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Abstract

Real-world applications of neural language
models often involve running many different
models over the same corpus. The resulting
high computational cost has led to interest in
techniques that can reuse the contextualized em-
beddings produced in previous runs to speed
training and inference of future ones. We re-
fer to this approach as embedding recycling
(ER). While multiple ER techniques have been
proposed, their practical effectiveness is still
unknown because existing evaluations consider
very few models and do not adequately account
for overhead costs. We perform an extensive
evaluation of ER across eight different models
(17 to 900 million parameters) and fourteen
tasks in English. We show how a simple ER
technique that caches activations from an in-
termediate layer of a pretrained model, and
learns task-specific adapters on the later layers,
is broadly effective. For the best-performing
baseline in our experiments (DeBERTa-v2 XL),
adding a precomputed cache results in a >90%
speedup during training and 87-91% speedup
for inference, with negligible impact on accu-
racy. Our analysis reveals important areas of
future work, and we release code and documen-
tation for our experiments at https://github.
com/allenai/embeddingrecycling.

1 Introduction

Large pretrained language models form the foun-
dation of modern NLP, and continue to push the
state-of-the-art on a wide range of natural language
processing tasks (Devlin et al., 2019; Liu et al.,
2019b; Bommasani et al., 2021). Larger models
tend to offer superior accuracies (Kaplan et al.,
2020), but also entail higher computational costs.
The steep computational cost associated with large
neural language models slows down experimenta-
tion, increases financial barriers to the technology,
and contributes to global climate change (Strubell
et al., 2019; Dodge et al., 2022).

Our work studies how to reduce computational
cost for workloads in which many distinct models
are run over the same text. For example, a scholarly
search tool that helps users find and understand rel-
evant literature may run separate models for entity
recognition, topic classification, relation extraction,
summarization, question answering, and so on over
a large corpus of papers. New and improved mod-
els for the tasks are developed frequently, necessi-
tating additional runs. The need for repeated model
runs has also been noted for other applications in
previous work, including news applications (Du
et al., 2020) and virtual assistants (Wei et al., 2022).
Further, repeated runs also occur very frequently
during model development, when exploring model
variants or executing multiple training epochs.

Recent work has introduced ways to reduce com-
putational cost in such settings by re-using model
activations from one task to speed up other ones
(Du et al., 2020; Wei et al., 2022). A pretrained
language model’s internal activations form a con-
textualized embedding, which reflects syntactic and
semantic knowledge about the input text (Goldberg,
2019; Wiedemann et al., 2019; Rogers et al., 2020)
which can be useful across a variety of downstream
tasks. We define embedding recycling (ER) as the
technique of caching certain activations from a pre-
vious model run, and re-using them to improve the
efficiency of future training and inference. Recy-
cling imposes a small computation time cost the
first time a model processes a text, in order to com-
pute and populate the cache. Thereafter, all sub-
sequent runs on the text can use the precomputed
cache, improving efficiency.

While previous work has shown the promise of
ER approaches, the existing evaluations are lim-
ited. For example, Du et al. (2020) and Wei et al.
(2022) each evaluate ER for only one or two base
models. Likewise, for ER techniques that cache
activations on persistent storage, the storage and
time cost of the cache itself has yet to be quan-
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tified. In this paper, we present a more compre-
hensive evaluation of ER with several models and
tasks, along with a thorough efficiency analysis.
We study a simple layer-recycling ER method that
caches the activations from an intermediate layer
of a pretrained model, and uses those cached acti-
vations as the starting point when the same input
sequence is seen again during fine-tuning or infer-
ence. We show that even this simple method yields
substantial improvements to throughput at small or
no cost to accuracy on average. Our results pro-
vide the strongest evidence to date that ER can be a
practically important technique for reducing costs
for NLP systems, but as we discuss in section 6,
they also suggest important challenges that must
be addressed in future work.

Our contributions are summarized below:

• We propose embedding recycling as a method
for lowering the computational costs of train-
ing and inference for language models, and
explore layer recycling with two techniques:
standard fine-tuning and parameter-efficient
adapters.

• Our experiments with eight models across a
wide range of tasks show that layer recycling
is generally effective. For the best-performing
ER model on our tasks- DeBERTa-XL with
adapters, we find that layer recycling nearly
matches performance of the original model
while providing a 87-91% speedup at infer-
ence time, and greater than 90% speedup at
training time.

• We explore open challenges for embedding re-
cycling and present questions for future work.

2 Related Work

The embedding recycling technique we investigate
is based on findings from prior work suggesting
that not all layers of a pretrained transformer are
equally important for end-task finetuning. Shal-
lower layers tend to converge earlier in training
than deeper layers (Raghu et al., 2017; Morcos
et al., 2018), and weights of later layers change
more than earlier ones (Kovaleva et al., 2019), sug-
gesting that earlier layers tend to extract universal
features whereas later layers focus on task-specific
modeling. Lee et al. (2019) find that 90% of fully
fine-tuned performance can be reached when fine-
tuning only the final quarter of a transformer’s lay-
ers and leaving the rest frozen.

Several proposed methods vary the number of
frozen layers over the course of training, approach-
ing or exceeding the performance of fully fine-
tuned models while substantially speeding up the
training process (Raghu et al., 2017; Xiao et al.,
2019; Brock et al., 2017). Similar to our approach,
some dynamic freezing methods also employed
caching mechanisms (Liu et al., 2021; He et al.,
2021), but the dynamic number of frozen layers
means the cache applies only at training time and
only for a single task. In contrast, we cache embed-
dings from the pretrained model, which can then
be reused across multiple downstream tasks and
applied at inference time as well.

Other recent studies have sought to improve
model inference speed by skipping computations
in later layers. Sajjad et al. (2020) found that in
some cases up to half of the layers can be removed
from the model with only a 1-3% drop in task per-
formance. Early exit strategies have also been pro-
posed, which allow the model to dynamically de-
cide when to skip later layers (Cambazoglu et al.,
2010; Xin et al., 2020). SkipBERT (Wang et al.,
2022) combined early exiting with an approach
in which cached n-gram embeddings approximate
the intermediate activations of new inputs. Lester
et al. (2021) explored prompt-tuning as a parameter-
efficient approach for adapting frozen language
models without adjusting model weights, condition-
ing language models with soft prompts to perform
downstream tasks.

Precomputing text representations to speed up
future processing on the same data is commonly
done when creating fixed-size document-level em-
beddings for use on document-level tasks (Conneau
et al., 2017; Cohan et al., 2020); in contrast, we
study contextualized token-level embeddings that
can be used for tasks such as named entity recog-
nition (NER) and question answering. ReadOnce
Transformers (Lin et al., 2021) do consider multi-
task variable-length document representations, but
do so in a setting where a cached document rep-
resentation is paired with a query text (such as a
question or prompt); the approach is pretrained
with QA data and evaluated on QA and summariza-
tion, rather than tasks such as text classification or
NER where the entire input can be cached.

Du et al. (2020) propose an approach similar to
ours that caches general-purpose token-level model
representations, trained in a multi-task setting; how-
ever, that approach only applies a small MLP to
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the stored representations and reports a meaning-
ful drop in accuracy (greater than 2% on average)
compared to fully fine-tuned models. We find that
reusing the later layer parameters of a pretrained
transformer in addition to the cached activations of-
ten enables us to essentially match fully fine-tuned
model accuracy while reducing computational cost.

Wei et al. (2022) combine layer freezing and
knowledge distillation to create a multi-task model.
They do not consider caching activations on persis-
tent storage as we do, but instead re-use activations
across tasks at inference time via a branching multi-
task model. They use a two stage process where
12−N layers are fine-tuned for each individual task
keeping N frozen layers. This is followed by dis-
tillation of the N layers for further computational
gains. We take advantage of the parameter efficient
adapter modules (Houlsby et al., 2019), and re-
place this process with a single step of fine-tuning
a frozen base model that has adapters attached only
to the deeper layers.

Our work also has connections to work on
memory- and retrieval-augmented language model-
ing. Prior work on using memory (e.g., Grave et al.
(2016); Dai et al. (2019); Rae and Razavi (2020);
Wu et al. (2022)) generally focuses on modeling
long-range context and caching representations of
older history in a sequence, while work on retrieval
(e.g., Guu et al. (2020); Karpukhin et al. (2020))
focuses on fetching text from a knowledge base
or corpus to serve as additional context. In both
cases, the aim is to use representations of addi-
tional text (from earlier in a document or from a
knowledge base) to improve modeling of new in-
puts. In contrast, our work focuses on caching the
representations of an entire sequence to speed up
computation for new tasks.

