denoted as < s,t > where s and ¢ are source
and targets sentences, respectively. Given such a
pair, we choose one voice > from the bank, and pro-
duce synthetic speech by fetching corresponding
audio snippets by words in s from the bank and
stitching them together. During stitching, we de-
ploy cross-fade, a well-known technique to smooth
transitions between two independent audio clips.®
3During the writing of this manuscript we found out that
Voder, the first electronic speech synthesiser developed by Bell
Labs in 1939, synthesized human speeches by decomposing
it into its acoustic components and combining them using
human operators in real time.
*SpokenVocab could also be based on n-grams in a dataset.
3One could also generate utterances by mixing speakers at
the token level, with no additional cost with our technique. We
leave further investigation of this to future work as it requires
a test condition (i.e., including various speaker voices per

utterance) which is not available to the best of our knowledge.
*https://github.com/jiaaro/pydub

Pairing it with ¢ yields a synthetic ST instance.’

3 Experiments

We first present the ST system (§3.1) and TTS sys-
tems (§3.1.2) used in this study. We then describe
the ST and MT datasets (§3.1.3), followed by pro-
viding implementation details (§3.1.4). Next we
explain how SpokenVocab is designed (§3.2) and re-
port translation results (§3.3). Lastly, we illustrate
how our method can be applied to CS ST (§3.5).

3.1 Experimental Setup
3.1.1 Speech Translation System

Pre-trained speech encoders and text decoders
have shown great performance on ST (Li et al.,
2021; Zhao et al., 2022), compared to models
trained from scratch. For this reason, we follow
the architecture in Gallego et al. (2021) that uses
Wav2vec 2 (W2V2) (Baevski et al., 2020) as the
speech encoder and mBart decoder (Liu et al.,
2020) as the text decoder, joint with a lightweight
linear adapter and a CNN-based length adapter.

3.1.2 TTS Systems

To prepare SpokenVocab, we use the Google TTS
service,® which supports a wide range of voice con-
figurations; this allows simulating different speak-
ers with various accents, gender and geographi-
cal background. We also use a off-the-shelf TTS
toolkit, i.e., Tacotron2-DCA + Mulitband-Melgan
(short for T2+Mel).” We use Google TTS to gener-
ate synthetic speech in raw wavforms.

3.1.3 Dataset

We conduct our major experiments on Must-C, a
multilingual ST dataset curated from Ted talks. We
focus on English (En)—German (De), Romanian
(Ro) and Italian (It). For MT data, we use a subset
of WMT14, WMT16 and OPUS100'° for De, Ro
and It, with 100k, 100k and 24k instances, respec-
tively. For the code-switching (CS) setting, we use
Prabhupadavani (Sandhan et al., 2022), multilin-
gual CS ST dataset, and we focus on En—De, It.
Its source utterances are code-mixed with English
(major language), Bengali and Sanskrit; each utter-
ance is translated manually to 25 languages. We

"We provide a demo for stitched speeches.
$https://cloud.google.com/
text-to-speech
‘https://github.com/mozilla/TTS
Yhttp://opus.nlpl.eu/opus-100.php
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prepare ST data following the instructions in G4l-
lego et al. (2021). We preprocess MT data with
the fairseq instructions and remove pairs with the
length of target sentences greater than 64 words to
avoid out-of-memory issues. Minimal preprocess-
ing is performed on the CS ST dataset.

3.1.4 Implementation Details

Similar to Li et al. (2021) and Géllego et al. (2021),
training different components of W2V2 and mBart
decoder yields divergent results. In our initial
experiments, we note that fine-tuning the entire
W2V2 except for its feature extractor and freez-
ing mBart lead to decent translation results, and
thus we use this configuration for all our exper-
iments. To ensure Must-C to be dominant, we
make the ratio of Must-C and MT data to be ap-
proximately 8:1, unless mentioned otherwise. We
use sacreBLEU (Post, 2018) to evaluate transla-
tion. Please refer to Appendix A.1 for full training
details, hyper-parameters and hardware.

3.2 SpokenVocab Preparation and Variations

Constructing the SpokenVocab bank is crucial, as
synthetic speech produced in this manner have a di-
rect impact on translation quality. In this section we
examine SpokenVocab from various dimensions.
TTS Conversion. The first questions to ask are
which TTS system should be used to convert a
word to a spoken form and what sampling rate
(SR) is appropriate.!! To answer these questions,
we conduct intrinsic evaluation on stitched speech
by varying TTS engines and SR. Furthermore, as
it is common to diversify raw wave forms with
audio effects (Potapczyk et al., 2019), we apply
the same technique to distort our stitched speech.
Results in Table 1 show that using Google TTS
and setting the SR to 24k are better choices, while
distortion (i.e., adding the effects of tempo, speed
and echo) may or may not be helpful. Contrary to
the common practice of using a SR of 16k (Baevski
et al., 2020), applying 16k to SpokenVocab alters
the sound significantly, as shown in the demo in
§2, and this has negative impacts on the system.
Overall, we use the setting in italic for the rest of
our experiments.

