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Abstract

This work considers the development of a text
simplification model to help patients better un-
derstand their radiology reports. This paper
proposes a data augmentation approach to ad-
dress the data scarcity issue caused by the high
cost of manual simplification. It prompts a
large foundational pre-trained language model
to generate simplifications of unlabeled radiol-
ogy sentences. In addition, it uses paraphrasing
of labeled radiology sentences. Experimental
results show that the proposed data augmenta-
tion approach enables the training of a signifi-
cantly more accurate simplification model than
the baselines.

1 Introduction

Radiology reports are unstructured documents writ-
ten by radiologists to communicate imaging find-
ings to another physician or a qualified medical
professional (Goldberg-Stein and Chernyak, 2019).
Radiology reports have been increasingly available
to patients through portals (Lourenco and Baird,
2020), which has been generally welcomed by pa-
tients (Cooper et al., 2020). However, the health
literacy of most patients is insufficient to fully com-
prehend radiology reports (Lalor et al., 2018) be-
cause such reports rely on complex medical jar-
gon and use explanations that imply highly special-
ized medical knowledge (Delbanco et al., 2012).
Several studies even identified adverse effects of
sharing radiology reports with patients, including
dissatisfaction with care (Rosenkrantz and Flagg,
2015) and undue anxiety and stress (Arora, 2013).

There is an increasing need for patient-friendly
radiology reporting that can communicate results
clearly and be understandable by a diverse patient
population. However, asking a radiologist to sup-
plement a traditional report with a patient-friendly
summary would negatively impact their cognitive
load and productivity. This problem motivated re-
cent research on the automatic simplification of

health records. The proposed approaches include
both lexical simplification that paraphrases text
(Chen et al., 2018; Biran et al., 2011; Weng et al.,
2018) and semantic simplification that seeks to sim-
plify grammatically complex text (Shardlow, 2014;
Leroy et al., 2016) which recently included deep
learning approaches (Lewis et al., 2019; Zhang
et al., 2020). However, training deep learning mod-
els for medical text simplification requires the col-
lection of costly labeled data.

To alleviate the data scarcity issue in simplify-
ing health reports, particularly radiology reports,
this paper proposes a novel approach for data aug-
mentation. It augments manually-created labeled
data with simplifications generated by a large pre-
trained language model such as GPT-3 (Brown
et al., 2020). To improve the quality of data aug-
mentation, the approach develops a separate deep
learning model that evaluates the quality of gen-
erated simplifications. Furthermore, the approach
also provides data augmentation through paraphras-
ing the originally labeled radiology sentences.

The proposed data augmentation approach is ex-
perimentally evaluated on a unique corpus of man-
ually generated labeled data for radiology report
simplification. The evaluation includes both auto-
matic measures and human evaluation.

Our research claims are: 1) Our augmentation
methods enable training of a more accurate model
than baselines in solving low-resource radiology
sentence simplification problems. 2) We address
the challenge of selecting qualified augmentations
for radiology sentence simplification. 3) We cre-
ate unique real data containing expert-annotated
simplifications for radiology reports’ sentences re-
garding liver conditions.

2 Related Work

Text Simplification. In text simplification, the out-
put text is a linguistically simplified version of the
input text (Adduru et al., 2018). Previous work on

1922



simplification includes lexical and semantic simpli-
fication (Alva-Manchego et al., 2020).

Lexical simplification by lexical substitution
refers to replacing complex words or phrases with
simpler synonyms (Oh et al., 2016; Zeng and Tse,
2006) and has found some practical success (Cook
et al., 2017). In the health domain, lexical text
simplification often relies on medical dictionaries
(UMLS (Bodenreider, 2004) , MeSH (Lipscomb,
2000), etc.). Lexical simplification approaches also
include rule-based methods (Chen et al., 2018; Bi-
ran et al., 2011) and deep learning (Weng et al.,
2018, 2019).

Semantic simplifications seek to simplify gram-
matically complex text by splitting long sentences
into shorter ones, changing passive voice to ac-
tive, resolving ambiguities and anaphora (Shard-
low, 2014), splitting complex noun phrases (Leroy
et al., 2016), or reducing morphological negations
(Mukherjee et al., 2017). Recently, transformer
encoder-decoder based pre-trained seq-to-seq mod-
els (Lewis et al., 2019; Zhang et al., 2020) were
proved to be robust in solving text simplification
problems. However, fine-tuning pre-trained models
require large quantities of labeled data, which are
costly and difficult to obtain in the health domain.