3 Methods

In the transformer architecture (Vaswani et al.,
2017), an input sequence x of length S and dimen-
sion d is transformed with a function F : RS×d →
RS×d defined by the composition of N transformer
layers F (1), ..., F (N) as follows:

Fℓ(x) = LN(FFℓ( x′) + x′) (1)

x’ = LN
(
MHℓ(x) + x

)
(2)

where LN is a layer normalization (Ba et al., 2016),
FF is a feed forward network, and MH is the self-
attention layer that consists of multiple heads and

Figure 1: Overview of the embedding recycling ap-
proach. In the figure, the K-th layer activations are
saved for future fine-tuning on downstream tasks, skip-
ping redundant computations of earlier layers in the
transformer model.

contextualizes the input sequence vector. The out-
put of each layer is used as input to the next layer.

hℓ+1 = F ℓ(hℓ) (3)

Our approach is to cache the output representa-
tions hk ∈ RS×d at a certain layer k and reuse them
for fine-tuning on a new given task. We refer to this
process of caching and reusing the output represen-
tations of a layer as layer recycling. This enables us
to reduce the size of the transformer model from N
layers to N − k layers, reducing the computational
cost during fine-tuning and inference.

Note that the key requirement of layer recycling
is that we first need to process the entire data with
the transformer model and cache the representa-
tions, so that we could later reuse these representa-
tions many times during fine-tuning and inference
on new tasks. We experiment with two types of
layer recycling approaches as explained next.

We start with a pretrained transformer F (e.g.,
BERT) consisting of F (1), ..., F (k), ..., F (N) lay-
ers. During the first epoch of fine-tuning for any
given task, we run the transformer over a corpus
C and cache the output representations of layer k
for each instance c in C, i.e., hkc∈C . However, for
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every subsequent epoch of fine-tuning using the
same transformer model, we only run and fine-tune
the latter N−k layers F (k+1), ..., F (N). We can ei-
ther train all of the weights in the layers (which we
refer to as reduced models), or only train adapter
modules added on the layers (discussed below). In
either case, for the instance c in the dataset C we
simply retrieve and use the previously cached repre-
sentation hkc∈C as input to layer F (k+1). This avoids
the extra computation through layers F (1), ..., F (k)

but adds a small cost for retrieving the representa-
tion from storage (see subsection 5.4 for efficiency
analysis).

3.1 Adapters

We evaluate whether combining recycling with
Adapter modules (Houlsby et al., 2019) can im-
prove performance over fully fine-tuned models.
Adapters are typically used to improve the parame-
ter efficiency of fine-tuning and mitigate the storage
costs of large language models. They also enable
more sample-efficient fine-tuning and can result
in improved fine-tuning performance (Karimi Ma-
habadi et al., 2022).

Adapter modules contain a down-projection, an
up-projection, and a residual connection module:
h ← h + (f(hWdown)Wup). The adapters are
separately inserted after the MH and the FF layers
in the transformer architecture (Equation 2). Fur-
ther, Rücklé et al. (2021) experiment with dropping
adapters from the lower transformer layers to pro-
vide inference time speedup. In our experiments,
adapters are added to the latter half of transformer
layers in the reduced transformer models. As in
standard layer recycling, the pretrained original
transformer F first caches the intermediate activa-
tions hkc∈C for each input in a selected corpus at
layer k. Then the first k layers are removed from
the transformer. During fine-tuning, the cached rep-
resentations are fed as input to the later N − k lay-
ers of the transformer, which consist of the frozen
transformer layers plus trainable adapter parame-
ters. Thus, we fine-tune only the additional 6-8%
parameters introduced by the adapters. We refer to
learning adapters on all layers as the full adapter
setting and the layer recycling version as the re-
duced adapter setting.

4 Experimental Setup

We now present our experiments evaluating
whether recycled embeddings can be paired with

reduced large language models to maintain accu-
racy while improving training and inference speed.
We explore the effectiveness of embedding recy-
cling across a variety of different tasks, datasets,
and transformer models.

4.1 Models

Our full-size models include the encoder trans-
formers BERT, SciBERT (Beltagy et al., 2019),
RoBERTa (Liu et al., 2019b), and DeBERTa (He
et al., 2020). We also experiment with the encoder-
decoder T5 model (Raffel et al., 2019). We selected
these architectures since they are widely-used pre-
trained transformers across a variety of tasks in
different domains. We experiment with multiple
sizes of these models, including distilled (Sanh
et al., 2019; Wang et al., 2020, 2021), base, and
large variants, to gauge the effectiveness of recy-
cled embeddings with an increase in the network
size.

To investigate the effectiveness of layer recy-
cling, we test several reduced models in which
we use caching to reduce 50% of the layers (e.g.,
caching layer 12 in RoBERTa-large and layer 6 in
BERT-base).1 We compare each reduced model
to its fully fine-tuned counterpart across the text
classification, NER, and QA tasks. The hardware
details and hyperparameters for our models are
specified in Appendix A.

4.2 Datasets

For our experiments, we focus on three core NLP
tasks: text classification, named-entity recognition
(NER), and extractive question-answering (QA).
Scientific papers, due to their immutable nature,
are an especially appropriate target for embedding
recycling, so we focus much of our evaluation
on the scientific domain. For text classification,
we selected Chemprot (Kringelum et al., 2016),
SciCite (Cohan et al., 2019), and SciERC (Luan
et al., 2018). For NER, we used BC5CDR (Li
et al., 2016), JNLPBA (Collier and Kim, 2004),
and NCBI-Disease (Doğan et al., 2014). For QA,
we chose the TriviaQA (Joshi et al., 2017) and
SQuAD (Rajpurkar et al., 2016) datasets.

1We note that for the encoder-decoder model T5, we con-
sider caching only the middle layer of the encoder, which
means that the speedups for this model will be smaller than (ap-
proximately half of) that of the other models we evaluate. We
also consider 25% and 75% reduced models in Appendix A.
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5 Results

5.1 Standard Fine-tuning
The results for standard fine-tuning of either full or
reduced models are shown in Table 1. For the text
classification and NER tasks, the reduced BERT-
sized and larger models perform similarly to their
fine-tuned counterparts on average, and substan-
tially outperform the distilled models. The reduced
distilled models also perform well on those tasks
compared to the distilled originals, on average, al-
though there is more variance across models and
tasks compared to BERT-sized models. We validate
our fully fine-tuned baselines by comparing our re-
sults with prior work (Beltagy et al., 2019), finding
that our scores land within 1.33% on average and
typically score above the previous baselines.

For QA tasks, we found that fully fine-tuning
works somewhat better than reduced configurations
across all the explored models (Table 1). Generally,
reduced configurations typically lag by 1 to 2 points
in F-1 score. One possible hypothesis is that the QA
datasets are generally much larger than the datasets
we used for other tasks (100k-150k examples vs
4k-20k examples for text classification and NER);
however, in additional experiments we found that
subsampling the QA training sets to 5% of their
original size only increased the gap, suggesting that
dataset size does not explain the failure of reduced
models on this task. We also validate our fully fine-
tuned baselines for QA tasks by comparing our
results with Yasunaga et al. (2022), finding that our
scores differ by less than half a point on average.

Finally, we explored using lightweight multi-
layer perceptrons (MLPs) as classifier heads, given
their success in prior work. While (Du et al., 2020)
paired multi-task encoders with 2-layer MLPs, we
paired frozen pretrained transformer models with
2-layer MLPs and found that they underperformed
trainable layers dramatically, by 26% on average
across the classification and NER tasks.

5.2 Adapters
Our results for reduced adapter models are shown
in Table 2. We see that in general, for all the
models except for T5-Large, the adapter-based ap-
proaches are superior to standard fine-tuning on
our tasks. Further, layer recycling remains effec-
tive with adapters. Compared to the full adapter
baseline, the reduced adapters for RoBERTa-Large,
BERT, SciBERT, and DeBERTa models only show
a 0.19% reduction in accuracy. Additionally, com-

pared to the fully fine-tuned baseline, these reduced
adapters models have a 0.19-0.23% reduction in ac-
curacy. Likewise, in contrast to the full fine-tuning
results above, QA accuracy for the top-performing
DeBERTa adapter model remains unchanged on av-
erage after layer recycling, with the reduced adapter
model performing better on one QA task and worse
on the other.2

5.3 GLUE Results

For our best-performing model DeBERTa v2 XL,
we also provide further experiments on datasets
from the GLUE benchmark (Wang et al., 2018),
to allow easier comparison against speedup tech-
niques from previous work. We present results
on the CoLA, SST-2, MRPC, STS-B, MNLI, and
QNLI tasks from GLUE. For our experiments, we
tried both our standard reduced models and our
reduced adapter models. We found that embedding
recycling was successful across the GLUE tasks,
with an average accuracy drop of 0.3 points in re-
turn for a significant increase in both training and
inference time as outlined in Table 5 and Table 4.
We note that due to the high computational cost of
these experiments, we take existing hyperparame-
ter settings from previous work that worked well
for the full models, and also use these for reduced
models. Further hyperparameter optimization of
the reduced models might improve performance.

