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Abstract

Language models are trained on large volumes
of text, and as a result their parameters might
contain a significant body of factual knowledge.
Any downstream task performed by these mod-
els implicitly builds on these facts, and thus it
is highly desirable to have means for represent-
ing this body of knowledge in an interpretable
way. However, there is currently no mechanism
for such a representation. Here, we propose to
address this goal by extracting a knowledge-
graph of facts from a given language model.
We describe a procedure for “crawling” the
internal knowledge-base of a language model.
Specifically, given a seed entity, we expand a
knowledge-graph around it. The crawling pro-
cedure is decomposed into sub-tasks, realized
through specially designed prompts that con-
trol for both precision (i.e., that no wrong facts
are generated) and recall (i.e., the number of
facts generated). We evaluate our approach on
graphs crawled starting from dozens of seed en-
tities, and show it yields high precision graphs
(82-92%), while emitting a reasonable number
of facts per entity.

1 Introduction

Modern language models (LMs) (Raffel et al.,
2020; Brown et al., 2020) are trained on vast
amounts of text that captures much of human
knowledge, including scientific articles, Wikipedia,
books, and other sources of information (Gao et al.,
2020). Consequently, such models encode world
knowledge in their parameters, allowing them to
generate rich and coherent outputs.

Past work has illustrated LMs can be viewed
as knowledge-bases (Petroni et al., 2019) as well
as analyzed the encoded knowledge (e.g., see
AlKhamissi et al., 2022) and leveraged it for
applications such as closed-book QA (Roberts
et al., 2020; Brown et al., 2020) and search (Tay
et al., 2022), illustrating LMs can be viewed as

∗ Now at Google Research.

knowledge-bases (Petroni et al., 2019). But what
are the facts stored in the internal knowledge bases
of modern LMs, and how can these be represented
explicitly? This is the challenge we address in this
work. Our motivation is to obtain an interpretable
and transparent representation that will allow hu-
mans to inspect what the LM knows, what it does
not know, why it makes certain mistakes, and what
are the biases it encodes. Moreover, with such a
representation, one can leverage general-purpose
tools, such as query languages, for interacting with
this knowledge.

The first question in this endeavour is what is
a suitable explicit knowledge representation. A
natural candidate structure is a knowledge graph
(KG). Namely, a graph whose nodes are entities
and whose edges represent relations between enti-
ties. KGs are appealing since information can be
readily “read-off” from the graph, they can be reli-
ably queried, and different KGs can be easily com-
pared. KGs have been extensively used to represent
knowledge (Bollacker et al., 2008; Vrandečić and
Krötzsch, 2014), but a key limitation is their low
coverage, as they usually require manual curation
and depend on a closed schema. Conversely, LMs
might have very high coverage as they are trained
on a vast body of knowledge represented as raw
text. We thus ask if it is possible to convert an LM
to a KG, such that we enjoy its advantages while
achieving high coverage.

As the full KG encoded in an LM can be large,
we reduce the problem to the task of constructing
a KG around a given seed entity. For example,
Fig. 1 shows a KG extracted by our method for the
seed entity Alan Turing. This can be viewed as a
crawling procedure which starts from the seed en-
tity and recursively expands it to expose additional
facts. This crawling problem introduces several
new challenges. First, unlike prior work (Petroni
et al., 2019; Alivanistos et al., 2022; Hao et al.,
2022), we are given only an entity, without know-
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Figure 1: An example of a generated depth-2 knowledge graph around the seed entity ALAN TURING, applying
LMCRAWL (see Sec. 3-Sec. 4). Additional graphs are in Sec. E.

ing what relations are associated with it. Thus, we
have to extract those relations and then find the ob-
jects for each relation. Second, KGs are expected to
exhibit very high precision, and thus it is necessary
to generate as many relevant facts as possible while
maintaining almost perfect factual correctness.1

We address the above challenges by decom-
posing crawling into multiple sub-tasks, and han-
dle each task using few-shot in-context learning
(Brown et al., 2020). Explicitly, we do not fine-tune
a model, but instead manually design a prompt and
a few examples for each task, an approach recently-
proven successful (Wei et al., 2022; Drozdov et al.,
2022; Chowdhery et al., 2022; Khot et al., 2022).
We use the following sub-tasks (see Tab. 1 for the
full list and examples). First, given an entity e (e.g.,
ALAN TURING), we generate the relations relevant
for e (e.g., EDUCATED AT, PLACE OF BIRTH). Sec-
ond, for each entity e and relation r, we generate
the corresponding set of objects O and add to the
KG triplets (e, r, o) for each o ∈ O. For example,
for ALAN TURING and EDUCATED AT, we gener-