Previous research has explored different meth-
ods for text simplification in low-resource domains.
To address data scarcity recent studies include un-
supervised methods (Surya et al., 2018; Sakakini
et al., 2020; Enayati et al., 2021) and reinforcement
learning (Laban et al., 2021).

Data Augmentation is a method that automati-
cally generates labeled data to enhance manually
labeled data (Liu et al., 2020). One approach is
to use paraphrasing to create different variants of
the original or simplified sentences (Wei and Zou,
2019). Another approach is to use pre-trained lan-
guage models to generate labeled data (Bayer et al.,
2021). LAMBADA (Anaby-Tavor et al., 2020) aug-
ments data for text classification tasks by encoding
labels in the input. Similarly, PromptDA (Wang
et al., 2022) use language models to augment data
for NLU tasks. Back-translation (Edunov et al.,
2018) is used to generate different variants of the
input text.

There are several public benchmark data sets that
are related to our paper. There are paragraph level
medical text simplifications (Devaraj et al., 2021)
focusing on medical paper abstracts. There is a
corpus parsed aligned sentences from Wikipedia

and Simple English Wikipedia 1 (Pattisapu et al.,
2020; Van den Bercken et al., 2019) that has been
a popular text simplification benchmark. However,
none of these data sets have properties similar to
the radiology text simplification task.

3 Problem Definition

Let us assume we are given a labeled
corpus for text simplification DLab =
{(X1,Y1), (X2,Y2), ..., (Xn,Yn)}, where
Xi is the ith original document, Yi is its simplifi-
cation provided by a human expert, and n is the
number of labeled documents. Let us also assume
we are given an unlabeled corpus of documents
DUnl = {X1,X2...,Xm}, where m is the number
of unlabeled documents. The objective of data aug-
mentation is to automatically create a synthetic set
DSyn = {(X∗

1,Y
∗
1), (X

∗
2,Y

∗
2), ..., (X

∗
K ,Y∗

K)},
where X∗

i is one of the original documents
from DLab or DUnl or their derivative, and Y∗

i

is its corresponding simplification from DLab,
its derivative, or an automatically generated
simplification. DSyn is appended to DLab and
the resulting set DAug = DLab ∪DSyn is called
the augmented training corpus. The assumption
is that a seq2seq model for text simplification
trained on the augmented corpus will have higher
simplification quality than the one trained on the
original training corpus. This paper focuses on
the radiology report simplification problem where
Xi is a sentence and Yi is its simplification. As a
result, our augmentation approach explained in the
next two sections is specifically tailored for this
application.

4 Methodology

4.1 GPT-based Semantic Augmentation
We propose two types of augmentation. The first,
referred to as semantic augmentation, relies on us-
ing the large-scale language model GPT-3 (Brown
et al., 2020) to generate simplifications automati-
cally. The second, referred to as lexical augmenta-
tion, relies on modifying original documents from
the labeled corpus. The first augmentation type is
described in this section, while the second type is
described in the next.

4.1.1 Generating simplifications with GPT-3
It has been demonstrated that large-scale language
models such as GPT-3 are capable of doing a wide

1simple.wikipedia.org
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Table 1: Good, Not Simple Enough, and Incorrect exam-
ples of radiology liver sentences (ORI), expert-written
simplifications (SIM), and generated simplifications
from GPT-Curie (GPT).

ORI: The liver demonstrates diffusely low attenuation,
consistent with fatty infiltration

SIM: There is increased amount of fat in the liver.

GPT: There is a lot of fat in the liver. (Good)

ORI: The liver is stable in appearance with again note
made of a hypodense lesion in the medial left lobe
adjacent to the gallbladder fossa

SIM: The liver may have one or more tumors or masses.

GPT: The liver has a small lesion on one side, close to
the gallbladder. (Good)

ORI: The liver shows diffuse low attenuation consistent
with fatty infiltration

SIM: There is increased amount of fat in the liver.