5.4 Efficiency Analysis

To estimate the real-world benefit of recycling em-
beddings for different tasks, we provide a mini-
mal PyTorch implementation of embedding recy-
cling. This implementation and the following re-
sults correspond to both the standard layer recy-
cling approach and the adapter-based layer recy-
cling approach since they follow parallel processes
for gradient descent during training and computa-
tions during inference, despite the additional 6-8%
of parameters added by the trainable adapters. To
show that training times do not differ substantially,
we also measured the training time the transformer
models take to converge to their optimal weights.
We found both approaches take approximately the
same time to complete training (Table 16).

We evaluated the impact of recycling embed-
dings on four different architectures and two dif-

2We omit experiments with distilled models, as we found
adapters to be ineffective on those models even without em-
bedding recycling, scoring 19.4% worse on average than full
fine-tuning for text classification and NER.
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RoBERTa
Large

(Sci)BERT
DeBERTa

V2 XL
T5

Large
MiniLM
L6-H768

MiniLM
L6-H384

DistilBERT

Task Rdc Full Rdc Full Rdc Full Rdc Full Rdc Full Rdc Full Rdc Full

ChemProt 84.3 83.9 84.0 84.0 86.8 86.7 84.6 84.1 78.3 79.3 76.9 74.6 80.3 79.1
SciCite 85.0 85.5 86.6 86.0 85.2 84.4 86.3 84.9 84.5 84.6 83.7 82.8 84.1 84.0
SciERC-Rel 80.2 80.4 76.7 79.8 79.9 80.2 77.4 80.2 74.8 78.2 72.1 68.9 74.9 72.9
Classification Avg. 83.2 83.3 82.4 83.3 84.0 83.8 82.8 83.1 79.2 80.7 77.6 75.4 79.8 78.7

bc5cdr 90.0 90.4 90.7 91.3 91.3 91.8 90.7 89.9 87.8 87.5 85.9 88.3 88.3 88.7
JNLPBA 79.4 78.7 78.8 79.0 78.5 78.2 79.6 80.0 77.3 76.9 74.0 77.2 78.6 78.5
NCBI-disease 93.0 93.2 93.4 92.9 93.3 93.4 92.8 93.5 91.1 92.1 89.9 91.7 90.5 91.3
NER Avg. 87.5 87.4 87.7 87.7 87.7 87.8 87.7 87.8 85.4 85.5 83.3 85.7 85.8 86.2

TriviaQA 78.2 79.8 67.4 69.1 80.6 81.8 77.4 78.2 72.2 73.8 69.2 71.0 64.7 66.8
SQuAD 91.8 93.6 87.5 88.5 94.5 94.6 93.7 93.9 85.0 87.0 89.0 89.6 84.8 85.4
QA Avg. 85.0 86.7 77.5 78.8 87.5 88.2 85.5 85.9 78.6 80.4 79.1 80.3 74.8 76.1

Table 1: Test scores of reduced (Rdc) models on the text classification, NER, and QA tasks. Bold indicates the
best average F-1 score between the reduced and fully fine-tuned (Full) versions of each model over 10 runs. For
the ChemProt dataset, we report the micro F-1 scores instead, following past work (Beltagy et al., 2019). The
reduced BERT-sized models generally offer similar performance to their full counterparts (scoring within 0.2%
when averaged across RoBERTa and SciBERT for the six tasks), and substantially outperform the distilled models.

ferent hardware platforms. For models, we consid-
ered two efficient transformer models (MiniLMv2
(Wang et al., 2020, 2021) models with l = 6 layers
and embeddings of size h = 384 and h = 768),
two medium sized models (BERTBASE, l = 12,
h = 768; BERTLARGE, l = 24, h = 1024), and
a large model (DeBERTaV2-XLARGE, l = 24, h =
1536). We evaluated embeddings on a efficiency-
oriented AI accelerator (NVIDIA A10G), as well
as on a high-performance GPU (NVIDIA A6000).

We controlled for differences among tasks con-
sidered in tables Table 1, 2, and 3, such as length of
sequences and number of samples, by simulating
a sequence classification task on QASPER (Dasigi
et al., 2021), which includes the full-text of over a
thousand academic manuscripts.3 We run all mod-
els with a fixed batch size of 128. For all models,
we reduce exactly half of their layers by recycling,
which results in a maximum theoretical speed-up
of 100%. A run over the corpus consists of 335
batches, and we average results over seven runs.

Table 4 shows the results of caching embed-
dings to recycle on disk. Overall, we found that all
models benefit from embedding recycling, achiev-
ing an average speedup ranging from 18 to 86%.
Unsurprisingly, larger models benefit more from
recycling than smaller ones; this is due to the fact
that loading embeddings cached on disk adds a

3Because the bulk of computation for a transformer model
is done in its encoder and not in the task-specific heads, infer-
ence time is similar regardless of whether the model is used
for sequence classification, tagging, or question answering.

small latency penalty to a model run, which is more
noticeable in the case of smaller models. For ex-
ample, we achieve an 84% speedup when running
BERTBASE with embedding recycling on an A10G
GPU, which is roughly equivalent to the latency of
a MiniLML6-H768 model without recycling (351 vs
325 ms per batch on average); this result would us
allow to run more accurate models while maintain-
ing the efficiency of shallower architectures.

Table 4 also includes results when storing em-
beddings using half precision (that is, cache em-
beddings in FP16 rather FP32). The smaller em-
beddings lead to improvements for all models and
hardware, ranging from +8% to +46%. Further,
it has no impact on performance, as it changes
predicted scores by at most 10−3 across all tasks
evaluated in this work.

We also note that less capable hardware bene-
fits more from caching embeddings. For example,
BERTBASE achieves a speedup of 84% on an A10G
GPU, while on A6000, the speedup is a more mod-
est 55%. This is an expected result: fewer and
slower execution cores/accelerator memory impact
overall model latency. Further, we note that, de-
spite the smaller relative gains, the more powerful
GPU is always faster in absolute terms compared
with the less capable one.

It is important to note that these gaps from
maximum achievable speedup are only observed
when performing inference; for training, we ob-
serve almost perfect speed-up for all models and
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RoBERTa
Large

(Sci)BERT
DeBERTa

V2 XL
T5

Large

Task
Rdc +
Half
Adpt

Full
Adpt

Full
Rdc +
Half
Adpt

Full
Adpt

Full
Rdc +
Half
Adpt

Full
Adpt

Full
Rdc +
Half
Adpt

Full
Adpt

Full

ChemProt 84.1 85.2 83.9 84.2 84.9 84.0 87.2 86.5 86.7 84.3 84.9 84.1
SciCite 82.4 82.9 85.5 85.5 84.6 86.0 84.6 85.0 84.4 85.3 84.5 84.9
SciERC-Rel 85.7 85.9 80.4 86.0 85.5 79.8 82.9 82.1 80.2 76.2 75.6 80.2
Classification Avg. 84.1 84.7 83.3 85.2 85.0 83.3 84.9 84.6 83.8 81.9 81.7 83.1

bc5cdr 90.0 90.6 90.4 90.0 90.9 91.3 90.7 91.1 91.8 79.9 85.7 89.9
JNLPBA 79.1 79.2 78.7 79.8 78.3 79.0 79.3 79.0 78.2 78.8 79.5 80.0
NCBI-disease 92.8 93.1 93.2 93.1 93.0 92.9 93.3 93.5 93.4 92.1 92.5 93.5
NER Avg. 87.3 87.6 87.4 87.6 87.4 87.7 87.8 87.9 87.8 83.6 85.9 87.8

TriviaQA 78.5 79.8 79.8 67.4 68.9 69.1 81.6 82.3 81.8 77.0 77.5 78.2
SQuAD 93.5 93.4 93.6 87.9 87.9 88.5 94.7 93.9 94.6 90.6 91.0 93.9
QA Avg. 86.0 86.6 86.7 77.6 78.4 78.8 88.1 88.1 88.2 83.8 84.3 85.9

Table 2: Test scores of reduced adapter (Rdc + Half Adpt) models on the text classification, NER, and QA tasks.
Bold indicates the best average F-1 score between the reduced adapter, full adapter (Full Adpt), and fully fine-tuned
(Full) versions of each model over 10 runs. For the ChemProt dataset, we report the micro F-1 scores instead,
following past work (Beltagy et al., 2019). The reduced, adapter-based transformer models offer similar performance
to their full counterparts (scoring within 0.4% when averaged across RoBERTa, SciBERT, and DeBERTa for the
eight tasks), and substantially outperform the distilled models.