Word Vocabulary. We compile a word vocabulary,
consisting of 1) a common subset of words'?, and

'SR is defined as the number of samples taken from a
continuous signal per second.

12The list comes from Official Scrabble Players Dictionary
and Wiktionary’s word frequency lists, and can be found

Data TTS SR Distort. BLEU
ST - - - 26.91
T2+Mel - - OOM
24k - 28.02
24k v 27.72

ST+MTst it che Google
Fieened 8¢ ek - 26.77
16k v 27.47

Table 1: Comparison of different TTS conversions in
terms of TTS engine, sampling rate (SR) and distortion
(Distort.) Top row: baseline. Bottom rows: MT data is
converted to ST data with SpokenVocab. OOM: out-of-
memory with 24k and 16k SRs. ifalic: best setting.

2) unique words with a frequency of higher than 99
from the En—X WMT subset. The purpose is to
construct an approximated version of SpokenVocab
that is ready to convert any sentence to synthetic
speech. For words that are not covered by the list,
we employ a fuzzy matching mechanism where the
most similar word at the surface level is returned.
For instance, an out-of-vocabulary (OOV) word
"apples" is replaced by its closest match in the
vocabulary "apple", and the speech snippet for "ap-
ple" is retrieved. When no match is found, a default
filter word, "a", is returned. To investigate the ef-
fect of this approximation which would inevitably
lead to mispronounced words, we prepare another
set of SpokenVocab containing the full set of spo-
ken words in the WMT data (eliminating the need
for fuzzy matching). In controlled experiments
on En—De, the BLEU scores with the approxi-
mated and full SpokenVocabs, with the size of 35k
and 460k respectively, are 28.02 and 27.91. The
negligible difference indicates the effectiveness of
using an approximated SpokenVocab. Additional
ablation studies on using 50% and 10% of the full
vocabulary yield scores of 27.79 and 27.94, further
validating the insensitivity of W2Vv2 to nuanced
mispronunciation, perhaps due to the presence of
powerful pre-trained auto-regressive decoder. !

Number of Speakers. Despite the artificial nature
of the stitched speech sounds, one still can tell the
speaker’s information (e.g., gender, accent). To
examine whether diverse voices would be helpful
for translation, we set n to 1, 5 and 10 and train
models with the same amount of data. These sys-

at https://github.com/dolph/dictionary/
blob/master/popular.txt

3Optionally, one can dynamically call a TTS system to
generate an audio on OOV words.

1977


https://github.com/dolph/dictionary/blob/master/popular.txt
https://github.com/dolph/dictionary/blob/master/popular.txt

Cost BLEU

Data o S S De Ro It

ST - 2691 24.66 22.13
ST + MTr1s 900 90 25 2820 2471 26.46
ST + MTstitchea 9 0 0 28.02 25.05 26.13

Table 2: Translation quality on Must-C and the average
costs associated for generating synthetic speech for ev-
ery 100k sentences in terms of inference time in minutes
(®), USD value ($) and storage required in GB ().
Preparing SpokenVocab took 2 hours, free of charge,
with Google TTS, and stitched speeches are discarded.

tems display similar translation performance with
28.02, 27.73 and 27.80 BLEU scores respectively,
suggesting that having a single speaker is sufficient.
Our conjecture to this phenomenon is that speech
representations produced by w2v2 have removed
speaker information, as demonstrated in Nguyen
et al. (2020) where analysis was conducted on
wav2vec (Schneider et al., 2019), the predecessor
to wW2v2. This could be further examined with
using dialect- or pronunciation-focused translation
settings, which we leave to future work.

3.3 Translation Performance on Must-C

Producing synthetic speech from SpokenVocab on-
the-fly makes the conversion from text to speech
highly scalable in terms of time and monetary costs,
and it also avoids the need of storing speech. Ta-
ble 2 reports the time, dollar value and space re-
quired to produce every 100k speech with Google
TTS, while these numbers are negligible for Spo-
kenVocab due to its re-usability.'* Apart from scal-
ability, it is more important to see the translation
performance difference between unnatural speech
produced by SpokenVocab and fluent speech gen-
erated by state-of-the-art TTS systems. Table 2
summarises results for 3 Must-C language pairs,
with stitched speech and TTS-generated speech.
As expected data augmentation of ST with MT
data method boosts translation quality, using our
method by 1.83 BLEU score on average. Our
stitched speech performs equally well as TTS-
generated counterpart, showing no loss of quality
during conversion.