GPT: The liver has diffuse low attenuation, indicative
of fatty infiltration. (Not Simple Enough)

ORI: The liver is unremarkable without intra- or extra-
hepatic biliary dilatation

SIM: The liver appears normal.

GPT: The liver is not enlarged or tender without intra-
or extra-hepatic biliary dilatation. (Not Simple
Enough)

ORI: Complex hepatic abscess predominantly occupy-
ing segments VI and VII of the liver is overall
little changed in size compared to date, measuring
approximately 7.9 (AP) x 8.7 (TRV) x 11.4 (CC)
cm

SIM: There is infection and pus seen within the liver.

GPT: This means that the abscess is smaller than it was
before, by about 3 inches on all sides. (Incorrect)

ORI: The liver demonstrates prominent intrahepatic bil-
iary ducts

SIM: The liver ducts that carry digestive enzymes may
be blocked.

GPT: The liver has many bile ducts. (Incorrect)

variety of NLP tasks through prompting (Brown
et al., 2020). Our preliminary experiments showed
that the two largest GPT-3 models, Curie and
Davinci, are surprisingly good at generating sim-
plifications of radiology report sentences, despite
never being trained explicitly for that task. Table 1
shows several representative examples of simplifi-
cations by the Curie model prompted by My patient
asks me to simplify this radiology sentence "<orig-
inal sentence>":. Each example shown contains
an original radiology sentence, its simplification by
GPT-3, and its simplification provided by collabo-
ration between a radiologist and a layperson. The
first two examples show that GPT-3 can provide

factually correct and easy to understand simplifica-
tions comparable to the manually created simplifi-
cations. Next two examples show that GPT-3 might
provide factually correct text that is not sufficiently
simple. The final two examples show that GPT-3
might provide factually incorrect simplifications.

Our semantic augmentation approach uses GPT-
3 to generate simplifications of unlabeled docu-
ments from DUnl and add them to the augmented
corpus DAug. As noted in previous research (Liu
et al., 2021) the choice of prompting can have a
significant impact on the quality of the generated
text and accuracy on a particular task.

Our prompting approach relies on the in-context
learning that has been used with success with GPT-
3 models. Instead of relying on costly fine-tuning
of a language model, it pastes a few labeled exam-
ples into the prompt and asks the language model
to generate label of an unlabeled example. In our
specific application, we select K labeled exam-
ples (X,Y) from DLab and insert each of them
into template ’Sentence: < X >; Simplification:
< Y >’. A triple pound sign, ###, is used to sep-
arate templates for the K labeled examples. The
prompt ends with ’Sentence: < X >; Simplifi-
cation:’, where X is an unlabeled document from
DUnl. GPT-3 model is expected to write a sim-
plification by mimicking the style of the labeled
examples from the prompt.

As noted in previous work (Brown et al., 2020)
the success of prompting that uses in-context learn-
ing depends on the particular choice of K examples.
Therefore, we select most related sentence simplifi-
cation pairs from the training set DLab given any
unlabeled document from DUnl. In detail, we use
BERTScore (Zhang et al., 2019), which leverages
the pre-trained contextual embeddings from BERT
(Devlin et al., 2018) and matches words in unla-
beled and labeled radiology sentences by cosine
similarity. Thus, each prompt consists of K most
related examples rated by BERTScore for an unla-
beled sentence that is appended to the end. More-
over, we evaluate more example selection scenarios
in our ablation study.

4.1.2 BERT-Checker
Language models such as GPT-3 provide token
probabilities as their output. When generating text,
one option is to use brute force and generate the
most likely token. However, in the context of text
simplification, the most likely tokens are not guar-
anteed to produce the best simplification. An alter-
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native is to generate tokens by selecting among the
most likely choices, which the temperature hyper-
parameter in GPT-3 can control. In our approach,
we invoke a GPT-3 model N times for each prompt
using a temperature higher than zero, which re-
sults in N different simplifications. Then, we au-
tomatically select the best one of the N generated
simplifications and add it to the augmented corpus.