GLUE task
DeBERTa V2 XL

Rdc +
Half Adpt

Full
Adpt Rdc Full

CoLA 70.9 71.3 70.8 71.2
SST-2 96.9 97.1 97.1 97.4
Single
Sentence Avg. 83.9 84.2 84.0 84.3

MRPC 93.9 94.0 93.4 93.9
STS-B 92.4 92.7 92.5 92.8
Similarity and
Paraphrase Avg. 93.2 93.4 93.0 93.4

MNLI-m 91.7 92.0 91.0 91.4
QNLI 95.0 95.1 94.1 94.8
NLI Avg. 93.3 93.6 92.6 93.1

Table 3: Test scores of reduced (Rdc) and reduced
adapter (Rdc + Half Adpt) models on GLUE for De-
BERTa V2 XL. Bold indicates the best average score
between the reduced and fully fine-tuned (Full) versions
for the standard and adapter-based configurations. Each
score is averaged over 5 runs. We report the scores using
the standard GLUE metric for each corresponding task.

hardware configurations except for the smaller
MiniLM models. For example, BERTBASE re-
quires 17.38 ± 1.32 ms/batch4 without recycling,
compared to 8.67± 2.18 ms/batch when recycling.
Even when considering the additional time to cache
embeddings to disk during the first pass, embed-

4When training, we use a batch size of 16

ding recycling still achieves close to optimum
speedup on all models except MiniLMs, where
its gains hover between 52% and 82% (“NR vs SR”
column in Table 5). When training for just 6 epochs
(or roughly 2, 000 steps), recycling embeddings is
faster than simply freezing half of the parameters
for all models but MiniLM (“F vs SR” column in
Table 5); this is due to the relatively higher cost of
caching layers to disk in case of smaller models.
In these cases, we empirically found that recycling
achieves faster training time than freezing after
12 epochs or 4, 000 training steps; since smaller
models typically require more epochs to converge,
we conclude that recycling is generally preferable
to partially freezing a model during training. For
BERTBASE and larger models, embedding recycling
is also more efficient than layer freezing, providing
a +20% to +45% speed-up after just 6 training
epochs.

We also benchmarked the storage requirements
of recycling embeddings. For a sequence of 512 to-
kens and a hidden model dimension of 768, caching
embeddings requires 1.6 MB with 32-bit precision
or 0.8 MB with 16-bit precision. This translates
to 15.5 MB per paper in QASPER (papers are, on
average 4,884 WordPiece tokens long). Weighing
the storage cost and compute savings of ER, we
find that it is cost-effective in cloud environments
only if the corpus is reprocessed several times per
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Inference Time
(Speedup over Baseline)

Model Baseline
Recycling Avg. F1

diff when
recycling

FP32
cache

FP16
cache

NVIDIA A10G
MiniLM
L6-H384 183 ms

154 ms
(+21%)

123 ms
(+67%) −0.2

MiniLM
L6-H768 325 ms

201 ms
(+56%)

195 ms
(+66%) −0.4

BERT
BASE

647 ms
351 ms
(+84%)

343 ms
(+88%) −0.3

BERT
LARGE

1943 ms
1066 ms
(+86%)

1004 ms
(+93%) −0.2

DeBERTa
V2-XLARGE

1914 ms
1010 ms
(+89%)

985 ms
(+94%) −0.1

NVIDIA A6000
MiniLM
L6-H384 123 ms

105 ms
(+18%)

100 ms
(+23%) −0.2

MiniLM
L6-H768 208 ms

161 ms
(+29%)

150 ms
(+38%) −0.4

BERT
BASE 416 ms

269 ms
(+55%)

245 ms
(+59%) −0.3

BERT
LARGE 1235 ms

662 ms
(+86%)

643 ms
(+92%) −0.2

DeBERTa
V2-XLARGE 1430 ms

777 ms
(+84%)

758 ms
(+89%) −0.1

Table 4: Average inference runtime comparison (in ms/-
batch, averaged over 7 runs) between vanilla encoders
and models that cache embeddings on disk. For all runs,
cache the middle layer of the encoder. We assume the
cache is already precomputed when calculating timings;
thus, maximum speedup is 100%. Overall, the larger
the model, the higher the speedup from re-using repre-
sentations. Further, accelerators with fewer execution
units (A10G) benefit more from recycling embeddings.
Finally, using half precision for embeddings improves
speed up across the board, while halving storage size.

month, but is cost-effective on local hardware even
with infrequent (yearly) corpus reprocessing (de-
tails in subsection A.8 of the appendix).

6 Discussion and Future Work

Our experiments raise several questions and sug-
gest multiple avenues for future work, including:

• Our layer recycling strategy is a straightforward
ER approach, but previous work has suggested that
weighted pooling across layers can perform better
compared to any single layer in many cases (Liu
et al., 2019a; Du et al., 2020). Recycling pooled
activations may offer improved results. What is
the best way to capture and store the syntactic and
semantic knowledge encoded in the activations of
a model for later recycling?

• As noted in the previous section, naive storage
methods for ER can be cost-prohibitive in some
settings, and finding ways to mitigate this cost
(e.g., by compressing the stored activations) will
be important for making ER broadly applicable.

• Our experiments show that the right recycling
approach may be task-specific and model-specific.
For example, with standard fine-tuning as shown
in Table 8, caching layer 12 in RoBERTa-large
is most effective for NER and text classification,
whereas it is not effective for QA (but layer 6 per-
forms much better). Which embeddings to retrieve
and recycle for a task, and the right architecture
(e.g. number of layers) to use when consuming
the recycled embeddings, represents a large de-
cision space. Methods that can help practition-
ers automatically choose among public or private
shared embedding sets and associated model de-
signs, given their task and objectives for accuracy
and computational cost, may be important to make
ER an effective practical tool.

• We present results with encoder-only and
encoder-decoder models, on classification tasks.
Determining whether the approach is effective for
generative tasks and autoregressive models is an
important question for future work.

• While we show that ER can be effective when
coupled with distillation, whether other techniques
like quantization and early exiting remain effective
in combination with ER is an open question.

• We focus on the setting where the exact same
text, at the length of a full document, is being
reused for multiple tasks. In practice, we may
often perform a task on text that is similar to but
not exactly the same as one for which we have
cached embeddings (e.g., a Wikipedia page that
has been revised). Further, even a completely new
document will have similarities and overlapped
spans with previously processed ones. Studying
ER in these settings, e.g. through a combination of
layer recycling and the SkipBERT approach which
can apply to unseen passages via cached n-grams
(Wang et al., 2022), is an area of future work.

• Finally, it is possible to explore cross-model em-
bedding recycling. We attempted a straightfor-
ward implementation of such approach by using
recycling embeddings from a larger model into a
smaller consumer model. However, the results did
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Model
Training (ms/batch, amortized over 6 epochs) Speedup

No
Recycling (NR)

Model
Frozen (F)

Saving +

Recycling (SR)
Only

Recycling (R)
NR vs

SR
F vs
SR

NR vs
R

NVIDIA A10G
MiniLM384 51 ± 1 30 ± 1 32 ± 6 25 ± 4 +59% -7% +104%
MiniLM768 90 ± 4 56 ± 1 50 ± 4 45 ± 3 +80% +12% +100%
BERTBASE 173 ± 2 112 ± 1 90 ± 4 87 ± 3 +92% +24% +99%
BERTLARGE 347 ± 1 246 ± 1 181 ± 2 176 ± 2 +92% +36% +97%

DeBERTaXLARGE 380 ± 2 286 ± 1 199 ± 1 194 ± 1 +91% +44% +96%

NVIDIA A6000
MiniLM384 41 ± 1 24 ± 1 26 ± 5 22 ± 3 +55% -8% +81%
MiniLM768 61 ± 1 38 ± 1 40 ± 5 34 ± 3 +52% -5% +82%
BERTBASE 117 ± 1 78 ± 1 60 ± 3 58 ± 2 +94% +30% +102%
BERTLARGE 326 ± 2 212 ± 1 167 ± 2 161 ± 1 +96% +26% +103%

DeBERTaXLARGE 359 ± 2 250 ± 1 184 ± 1 178 ± 1 +95% +35% +102%

Table 5: Average training runtime comparison (in ms per batch, ± stdev over 7 runs) between vanilla encoders and
models that cache embeddings on disk. For all runs, we cache the middle layer of the encoder; thus, theoretical
speedup is 100%. Time per batch is amortized over 6 epochs (2, 000 steps), the lowest number to convergence over
all datasets (c.r.f. Table 16). We present results in four settings: no recycling (NR), freezing ½ of the layers during
training (F), 1 training epoch during which embeddings are saved to disk followed by 5 epochs where recycling is
enabled (SR), and 6 epochs where embeddings are already saved (R). Overall, we found that embedding recycling
speeds up training even when embeddings need to be cached to disk during the first pass. Compared to freezing,
saving and recycling improves training time for all but MiniLM models (F vs SR).

not show improvements (Appx. A.3). Developing
and evaluating new approaches for this setting is
an important item for future work.