“For fair comparison between TTS which operates on the
full vocabulary, we report the cost under the full vocabulary
version of our method.

Data Nature of Speech BLEU
Must-C real 26.91
Must-C + Europarl real + real 27.5

Must-C + Europarlrrs real + synthetic 27.76
Must-C + Europarlsticcnea  real + synthetic 2791

Table 3: BLEU scores under different augmentations.

STes  STes+MTes-stitchea
BLEU En-Be—De 26.11 28.09
En-Be—1t 26.41 26.90

Table 4: Translation quality for CS ST dataset.

3.4 Stitched Speech vs. Real Speech

An alternative approach to augmentation is to lever-
age real ST data from any other existing domains.
To assess whether our approach as another augmen-
tation technique is still competitive, we conduct
an experiment on En—De by augmenting Must-
C with 35k training instances from the Europarl-
ST (Iranzo-Sénchez et al., 2020). Table 3 reports
the results. To our positive surprise, our stitched
speech (generated from the transcripts of eurorparl-
ST counterpart) works even better than the real
Europarl-ST speech.

3.5 Code-switching Speech Translation

Development in CS ST is constrained by the avail-
ability of relevant datasets (Sandhan et al., 2022)
and using TTS systems to augment data is practi-
cally difficult. To this end, our method provides a
high degree of flexibility in that it can stitch audio
clips of different languages freely. To produce a
code-switched utterance, we further prepare Spo-
kenVocab for Bengali (Google TTS does not sup-
port Sanskrit) based on an English-Bengali dictio-
nary.!> We maintained the ratio of code-switching
in the real data (i.e., 0.35 probability of CS occur-
ring, and 2 as the average number of code-switched
words in a sentence). Please see Algorithm 1 in
Appendix A.2 for the detailed utterance generation
process. Results in Table 4 suggest that the models
trained with additional 100k and 24k instances (for
De and It respectively.) from SpokenVocab outper-
form those only trained with the original data.

Bhttps://github.com/MinhasKamal/
BengaliDictionary
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4 Conclusion

In this work, we proposed a simple, fast and effec-
tive data augmentation technique, SpokenVocab for
ST. This provides an alternative for converting MT
data to ST data with TTS systems which comes
with monetary and computation costs in practice.
Our approach generates synthetic speech on-the-
fly during training, with no cost or footprint. We
have shown that speech stitched from SpokenVo-
cab works as effective as TTS-generated speech,
and unlike TTS system, it could directly be applied
as a data augmentation tool in code-switching ST.
Our approach can be used in other content-driven
speech processing tasks as an uncompromising and
easy-to-use augmentation technique.

Limitations

CS ST exbihit difficulties (Huber et al., 2022;
Weller et al., 2022), exposing several limitations
in this study: 1) Bengali and Sanskrit (another mi-
nority language) are treated without difference, as
they originate from the same script and Sanskrit
is not supported by the Google TTS service. 2)
We use a open-source language detection tool to
calculate the oracle hyper-parameters in the dev
set; yet, imperfection of the detector on token-level
prediction and the fact that source sentences are
written in Latin regardless of the language deviate
the scores from true values.
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A Appendix

A.1 Implementation Details

We implement and train all models with fairseq!®
on 4 A40 GPUs, using 16 floating point precision,
for 25k updates. WAV2VEC 2!7 and the mBart50'8
decoder are used. We employ an Adam optimizer
with 81 = 0.99, B2 = 0.98, while setting the
dropout to 0.1, clip norm to 20 and label smoothing
to 0.2. For the baseline models, we use a learning
rate of 5e-04 and reduce it at plateau. For mod-
els trained with additional data, we use the same
learning scheduler with a learning rate of 3e-04.

A.2 Code-switching Speech Translation

Algorithm 1 Code-switching Utterance Generation

Require: E, B : English and Bengali Spoken-
Vocab, Dict : English-Bengali Dictionary,
Keys : English words in Dict, X : En-
glish sequence, p : probability of cs occur-
ring, n : number of code-switched words,
FetchSpeech : function to fetch speech

Output: U: CS utterance

I: ¢ = NormDist(0, 1)
2: if ¢ > p then
3: // Select words to be code-switched

4:  words,indices = Random(X, n)
5. for word,t in words, indices do
6: // Only switch words in the dictionary
7: if word in Keys then
8: /I Replace with the Bengali word
X[i] = Dict|word]
9: end if
10:  end for
11: end if

12: U = FetchSpeech(E, B, X)
13: return U

Yhttps://github.com/facebookresearch/
fairseq

"https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_vox_960h_pl.pt

Bhttps://dl.fbaipublicfiles.com/
fairseg/models/mbart50/mbart50.ft.1n.
tar.gz
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