As seen in Table 1, some of the generated sim-
plifications are good while others are not. Separat-
ing good from inadequate simplifications is a non-
trivial challenge. Related work on automatic eval-
uation of the generated text includes GPT-3-ENS
(Chintagunta et al., 2021), which measures the com-
plexity of terms in simplifications, and GPT3Mix
(Yoo et al., 2021), which treats the likelihood scores
of generated labels as confidence scores. However,
we found that the existing approaches are inappro-
priate for our application. Thus, we developed a
novel approach called BERT-Checker.

BERT-Checker is a fine-tuned BERT model (De-
vlin et al., 2018) to a task similar to entailment.
In particular, we convert our labeled corpus into
training data matching the format of the entailment
task. We add label 1 to each example from DLab

to create positive examples in new training data
set, D′

Lab = {[(Xi,Yi), 1]}. To create negative
examples in D′

Lab, we use four different strategies
as outlined next:

• Precision: To ensure that simplification is
closely related to the original text, we corrupt
the original text X by replacing the medical
terms with randomly selected medical terms,
and generate negative example from labeled
example (X,Y) as [(corrupt(X),Y), 0].

• Simplicity: To penalize simplifications that
are too similar to the original sentence, we
create negative examples by using the original
text as simplification, [(X,X), 0].

• Correctness: To penalize incorrect simplifi-
cations, we randomly select two labeled ex-
amples (X1,Y1) and (X2,Y2) and create a
negative example by mixing the original and
simplified text, [(X1,Y2), 0].

• Robustness: For labeled example (X,Y) we
replace the simplification with an empty string
or a sentence generated by a GPT-3 given the
prompt ’Generate a radiology report sentence
about liver’ and high temperature of 0.8 to
create negative example [(X, GPT ()), 0].

Thus, for each positive example, we generate four
negative examples. As a result, we can obtain a neg-
ative dataset D′

Neg. We fine-tune Clinical BERT
(Alsentzer et al., 2019) on the text entailment task
using the generated data set.

4.2 Dictionary-based Lexical Augmentation

We propose lexical augmentation to supplement
semantic augmentation described in the previous
section. Lexical simplification refers to replacing
complex terms in original documents X with their
synonyms, which might also be complex. In the re-
lated work on text simplification of general-purpose
text, EDA approach (Wei and Zou, 2019) para-
phrases original documents by replacing randomly
selected words or phrases with their synonyms in
WordNet (Miller, 1995). We modify EDA by re-
placing only specialized medical terms.

Inspired by (Pattisapu et al., 2020; Hasan et al.,
2016), we use medical dictionaries Medical Subject
Headings (MeSH) (Lipscomb, 2000) and Unified
Medical Language System (UMLS) (Bodenreider,
2004) to find the synonyms. We use pre-trained
named entity recognition model (Honnibal and
Montani, 2017) to extract medical terms from the
original documents in labeled corpus DLab. The
medical terms are linked to Concept Unique Identi-
fier (CUI) in UMLS and the concept_id in MeSH.
Each medical code in UMLS and MeSH is mapped
to a list of synonyms. We iteratively select a syn-
onym to replace the medical term from the original
document.

We illustrate the lexical simplification process
in Fig 1, where hepatic steatosis in the sentence
’Probable diffuse hepatic steatosis’ is recognized as
a medical term and replaced with its synonyms. In
particular, CUI codes ’C0015695’ and ’C2711227’
are found to match hepatic steatosis, where the
canonical names are Fatty Liver and Steatohepati-
tis. Similarly, ’D005234’ from MeSH also provides
several synonyms. This process identifies five syn-
onyms used to create five different versions of the
original document.

Once the synonyms for a medical term in orig-
inal document X of labeled example (X,Y) are
identified, we paraphrase the original document as
lexical(X) and generate an augmented example
(lexical(X),Y). The new example is added to the
augmented corpus DAug.
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Figure 1: Workflow for lexical augmentation. It shows the linked synonyms of the entity "hepatic steatosis" from
UMLS/MeSH and five synthetic sentences.