7 Conclusion

We have presented embedding recycling, a general
technique for reusing previous activations of neu-
ral language models to improve the efficiency of
future training and inference. We show how a sim-
ple technique of caching a layer of activations in
a pretrained model is effective. We validate our
approach in experiments across fourteen tasks and
eight model architectures. We find that recycling
typically has small or no impacts to accuracy on
average, but does yield substantial throughput in-
creases demonstrated through a careful efficiency
analysis. We also discuss several open challenges
for future work.

8 Limitations

As discussed in detail in our future work section,
several advances are important to make embedding
recycling a broadly applicable practical technique.
In addition, the techniques we evaluate primarily
benefit transformer language models run on GPU-
based architectures with rapid storage, components
which are not available to all NLP researchers and
practitioners. Our experiments demonstrate posi-

tive results with one representative embedding re-
cycling technique, but do not directly evaluate all
recycling variants proposed earlier in the litera-
ture. Finally, the datasets used in our experiments
were in English, a high-resource language with
robust pretrained models which may benefit em-
bedding recycling. Future work should expand on
the applicability of embedding recycling by using
non-English datasets in lower-resource settings to
determine the breadth of its applicability.
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A Experimental Setup and Additional
Results

A.1 Fine-tuning Transformer Models
The candidate transformer models are fine-tuned
using configurations suggested by Devlin et al.
(2019), Ding et al. (2022) and Houlsby et al. (2019).
For text classification, we feed the final hidden state
of the [CLS] token into a linear classification layer.
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For NER and QA, we feed the final hidden states
of each token into a linear classification layer with
a softmax output.

For all of the models, we apply a dropout of 0.1
to the transformer outputs and optimize for cross
entropy loss using Adam (Kingma and Ba, 2015).
We employ a batch size of 32 across all tasks. We
fine-tune using early stopping with a patience of 10,
using a validation set for calculating loss for each
epoch. We use a linear warmup followed by lin-
ear decay for training (Howard and Ruder, 2018),
testing the following learning rate options: 1e-3,
2e-3, 1e-4, 2e-4, 1e-5, 2e-5, 5e-5, and 5e-6. For the
text classification and NER datasets, we select the
best performing learning rate for each transformer
model on the development set and report the cor-
responding test results. For the QA datasets, we
select the best performing learning rate for each
transformer model on the training set and report
the corresponding results on the validation set. Ad-
ditionally, for the adapter modules used in certain
model configurations, we test bottleneck dimen-
sions as part of our hyperparameter search: 24, 64,
and 256.

A.2 Adapter-based Models
Here, we used frozen RoBERTa-Large (Liu et al.,
2019b), SciBERT (Beltagy et al., 2019), and BERT
models but added adapter modules (Houlsby et al.,
2019) only on the latter half of the transformer
layers. Only the adapters and the linear classifier
attached to the model output were fine-tuned for
the text classification, NER, and QA tasks.

We found that the best hyperparameter configu-
ration was generally a bottleneck dimension of 256
and a learning rate of either 1e-4 or 2e-4.

A.3 Cross-model Embedding Reuse
An alternative to re-using cached activation from
a pre-trained model (section 5), is to cache ac-
tivations from a more expensive, larger model
and re-using them in downstream cheaper mod-
els. The goal here is to improve accuracy by using
more powerful contextual embeddings. Overall, a
straightforward implementation of this strategy did
not offer improvements, as described below.

We experiment with reusing precomputed em-
beddings from one source model F in a consumer
model F ′ that has a different size but the same tok-
enization vocabulary. The activations of the final
transformer layer hNc∈C are stored for each input
c from corpus C. During the fine-tuning of the

consumer model F ′, these stored activations are
transformed through a learned 2-layer MLP with
ReLU activation5 and added to the input embed-
dings of F ′. We tried two frameworks for pair-
ing large language model embeddings with com-
pact models: F=Roberta-large→ F ′=MiniLM-6L-
H768 and F=BERT-base→ F ′=DistilBERT.

Overall, as shown in Table 6 the larger model’s
contextual representations do not improve the
smaller model’s accuracy; in fact adding them de-
creases the average F1 score by 0.3-0.9 points.

A.4 Efficiency of Embedding Recycling when
Training

For training, we observe almost perfect speed-up
for all models and hardware configuration, bar-
ring MiniLM models on the machine equipped
with a A6000 GPU (“NR vs R” column in Ta-
ble 5). For example, BERTBASE requires 17.38 ±
1.32 ms/batch6 without recycling, compared to
8.67± 2.18 ms/batch when recycling. Even when
considering the additional time to cache embed-
dings to disk during the first pass, embedding re-
cycling still achieves close to optimum speedup
on all models except MiniLMs, where its gains
hover between 52% and 82% (“NR vs SR” col-
umn in Table 5). When training for just 6 epochs
(or roughly 2, 000 steps), recycling embeddings is
faster than simply freezing half of the parameters
for all models but MiniLM (“F vs SR” column in
Table 5); this is due to the relatively higher cost of
caching layers to disk in case of smaller models.
In these cases, we empirically found that recycling
achieves faster training time than freezing after 12
epochs or 4, 000 training steps; since smaller mod-
els typically require more epochs to converge, we
conclude that recycling is generally preferable to
partially freezing a model during training.

A.5 Embedding Pre-fetching while Recycling
Storing embeddings on NVMe drives, while fast,
introduce additional latency compared to RAM.
For example, BERTBASE achieves an average la-
tency of 351 ± 1 ms/batch when caching on disk
(84% speedup), compared to just 334±1 ms/batch
when using memory (94% speedup). This is due to
the fact that, while embeddings are being loaded
from disk, the hardware accelerator responsible for
executing the rest of the model sits idle. To reduce

5We found that MLP achieved better performance com-
pared with a single linear layer on dev set.

6When training, we use a batch size of 16
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RoBERTa-Large
+ MiniLM L6-H768 MiniLM L6-H768 BERT +

DistilBERT DistilBERT

Chemprot Micro F-1 78.9 (0.3) 79.3 (0.3) 77.8 (0.4) 79.1 (0.5)
Macro F-1 52.2 (0.2) 52.6 (0.4) 51.2 (0.5) 52.6 (0.3)

SciCite Micro F-1 85.2 (0.3) 86.0 (0.2) 85.7 (0.1) 85.5 (0.1)
Macro F-1 83.8 (0.3) 84.6 (0.2) 84.2 (0.1) 84.0 (0.1)

SciERC-Rel Micro F-1 85.1 (0.4) 86.3 (0.2) 83.8 (0.2) 83.5 (0.4)
Macro F-1 76.2 (0.8) 78.2 (0.6) 73.6 (0.6) 72.9 (0.7)

Text Classification
Average Score 76.9 77.8 76.0 76.3

Table 6: Cross-Model Recycling Results for RoBERTa+MiniLM-L6H768 and BERT+DistilBERT configurations.
Bold indicates the best average score between the cross-model recycling and fully finetuned versions of each model.
Each score represents the average score of 10 runs, with the standard errors for each score in parentheses.

the impact of this latency penalty, our implemen-
tation supports pre-fetching of future embeddings:
when processing a sequence of inputs, such as sen-
tences in a manuscript, it loads embeddings for
tokens ahead of the sequence inference is currently
being run on. This optimization reduces the time ac-
celerators wait for data to be available for inference;
for example, in the case of BERTBASE on A10G,
disabling pre-fetching raised inference inference
time to 374±1 ms/batch (vs 351±1 ms/batch with
pre-fetching). Therefore in this section, all results
are reported with prefetching enabled.

A.6 Software and Hardware

For implementation, we use the v4.19 version of
the Transformers library (Wolf et al., 2019), the
v0.4 version of the OpenDelta library (Ding et al.,
2022), and the v1.11 version of the Pytorch library
(Paszke et al., 2019). We conduct our experiments
using NVIDIA RTX A6000 GPUs and NVIDIA
A10G GPUs with CUDA v11.5.

A.7 Considerations in Selecting Hardware for
Proof-of-Concept Recycling Experiments

We ran our proof-of-concept implementation on an
AWS Cloud instance7 equipped with an NVIDIA
A10G accelerator, and on a NVIDIA A6000 within
an on-premise server8. The former contains fewer
execution units (72 vs 84), fewer tensor cores (288
vs 336), slower memory (600 vs 768 GB/s), and
slower boost clock (1800 MHz vs 1695 MHz).
However, it is much more efficient, being rated
at 150W (compare with A6000’s 300W power tar-
get). Therefore, the NVIDIA A10G accelerator
presents a more realistic platform for embedding
recycling, since it is more suitable for cost-efficient

7g5.2xlarge instance with 8 cores and 32 GB of RAM.
8Intel-based system with 128 cores and 512 GB of RAM.

large-scale model deployments. Both machines are
equipped with PCIe NVMe drives, which we use
to cache embeddings to recycle.

A.8 Cost-effectiveness of Embedding
Recycling

In this section we attempt to estimate how cost-
effective embedding recycling is for inference in
a real-world setting. While this depends heavily
on use-case-specific assumptions, we consider two
typical settings as proofs-of-concept, one using
cloud computing and one using local hardware.

There are four main factors that affect the cost-
benefit ratio of embedding recycling: (1) compute
cost, (2) storage cost, (3) model architecture, and
(4) frequency of corpus reprocessing (i.e., how of-
ten the cached embeddings will be used). Com-
pute costs are challenging to estimate for a locally-
owned hardware setting due to many hidden cost
factors beyond the GPUs (cooling, electrical costs,
server to house the GPUs, etc) and so we use
AWS EC2 cloud GPU prices as a cost estimate for
both cloud and local hardware. In particular, we
consider a g5.12xlarge instance with 4 × A10G
GPUs at 5.67 $/hr.

Storage costs are easier to estimate for local
hardware than compute costs, and local storage
can be significantly cheaper because embedding
recycling does not require the availability and dura-
bility guarantees provided by cloud solutions (the
cache is accessed infrequently and can always be
recomputed if it is lost). Therefore, we consider
both a cloud storage solution (AWS S3 one-zone
infrequent access, at 0.01 $/GB/month) and a lo-
cal storage solution. For local storage, we consider
current consumer-grade hard drive prices at approx-
imately 16.9 $/TB based on data from Amazon and
Newegg, and assume a lifespan of 6 years based on
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Model Cloud Local

MiniLM384 0.05 2.2
MiniLM768 0.05 2.4
BERTBASE 0.13 5.6
BERTLARGE 0.30 12.9
DeBERTaXLARGE 0.20 8.5

Table 7: Minimum reprocessing frequency (in months)
needed in order for embedding recycling to be cost-
effective in various model and hardware configurations.

data from Backblaze.9 This results in an average
cost of 0.23 $/TB/month over the life of the drive.
Finally, we note that AWS does not charge for data
transfer between S3 and EC2 within a region, so
we can ignore data transfer costs in this calculation.

The frequency of corpus reprocessing is highly
variable, so we report results in terms of the mini-
mum reprocessing frequency that would be neces-
sary for embedding recycling to be cost-effective.
For all models we assume each input is 512 tokens
and the cache is stored with FP16 precision.

Table 7 shows the minimum reprocessing fre-
quency needed for embedding recycling to be cost
effective for our models on cloud and local hard-
ware. Under our assumptions, we find that embed-
ding recycling is cost-effective in a cloud setting
only if the corpus is reprocessed very frequently
(several times per month). This may be realistic in
some use cases, such as when a large team is work-
ing with the same corpus and developing many new
models, or if new training data arrives frequently
and the model developer wants to continually up-
date and re-deploy it.

With local hardware the calculation is much
more favorable; embedding recycling with
BERTLARGE would be worthwhile even if the cor-
pus were only reprocessed once per year.

We note that embedding recycling could become
substantially more cost effective with further de-
velopment. In this work we did not explore ways
to reduce storage costs, such as quantization or
compression. In addition, while our experiments
only considered sequence lengths of 512 tokens,
for many full-text document corpora it is desirable
to use a much longer sequence length to fit the
whole document into a model at once. Because
the computational cost of transformers generally
scales superlinearly with input length (but storage

9https://www.backblaze.com/blog/how-long-do-disk-
drives-last/

cost scales only linearly), embedding recycling will
be more effective as the sequence length grows.
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RoBERTa-Large

Reduced +
Half Adpt

Full
Adapters

6 Layers
Reduced

12 Layers
Reduced

18 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 84.1 (0.4) 85.2 (0.3) 84.2 (0.3) 84.3 (0.2) 82.0 (0.2) 83.9 (0.3)
Macro F-1 60.8 (0.7) 57.5 (0.7) 56.4 (0.4) 56.5 (0.3) 54.5 (0.5) 56.5 (0.4)

SciCite Micro F-1 85.2 (0.3) 85.6 (0.5) 86.2 (0.2) 86.2 (0.2) 86.2 (0.2) 86.8 (0.2)
Macro F-1 82.4 (0.4) 82.9 (0.6) 84.9 (0.2) 85.0 (0.2) 85.0 (0.2) 85.5 (0.2)

SciERC-Rel Micro F-1 89.0 (0.5) 89.3 (0.6) 87.1 (0.4) 86.8 (0.4) 86.1 (0.2) 87.3 (0.4)
Macro F-1 85.7 (0.7) 85.9 (0.9) 79.4 (0.7) 80.2 (0.8) 76.2 (0.4) 80.4 (0.6)

Text Classification
Average Score 81.2 81.1 79.7 79.8 78.3 80.1

bc5cdr Micro F-1 97.4 (0.0) 97.6 (0.0) 97.2 (0.3) 97.4 (0.0) 97.3 (0.0) 97.5 (0.0)
Macro F-1 90.0 (0.0) 90.6 (0.0) 89.0 (1.2) 90.0 (0.0) 89.5 (0.1) 90.4 (0.1)

JNLPBA Micro F-1 93.8 (0.0) 93.8 (0.0) 93.8 (0.0) 93.9 (0.0) 93.7 (0.0) 93.7 (0.1)
Macro F-1 79.1 (0.1) 79.2 (0.2) 79.3 (0.1) 79.4 (0.1) 79.0 (0.1) 78.7 (0.3)

NCBI-disease Micro F-1 98.5 (0.0) 98.6 (0.0) 98.5 (0.0) 98.5 (0.0) 98.4 (0.0) 98.6 (0.0)
Macro F-1 92.8 (0.1) 93.1 (0.1) 93.0 (0.1) 93.0 (0.1) 92.4 (0.1) 93.2 (0.1)

NER Average
Score 91.9 92.1 91.8 92.0 91.7 92.0

TriviaQA Micro F-1 75.3 (0.1) 76.8 (0.2) 76.6 (0.2) 75.1 (0.1) 70.8 (0.1) 76.7 (0.1)
Macro F-1 78.5 (0.1) 79.8 (0.1) 79.7 (0.2) 78.2 (0.1) 73.8 (0.1) 79.8 (0.1)

SQuAD Micro F-1 87.0 (0.1) 86.7 (0.0) 86.2 (0.0) 84.7 (0.0) 79.3 (0.0) 87.4 (0.0)
Macro F-1 93.5 (0.1) 93.4 (0.0) 92.8 (0.0) 91.8 (0.0) 87.8 (0.0) 93.6 (0.0)

QA Average
Score 83.6 84.1 83.8 82.4 77.9 84.3

Table 8: RoBERTa Results for Reduced Models. Bold indicates the best average score between the standard reduced,
adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates adapters on
the transformer layers of a fully frozen reduced model, where the earlier half of transformer layers were removed
and their activations cached. Full Adapters indicates adapters on all transformer layers of a fully frozen model.
Each score represents the average score of 10 runs, with the standard errors for each score in parentheses.

SciBERT

Reduced +
Half Adpt

Full
Adapters

3 Layers
Reduced

6 Layers
Reduced

9 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 84.2 (0.3) 84.9 (0.4) 83.8 (0.4) 84.0 (0.2) 81.9 (0.2) 84.0 (0.3)
Macro F-1 56.9 (0.8) 54.8 (0.4) 56.5 (0.5) 57.0 (0.3) 54.3 (0.3) 56.3 (0.4)

SciCite Micro F-1 86.6 (0.2) 85.8 (0.1) 87.1 (0.1) 87.6 (0.1) 87.4 (0.1) 87.1 (0.2)
Macro F-1 85.5 (0.3) 84.6 (0.1) 86.1 (0.1) 86.6 (0.1) 86.2 (0.1) 86.0 (0.2)

SciERC-Rel Micro F-1 89.4 (0.4) 88.5 (0.6) 86.6 (0.3) 86.1 (0.2) 85.4 (0.2) 86.3 (0.2)
Macro F-1 86.0 (0.7) 85.5 (0.6) 77.6 (0.5) 76.7 (0.3) 76.2 (0.4) 79.8 (0.5)

Text Classification
Average Performance 81.4 80.7 79.6 79.7 78.6 79.9

bc5cdr Micro F-1 97.5 (0.0) 97.7 (0.1) 97.7 (0.0) 97.6 (0.0) 97.5 (0.0) 97.7 (0.0)
Macro F-1 90.0 (0.0) 90.9 (0.1) 91.0 (0.1) 90.7 (0.0) 90.2 (0.1) 91.3 (0.0)