5 Experiments

5.1 Data
To the best of our knowledge, there is no read-
ily available corpus for simplifying radiology sen-
tences. To experimentally evaluate our data aug-
mentation approach, we created a new corpus
for this purpose. In particular, we collected 540
sentences from radiology reports describing the
liver condition and manually created their simpli-
fications: 170 sentences were obtained from CT-
Abdomen radiology reports from a university hos-
pital (UH), and the remaining 370 were extracted
from CT-Abdomen radiology reports from publicly
available MIMIC-III (Johnson et al., 2016) data.
All sentences were de-identified with Health Insur-
ance Portability and Accountability Act (HIPAA)
standards in order to facilitate public accesses and
human annotations.

We asked a radiologist to provide a simplifica-
tion for each selected sentence. A layperson joined
the radiologist to provide feedback about the gen-
erated simplifications. If the layperson thought
the simplification was too complicated, this was
communicated to the radiologist, who proceeded
to improve the simplification. The process was
repeated until the layperson could understand all
the simplification and could correctly guess the
severity of the described conditions.

During this sequence simplification process, the
radiologist and the layperson agreed that it is suffi-
cient to use simplification ’The liver looks normal’
for sentences explaining that nothing concerning
was observed about the liver. 39% of the the univer-
sity hospital sentences and 21% of the MIMIC-III
sentences were simplified as ’The liver looks nor-
mal’. For simplification of sentences that described
concerning findings was to ignore technical details
that might be confusing to patients. Any relevant

medical terms were stated in simple terms familiar
to laypeople. If possible, grammar was kept simple,
and the sentences were kept short. Table 1 shows
several examples of the original sentences (ORI)
and their manual simplifications (SIM).

For our experiments, we randomly selected 100
sentences and their simplifications for training and
the remaining 70 for testing for both the university
hospital and MIMIC-III labeled data. Thus, we had
200 labeled examples for training denoted as DLab,
and 140 for testing. We used the remaining 200
MIMIC-III sentences as the unlabeled corpus DUnl

and used their simplifications to better evaluate the
data augmentation approaches.

The corpus is available to the research commu-
nity to support further research on medical text
simplification.2

5.2 Data Augmentation
To implement the proposed semantic augmenta-
tion approach, we used GPT-3 Curie model (6.7B
parameters) with the few-shot learning prompt de-
scribed in Section 4.1 with K = 5 to automati-
cally generate simplifications for each unlabeled
sentence in DUnl. We used the API provided by
OpenAI 3. We generated N = 5 simplifications
for each liver sentence with temperature = 0.5,
which was selected to provide a good balance be-
tween factual correctness and diversity.

We trained BERT-Checker to select the best
among the N = 5 generated simplifications for
each liver sentence. BERT-checker was fine-tuned
using 80% of the training data as positives and four
copies of negatives for each positive, as explained
in Section 4.2. BERT-Checker was a fine-tuned
BERT base model (110M parameters) consisting of

2https://github.com/Ziyu-Yang/
Radiology-Text-Simplification-Liver

3https://openai.com/api/
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12 transformer encoder layers. A fully connected
linear layer was added to BERT on its [CLS] out-
put to score the simplification quality. The binary
cross-entropy loss was used. 20% of the training
data was used for validation and early stopping. We
fine-tuned for up to 20 epochs with the patience
for early stopping of 3, batch size 16, and learning
rate 1e-4. All experiments were implemented with
a single GTX 1080Ti.

The accuracy of trained BERT-Checker on val-
idation data was 0.924. Its precision (the fraction
of true positives among positive predictions) was
0.899 and its recall (the fraction of positives that
were predicted correctly) was 0.958. We consider
it to be high enough accuracy for BERT-Checker to
be used to determine the quality of simplifications
produced by GPT-3.

In the lexical augmentation, we annotated the
recognized entities in the liver sentences from the
labeled corpus with Type Unique Identifier (TUI)
4. TUI is the code to represent hierarchical seman-
tic types of all medical concepts in UMLS and
MeSH. Specifically, we only paraphrased terms
that belong to "T023 | Body Part, Organ, or Organ
Component" or "T033 | Finding" groups. Because
many medical concepts have only one synonym,
many sentences mentioned only a single body part
other than the liver, and a single finding, we finally
obtained 242 unique lexical augmentations from
DUnl. In order to control the effect of augmenta-
tion size, we randomly selected 200 of them for
further experiments.

5.3 BART model

BART (Lewis et al., 2019) is a pre-trained model
that uses a seq2seq architecture with a bidirec-
tional encoder and a left-to-right decoder. It
achieves state-of-the-art performance on many
seq2seq benchmarks. We fine-tuned a BART base
model (406M parameters) on different mixes of
450 labeled and augmented data to create different
radiology simplification models. The fine-tuning
was implemented using PyTorch-lightning5. 20%
of the training data was used for validation and
early stopping. We used the cross entropy loss.
We used the same training setting as for BERT-
Checker.

4https://lhncbc.nlm.nih.gov/semanticnetwork/index.html
5https://www.pytorchlightning.ai/

5.4 Baselines
We first introduce two model baselines that do not
use augmentations. Then we introduce two base-
line augmentation methods that are appropriate to
our task.

5.4.1 Model Baselines
The first baseline is BART base model fine-tuned
with the labeled data (BART-base). As the sec-
ond baseline, we used simplifications by the same
implementation of GPT-Curie model that is used
to augment the labeled data. Specifically, we se-
lected the most related K = 5 sentences from
the labeled set to a test sentence as the few-shot
prompt, generated N = 5 simplifications and used
BERT-Checker to select the best one. We name this
baseline GPT-FS.

5.4.2 Augmentation Baselines
We implemented and evaluated two widely used
baseline data augmentation methods: 1) Easy Data
Augmentation (EDA) (Wei and Zou, 2019),a rule-
based augmentation that includes synonym replace-
ment, random insertion, random swap, and ran-
dom deletion. We reproduced this baseline with its
source code 6. 2) Back translation (BT), that uses a
pre-trained machine translation model to translate
sentences into another language and then translate
them back to English. The back-translated English
sentences are fused with the corresponding sim-
plifications to provide augmented data. Following
previous work (Brown et al., 2020), we used GPT-
3 Curie to back translate the original sentences to
French and back to English. French was selected
because it provided a good balance between fac-
tual correctness and diversity of generated back-
translations.

We generated 200 augmented examples for each
baseline approach.

6 Evaluation Methods

6.1 Automated Evaluation
We used multiple automated metrics to evaluate
text simplification accuracy. ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) (Lin,
2004) is a set of metrics used for seq2seq tasks. It
calculates the overlapping of unigrams, bigrams,
and the longest common subsequences between
the expert-provided and machine-generated sim-
plifications. Similarly, BLEU (bilingual evalua-

6https://github.com/jasonwei20/eda_nlp
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Table 2: Comparison of augmentation methods.

# Aug ROUGE 1/2/L BLEU SARI BERTScore FKGL↓
Baseline Models

GPT-FS 0 56.00/42.20/54.64 0.2363 0.5455 0.9457 5.392
BART-base 0 59.81/50.34/58.87 0.4240 0.5324 0.9411 5.560

Augmentation Methods
EDA 200 60.90/51.90/60.06 0.4461 0.5460 0.9429 5.315
BT 200 63.47/53.50/62.33 0.4504 0.5740 0.9470 5.133
HUMAN 200 71.06/62.89/70.20 0.5322 0.6047 0.9566 4.870
LEX 200 68.58/60.84/68.24 0.5391 0.5769 0.9559 5.353
SEM 200 66.11/56.55/64.76 0.4709 0.5875 0.9510 5.629
AUG-SUB 200 67.92/58.81/67.04 0.5020 0.5960 0.9524 5.314
AUG 400 69.03/60.37/68.51 0.5036 0.6029 0.9550 5.021

tion understudy) (Papineni et al., 2002) also evalu-
ates overlap of n-grams between the simplifications.
Unlike ROUGE and BLEU, BERTScore (Zhang
et al., 2019) computes a contextual similarity score
between tokens in the simplifications. SARI (Xu
et al., 2016) is a gold standard edit-based metric
for text simplification evaluation. Unlike other met-
rics, it compares the machine-generated simplifica-
tion with respect to both the original sentence and
the human-provided simplification. To evaluate
simplicity, we used FKGL (Flesch Kincaid Grade
Level) (Kincaid et al., 1975), which is a widely
used readability formula that assesses the approxi-
mate reading grade level of a text. The lower score
indicates simpler texts.