JNLPBA Micro F-1 94.0 (0.0) 93.5 (0.0) 93.6 (0.1) 93.7 (0.1) 93.8 (0.0) 93.6 (0.1)
Macro F-1 79.8 (0.0) 78.3 (0.2) 78.6 (0.4) 78.8 (0.2) 79.0 (0.1) 79.0 (0.2)

NCBI-disease Micro F-1 98.6 (0.0) 98.5 (0.0) 98.5 (0.0) 98.6 (0.0) 98.5 (0.0) 98.5 (0.0)
Macro F-1 93.1 (0.1) 93.0 (0.1) 92.9 (0.1) 93.4 (0.1) 93.1 (0.1) 92.9 (0.1)

NER Average
Perforamcne 92.2 92.0 92 92.1 92 92.2

Table 9: SciBERT text classification and NER results for Reduced Models. Bold indicates the best average score
between the standard reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced +
Half Adpt indicates adapters on the transformer layers of a fully frozen reduced model, where the earlier half of
transformer layers were removed and their activations cached. Full Adapters indicates adapters on all transformer
layers of a fully frozen model. Each score represents the average score of 10 runs, with the standard errors for each
score in parentheses. QA tasks are not included since SciBERT was pretrained for scientific datasets.
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BERT

Reduced +
Half Adpt

Full
Adapters

3 Layers
Reduced

6 Layers
Reduced

9 Layers
Reduced

Fully
Finetuned

TriviaQA Micro F-1 63.9 (0.5) 65.5 (0.1) 65.7 (0.1) 64.1 (0.2) 61.4 (0.1) 66.0 (0.1)
Macro F-1 67.4 (0.5) 68.9 (0.1) 68.9 (0.1) 67.4 (0.1) 64.8 (0.1) 69.1 (0.1)

SQuAD Micro F-1 80.2 (0.1) 80.2 (0.0) 80.8 (0.1) 79.5 (0.1) 75.4 (0.1) 81.1 (0.1)
Macro F-1 87.9 (0.1) 87.9 (0.0) 88.4 (0.1) 87.5 (0.1) 84.8 (0.1) 88.5 (0.0)

QA Average
Scores 74.9 75.6 76.0 74.6 71.6 76.2

Table 10: BERT QA Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates
adapters on the transformer layers of a fully frozen reduced model, where the earlier half of transformer layers were
removed and their activations cached. Full Adapters indicates adapters on all transformer layers of a fully frozen
model. Each score represents the average score of 10 runs, with the standard errors for each score in parentheses.

DeBERTaV2 XL

Reduced +
Half Adpt

Full
Adapters

6 Layers
Reduced

12 Layers
Reduced

18 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 87.2 (0.1) 86.5 (0.2) 87.2 (0.2) 86.8 (0.4) 86.4 (0.2) 86.7 (0.9)
Macro F-1 56.7 (0.5) 55.6 (0.6) 59.6 (0.2) 59.5 (0.5) 59.2 (0.3) 59.0 (1.1)

SciCite Micro F-1 85.8 (0.4) 86.4 (0.4) 86.0 (0.1) 86.3 (0.2) 86.2 (0.3) 85.9 (0.2)
Macro F-1 84.6 (0.4) 85.0 (0.5) 84.6 (0.1) 85.2 (0.1) 85.0 (0.3) 84.4 (0.2)

SciERC-Rel Micro F-1 88.6 (0.5) 88.0 (0.4) 88.3 (0.2) 87.5 (0.1) 86.6 (0.3) 88.0 (0.4)
Macro F-1 82.9 (0.8) 82.1 (0.8) 80.5 (0.5) 79.9 (0.3) 78.0 (0.4) 80.2 (0.5)

Text Classification
Average Score 81.0 80.6 81.0 80.9 80.2 80.7

bc5cdr Micro F-1 97.6 (0.0) 97.7 (0.0) 97.4 (0.3) 97.7 (0.0) 97.6 (0.0) 97.9 (0.0)
Macro F-1 90.7 (0.1) 91.1 (0.1) 89.5 (1.4) 91.3 (0.0) 90.9 (0.0) 91.8 (0.1)

JNLPBA Micro F-1 93.6 (0.0) 93.4 (0.0) 93.7 (0.1) 93.7 (0.0) 93.6 (0.0) 93.7 (0.0)
Macro F-1 79.3 (0.1) 79.0 (0.1) 78.5 (0.3) 78.5 (0.2) 77.8 (0.1) 78.2 (0.1)

NCBI-disease Micro F-1 98.3 (0.0) 98.4 (0.0) 98.6 (0.0) 98.6 (0.0) 98.5 (0.0) 98.6 (0.0)
Macro F-1 93.3 (0.1) 93.5 (0.2) 93.1 (0.1) 93.3 (0.1) 92.8 (0.1) 93.4 (0.1)

NER Average
Score 92.1 92.2 91.8 92.2 91.9 92.3

TriviaQA Micro F-1 78.6 (0.2) 79.1 (0.2) 77.9 (0.2) 77.4 (0.2) 77.0 (0.2) 78.5 (0.1)
Macro F-1 81.6 (0.1) 82.3 (0.2) 81.2 (0.1) 80.6 (0.1) 80.1 (0.2) 81.8 (0.1)

SQuAD Micro F-1 88.6 (0.0) 87.2 (0.1) 88.6 (0.1) 88.7 (0.0) 87.1 (0.0) 88.5 (0.1)
Macro F-1 94.7 (0.0) 93.9 (0.0) 94.6 (0.0) 94.5 (0.0) 93.5 (0.0) 94.6 (0.0)

QA Average
Score 85.9 85.6 85.6 85.3 84.4 85.8

Table 11: DeBERTaV2-XL Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates
adapters on the transformer layers of a fully frozen reduced model, where the earlier half of transformer layers were
removed and their activations cached. Full Adapters indicates adapters on all transformer layers of a fully frozen
model. Each score represents the average score of 5 runs, with the standard errors for each score in parentheses.
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T5 Large

Reduced +
Half Adpt

Full
Adapters

6 Layers
Frozen

12 Layers
Reduced

18 Layers
Reduced

Fully
Finetuned

ChemProt Micro F-1 84.3 (0.6) 84.9 (0.6) 84.7 (0.6) 84.6 (0.6) 85.0 (0.1) 84.1 (0.8)
Macro F-1 57.2 (0.7) 58.0 (0.8) 56.2 (0.7) 56.2 (0.7) 57.4 (0.1) 56.1 (0.7)

SciCite Micro F-1 86.7 (0.3) 86.2 (0.3) 87.4 (0.2) 87.6 (0.1) 88.0 (0.2) 86.4 (0.2)
Macro F-1 85.3 (0.4) 84.5 (0.4) 86.0 (0.2) 86.3 (0.2) 86.9 (0.2) 84.9 (0.2)

SciERC-Rel Micro F-1 85.6 (0.4) 85.2 (0.1) 84.3 (0.3) 86.8 (0.4) 83.4 (0.7) 87.4 (0.5)
Macro F-1 76.2 (1.0) 75.6 (0.2) 73.6 (0.9) 77.4 (0.7) 72.2 (1.0) 80.2 (1.1)

Text Classification
Average Score 79.2 79.1 78.7 79.8 78.8 79.9

bc5cdr Micro F-1 93.8 (0.6) 95.7 (0.7) 97.7 (0.7) 97.4 (0.3) 95.4 (0.8) 97.5 (0.2)
Macro F-1 79.9 (1.0) 85.7 (1.1) 91.1 (0.5) 90.7 (1.1) 89.3 (1.0) 89.9 (0.8)

JNLPBA Micro F-1 93.9 (0.4) 93.8 (0.1) 93.8 (0.0) 94.0 (0.0) 93.9 (0.0) 94.2 (0.0)
Macro F-1 78.8 (0.6) 79.5 (0.2) 78.8 (0.1) 79.6 (0.1) 79.3 (0.0) 80.0 (0.0)

NCBI-disease Micro F-1 97.8 (0.0) 98.5 (0.0) 98.5 (0.0) 98.5 (0.0) 98.4 (0.0) 98.6 (0.0)
Macro F-1 92.1 (0.2) 92.5 (0.2) 93.1 (0.1) 92.8 (0.0) 92.2 (0.1) 93.5 (0.0)

NER Average
Score 89.4 90.9 92.2 92.2 91.4 92.3

TriviaQA Micro F-1 68.2 (0.2) 68.8 (0.2) 67.0 (0.0) 66.9 (0.0) 63.9 (0.0) 68.7 (0.0)
Macro F-1 77.0 (0.1) 77.5 (0.1) 77.5 (0.0) 77.3 (0.0) 74.8 (0.0) 78.0 (0.0)

SQuAD Micro F-1 81.2 (0.1) 82.0 (0.1) 86.6 (0.1) 86.3 (0.6) 85.2 (0.4) 86.7 (0.4)
Macro F-1 90.6 (0.1) 91.0 (0.1) 93.8 (0.0) 93.7 (0.3) 92.8 (0.2) 93.9 (0.3)