6.2 Human Evaluation

Applying automatic evaluation metrics is insuffi-
cient to compare quality of simplifications by dif-
ferent methods. Therefore, we also used human
evaluation. We asked a medical doctor (family
physician) that was distinct from the radiologist
who provided the simplifications to evaluate the
machine-generated simplifications. We asked the
evaluator to use 1-5 Likert scale to evaluate the
following four aspects of each simplification, the
first three being consistent with.

Factuality refers to medical correctness of the
simplification. Score one means that the simplifica-
tion is factually incorrect and five that it is correct.
Scores between one and five mean that some in-
formation is imprecise, missing, or hallucinated.
Lower scores mean there are more serious factual
errors. Fluency measures the quality of grammar
and readability, regardless of factual correctness. If
a simplification is both easy to read and grammati-

cally correct it gets a score of five. This measure
is consistent with the fluency measure explained in
(Nisioi et al., 2017). Simplicity evaluates whether
the evaluator thought the laypeople would be able
to understand the simplification, regardless of fac-
tual correctness. Score of five means that the eval-
uator thought that any patient would be able to
completely understand the simplification.

During the initial stages of human evaluation of
factuality and simplicity, we observed that the eval-
uator occasionally preferred machine-generated
simplifications to the radiologist-provided ones.
That is why we introduced Consistency, which
measures how closely the simplification matches
the radiologist-provided simplification. Score of
five means that the simplification is almost identi-
cal to the radiologist-provided simplification. We
note that Consistency is related to SARI automatic
measure (Xu et al., 2016).

7 Results

7.1 Quantitative Results

We fine-tuned BART model including augmented
data from baseline methods (EDA, BT), and our
lexical and semantic augmented data (LEX, SEM).
BART-base and GPT-FS were created according
the description in Section 5.4.1. First two rows
of Table 2 refer to fine-tuned BART and few-shot
prompted GPT-3 Curie using only the radiologist-
provided labeled data. The remaining rows refer
to inclusion of augmented data to BART tuning.
Rows EDA and BT refer to the baseline augmen-
tation methods. Row HUMAN refers to the aug-
mentation provided by the radiologist, and serves
to establish the upper bound on accuracy improve-
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ment due to augmentation. LEX and SEM rows
represent our lexical and semantic augmentation
methods. AUG-SUB and AUG use 200 and 400
combined semantic and lexical augmentations, re-
spectively. Aug column shows the number of aug-
mented examples.

We observe that our proposed augmentations are
superior to baselines LEX and SEM on almost all
metrics. SEM is better than LEX on SARI measure.
AUG is better than LEX and SEM on ROGUE,
SARI and FKGL. AUG is the best overall augmen-
tation method coming very close to the HUMAN
upper bound, after noting that SARI and FKGL are
the most useful measures for evaluation of simplic-
ity. We note that GPT-FS has lower overall scores
than any of the BART models.

Table 3: Human evaluation results (Factuality, Fluency,
Simplicity, and Consistency) on 60 selected testing data.

Method Factual Fluency Simp Cons
BART-base 3.38 4.85 4.67 3.18
BT 3.22 4.88 4.58 3.13
GPT-FS 4.18 5.00 4.55 3.91
AUG 4.22 4.95 4.62 4.10

7.2 Human Evaluation Results

For Table 3, we asked a medical doctor to evalu-
ate 60 randomly selected simplifications from the
test data (30 from each source). We evaluated the
most relevant four models from Table 2: BART-
base, BT, GPT-FS,and AUG. The results show that
all methods have comparable Simplicity and Flu-
ency. AUG and GPT-FS have better Factuality
and Consistency than BART-base and BT. AUG is
slightly better than GPT-FS on those two impor-
tant measures, indicating that fine-tuning BART
with augmentation produced by few-shot prompted
GPT-3 Curie is better than directly using few-shot
prompted GPT-3 Curie for simplification.

Table 4: Comparison between different versions of se-
mantic augmentations. # Aug is the number of aug-
mented examples. ROUGE refers to ROUGE-L.