QA Average
Score 79.2 79.8 81.2 81.0 79.2 81.8

Table 12: T5 Large Results for Reduced Models. Bold indicates the best average score between the standard
reduced, adapter-based reduced, and fully fine-tuned versions of each model. Reduced + Half Adpt indicates
adapters on the encoder and decoder transformer layers of a fully frozen reduced model, where the earlier half of
the encoder layers were removed and their activations cached. Full Adapters indicates adapters on all encoder
and decoder transformer layers of a fully frozen model. Each score represents the average score of 5 runs, with the
standard errors for each score in parentheses.
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DistilBERT

2 Layers
Reduced

3 Layers
Reduced

4 Layers
Reduced

Fully
Fine-tuned

ChemProt Micro F-1 79.1 (0.4) 80.3 (0.1) 79.0 (0.2) 79.1 (0.5)
Macro F-1 52.1 (0.5) 51.6 (0.6) 51.6 (0.4) 52.6 (0.3)

SciCite Micro F-1 85.7 (0.1) 85.6 (0.1) 85.8 (0.1) 85.5 (0.1)
Macro F-1 84.3 (0.1) 84.1 (0.1) 84.2 (0.1) 84.0 (0.1)

SciERC-Rel Micro F-1 84.3 (0.3) 84.5 (0.3) 84.6 (0.2) 83.5 (0.4)
Macro F-1 74.1 (0.7) 74.9 (0.7) 74.6 (0.4) 72.9 (0.7)

Text Classification
Average Score 76.6 76.8 76.6 76.3

bc5cdr Micro F-1 97.0 (0.0) 97.0 (0.0) 96.9 (0.0) 97.2 (0.0)
Macro F-1 88.3 (0.0) 88.3 (0.1) 87.9 (0.0) 88.7 (0.1)

JNLPBA Micro F-1 93.4 (0.1) 93.5 (0.0) 93.4 (0.0) 93.5 (0.0)
Macro F-1 78.0 (0.3) 78.6 (0.1) 77.9 (0.1) 78.5 (0.1)

NCBI-disease Micro F-1 98.2 (0.0) 98.0 (0.0) 98.1 (0.0) 98.2 (0.0)
Macro F-1 91.4 (0.1) 90.5 (0.1) 90.7 (0.1) 91.3 (0.1)

NER Average
Score 91.1 91 90.8 91.2

TriviaQA Micro F-1 62.9 (0.1) 61.4 (0.1) 59.1 (0.1) 63.6 (0.1)
Macro F-1 66.2 (0.1) 64.7 (0.1) 62.4 (0.1) 66.8 (0.1)

SQuAD Micro F-1 76.6 (0.1) 76.3 (0.1) 72.5 (0.1) 77.1 (0.1)
Macro F-1 85.1 (0.1) 84.8 (0.0) 82.3 (0.1) 85.4 (0.0)

QA Average
Score 72.7 71.8 69.1 73.2

Table 13: DistilBERT Results for Reduced Models. Bold indicates the best average score between the reduced and
fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with the standard errors
for each score in parentheses.
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MiniLM: 6L-H768

2 Layers
Reduced

3 Layers
Reduced

4 Layers
Reduced

Fully
Fine-tuned

ChemProt Micro F-1 79.4 (0.3) 78.3 (0.4) 79.0 (0.2) 79.3 (0.3)
Macro F-1 51.8 (0.4) 50.6 (0.4) 52.0 (0.2) 52.6 (0.4)

SciCite Micro F-1 85.4 (0.1) 85.8 (0.2) 85.9 (0.1) 86.0 (0.2)
Macro F-1 84.1 (0.2) 84.5 (0.2) 84.5 (0.1) 84.6 (0.2)

SciERC-Rel Micro F-1 84.7 (0.3) 83.9 (0.3) 84.1 (0.4) 86.3 (0.2)
Macro F-1 75.0 (0.4) 74.8 (0.4) 75.3 (0.6) 78.2 (0.6)

Text Classification
Average Score 76.7 76.3 76.8 77.8

bc5cdr Micro F-1 96.1 (0.3) 96.8 (0.0) 96.6 (0.0) 96.8 (0.2)
Macro F-1 84.6 (1.1) 87.8 (0.1) 86.6 (0.0) 87.5 (1.0)

JNLPBA Micro F-1 93.2 (0.0) 93.2 (0.0) 93.3 (0.0) 93.3 (0.0)
Macro F-1 77.5 (0.1) 77.3 (0.1) 77.3 (0.1) 76.9 (0.2)

NCBI-disease Micro F-1 98.3 (0.0) 98.2 (0.0) 98.2 (0.0) 98.3 (0.0)
Macro F-1 92.1 (0.1) 91.1 (0.1) 91.0 (0.1) 92.1 (0.1)

NER Average
Score 90.3 90.7 90.5 90.8

TriviaQA Micro F-1 70.2 (0.1) 68.9 (0.1) 65.5 (0.1) 70.4 (0.2)
Macro F-1 73.4 (0.1) 72.2 (0.1) 68.9 (0.1) 73.8 (0.2)

SQuAD Micro F-1 77.6 (0.1) 75.6 (0.1) 65.4 (0.2) 78.9 (0.1)
Macro F-1 86.4 (0.1) 85.0 (0.1) 77.0 (0.1) 87.0 (0.1)

QA Average
Score 76.9 75.4 69.2 77.5

Table 14: MiniLM L6-H768 Results for Reduced Models. Bold indicates the best average score between the
reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with the
standard errors for each score in parentheses.
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MiniLM: L6-H384

2 Layers
Reduced

3 Layers
Reduced

4 Layers
Reduced

Fully
Fine-tuned

ChemProt Micro F-1 75.4 (0.5) 76.9 (0.2) 74.9 (0.3) 74.6 (0.4)
Macro F-1 47.3 (0.7) 50.4 (0.2) 48.8 (0.4) 47.1 (0.8)

SciCite Micro F-1 84.4 (0.1) 85.4 (0.1) 85.1 (0.1) 84.4 (0.1)
Macro F-1 82.8 (0.1) 83.7 (0.1) 83.4 (0.1) 82.8 (0.1)

SciERC-Rel Micro F-1 83.2 (0.3) 82.6 (0.3) 83.3 (0.2) 79.5 (0.9)
Macro F-1 72.7 (0.6) 72.1 (0.6) 73.7 (0.3) 68.9 (1.1)

Text Classification
Average Score 74.3 75.2 74.9 72.9

bc5cdr Micro F-1 96.6 (0.0) 96.3 (0.0) 95.6 (0.0) 96.9 (0.0)
Macro F-1 86.9 (0.1) 85.9 (0.1) 83.2 (0.1) 88.3 (0.1)

JNLPBA Micro F-1 93.0 (0.0) 92.2 (0.0) 92.0 (0.0) 93.3 (0.0)
Macro F-1 76.3 (0.1) 74.0 (0.1) 73.6 (0.1) 77.2 (0.1)

NCBI-disease Micro F-1 98.0 (0.0) 97.9 (0.0) 97.7 (0.0) 98.2 (0.0)
Macro F-1 90.6 (0.1) 89.9 (0.1) 88.9 (0.1) 91.7 (0.1)

NER Average
Score 90.2 89.4 88.5 90.9

TriviaQA Micro F-1 66.6 (0.1) 65.6 (0.1) 63.4 (0.1) 67.6 (0.2)
Macro F-1 69.9 (0.1) 69.2 (0.1) 67.0 (0.1) 71.0 (0.2)

SQuAD Micro F-1 81.6 (0.0) 80.9 (0.1) 74.2 (0.2) 81.6 (0.1)
Macro F-1 89.7 (0.0) 89.0 (0.0) 84.5 (0.1) 89.6 (0.0)

QA Average
Score 76.9 76.2 72.3 77.4

Table 15: MiniLM L6-H384 Results for Reduced Models. Bold indicates the best average score between the
reduced and fully fine-tuned versions of each model. Each score represents the average score of 10 runs, with the
standard errors for each score in parentheses.

Task Averages Standard
Recycling

Adapter-Based
Recycling

Classification Training Time 2204 2349
Epochs 38 42

NER Training Time 4269 3857
Epochs 43 39

QA Training Time 8252 8513
Epochs 6 7

Table 16: Average Training Times and Epochs for Embedding Recycling (seconds for training time, count for
epochs). Standard Recycling corresponds to layer recycling on a reduced transformer model. Adapter-Based
Recycling corresponds to layer recycling on a reduced frozen transformer model with added trainable Adapter
modules. Training time and epoch averages are the averages across the RoBERTa, BERT, SciBERT, DeBERTa V2
XL, and T5-Large transformer models and the text classification, NER, and QA datasets tested.
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