Method # Aug ROUGE BLEU SARI
First-run 200 60.21 0.4053 0.5590
Similarity 200 55.31 0.3547 0.5387
Five-runs 781 55.77 0.3755 0.5391
SEM 200 64.76 0.4709 0.5875

7.3 Ablation Study
We first evaluated the ability of BERT-Checker to
recognize high-quality simplifications. We com-
pared the version we implemented in our experi-
ments (SEM row in Table 4) with three different
variants: ’First-run’ always selects the first gen-
erated simplification, ’Similarity’ selects the best
simplification based on BERTScore, ’Five-runs’
uses all simplifications generated by GPT-3 Curie
as augmentations. After removing duplicates, there
are 781 augmentations produced by ’Five-runs’. Ta-
ble 4 shows all three variants are inferior to SEM,
showing that any of the ablations would signifi-
cantly deteriorate the results. The results confirm
that the quality of augmentations is critical for suc-
cess of data augmentation approaches.

Next, we evaluated the importance of GPT-3
prompting. As noted in previous research (Liu
et al., 2020), the choice of prompting can signif-
icantly impact the quality of the generated text.
Thus, we designed an ablation study to compare
different prompting approaches for data augmenta-
tion.

Table 5: Comparison of different prompting on data
augmentation.

Prompts ROUGE BLEU SARI
BART-grader 46.62 0.2862 0.4917
BART-patient 55.81 0.3516 0.5255
BART-top1 58.65 0.3955 0.5511
BART-rd5 53.94 0.3170 0.5360
SEM 64.76 0.4709 0.5875

In our prompt design that has the following form:
Sentence: < X >; Simplification: < Y >’, we
included K = 5 most related labeled examples to
the original test sentence in the prompt. We first
explored whether the number of few-shot examples
matters. We repeated the data augmentation pro-
cess with K = 1 (BART-top1 in the table). Table
5 shows that K = 5 resulted in better performance
than K = 1. Next, we evaluated whether the way
we select examples matters. Instead of K = 5
closest labeled examples, we selected K = 5 ran-
dom labeled examples (BART-random in the table).
From Table 5, we can see that random labeled ex-
amples resulted in lower accuracy.

We also explored prompting that does not rely
on few-shot learning. One design was explained in
section 4.1.1, ’My patient asks me to simplify this
radiology sentence <X>’, we refer to as BART-
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patient in the table. Similarly, inspired by a GPT-
3 prompt for the summarization task, we used
prompt: My second grader student asks me to sim-
plify the following sentence: <X>, we refer to
as BART-grader in the table. These two prompts
are the so-called ’zero-shot’ prompts. As shown
in Table 5, the ’grader’ and ’patient’ prompts re-
sult in inferior accuracy compared to the few-shot
prompting.

8 Conclusion

This paper proposes two novel augmentation meth-
ods to enhance the limited labeled data for the radi-
ology sentence simplification problem. Our evalua-
tion using automatic measures and human evalua-
tion shows that data augmentation can substantially
improve the quality of simplification models. The
ablation results show that the proposed innovations
in automatic creation of simplifications for data
augmentation are very effective.

9 Limitations

The main limitation of our study is that we only
considered simplification of radiology sentences.
In future work, it will be important to expand the ap-
proach to simplify whole paragraphs, because very
often radiologists use multiple sentences to discuss
a single observation. Simplifying single sentences
can thus be suboptimal because important context
from the previous and subsequent sentences might
be lost. The second limitation of the study is that
our corpus only included sentences related to liver.
It will be important in the future work to evalu-
ate the proposed approach on a wider variety of
radiology sentences. The third limitation is that
we obtained simplifications from a single radiolo-
gist. It will be important for future study to include
simplifications from multiple radiologists to ensure
generalizability of the proposed approach. The
fourth limitation is that we used a single medical
doctor to evaluate the quality of the simplifications.
It would be important in future studies to ask mul-
tiple medical doctors to evaluate the quality, which
would allow estimating the inter-rater variability.
The fifth limitation is that we did not use laypeople
to evaluate the quality of simplification. This would
require some innovation in the human evaluation
process because laypeople are not able to evaluate
factual correctness and because it would be im-
portant to understand how simplifications improve
the overall understanding of the radiology reports.

The final limitation is a relatively small size of the
labeled data set created for this study. Obtaining
high-quality simplifications is very costly because
it requires collaboration between radiologists and
laypeople.
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