1We note that there is a deeper philosophical aspect to
this issue, which is at the core of the field of epistemology.
Namely, what does it mean for a model to “believe” a fact,
as opposed to the model “knowing” a fact. Here we adopt a
“dispositional” view of belief, whereby a belief corresponds
to a statement by the model, and knowledge is a belief that is
true in the world.

ate triplets with the objects KING’S COLLEGE and
SHERBORNE SCHOOL. To maintain high precision,
we prompt the model to emit “Don’t know” when-
ever it is not confident about the target objects. All
the above outputs are generated through in-context
learning, where we use the WIKIDATA KG (Vran-
dečić and Krötzsch, 2014) to construct in-context
examples. Don’t know examples are constructed by
finding true facts in WIKIDATA that are unknown
to the LM. Finally, we increase recall by prompt-
ing the LM to generate paraphrases for entities and
relations, and use those to obtain additional triplets.

We test our approach with GPT-3
(text-davinci-002) on 140 seed entities,
and show that we can extract accurate KGs
(∼82-92% precision) that contain a plausible
number of facts per entity. Importantly, large LMs
are not constrained to a predefined schema, and
indeed our procedure with GPT-3 generates facts
outside the schema of WIKIDATA, e.g., (BOSTON

CELTICS, CHAMPIONSHIPS, 17).

To conclude, our contributions are: 1) Formulat-
ing the problem of crawling a KG from an LM, 2)
Presenting a prompt-based approach that decom-
poses the problem into multiple sub-tasks, and 3)
Evaluating the approach with GPT-3, which leads
to high-precision graphs.
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2 Problem Setup

Our goal is to uncover the knowledge-base of a
given LM. We represent a knowledge-base via a
KG, which is a collection of triplets. Formally,
a KG is a graph G = (N,R,E), where N is a
set of entities, R is a set of relations, and E is a
set of subject-relation-object triplets (s, r, o) where
s, o ∈ N and r ∈ R.

To simplify the setup, we assume we are given
a “seed entity” around which we will expand the
graph (for example Fig. 1). Conceptually, we can
also let the LM generate seed entities, but we argue
seed expansion is a more realistic scenario, where
a user is interested in a graph about a certain entity.

Entities and relations are represented via strings
and are not constrained to a given vocabulary (simi-
lar to open information extraction. e.g., see Vo and
Bagheri, 2017).

3 Crawling KGs via Prompting

The core component of our approach is a proce-
dure that takes an entity e, and extracts all relations
associated with it, and the corresponding objects.
Namely, we expand the KG around this entity. We
can then recursively apply this procedure to further
expand the KG. We refer to this as ‘entity expan-
sion’, and break it into two high-level steps:
• Relation generation (Sec. 3.1): For an entity
e, generate a set of relations R, where e is the
subject.

• Object generation (Sec. 3.3-Sec. 3.4): Given
the entity e and the relation set R, find the corre-
sponding objects. Namely, for each r ∈ R, find
a list of entities O such that (e, r, o) is in the KG
for o ∈ O. We consider lists since many rela-
tions (e.g., CHILDREN) potentially have multiple
correct objects. Furthermore, we also consider
the case where the object corresponding to (e, r)
is unknown to the model (e.g., the model does
not know who is the daughter of a given entity
e). In this case we take O to be empty, and the
edge is not added to the KG. This is crucial for
maintaining a high-precision KG.

Both steps are achieved via few-shot in-context
learning. Namely, we construct prompts with in-
context examples (stay fixed throughout the pro-
cess) that exhibit the desired behaviour (Tab. 1).

To improve recall, we employ an additional para-
phrasing procedure (Sec. 3.2 and Sec. 3.5), which
generates alternative strings for a given entity or re-

lation. For example, the entity WILLIAM CLINTON

can be referred to as WILLIAM JEFFERSON CLIN-
TON or BILL CLINTON, and the relation OCCU-
PATION may be expressed as PROFESSION. Thus,
we run object and relation generation for all these
variants, and pool the results to construct the final
graph. Paraphrases are also obtained through the
LM, without use of external knowledge. The entire
flow is illustrated in Fig. 2, and we next elaborate
on each of the components.

3.1 Relation Generation

Our task is to generate a set of relations R for a
given subject entity e. To achieve this, we lever-
age WIKIDATA to construct in-context examples.
Specifically, we pick a list of WIKIDATA entities
e1, . . . , eKr and for each entity ei, extract its set of
WIKIDATA relations. This results in Kr in-context
examples for relation generation. We concatenate
the target entity to the in-context examples, feed
this prompt to the LM and use its output as the set
R for e. Tab. 1 shows an example prompt. We note
that this generation process can produce relations
that are not included in the prompt, and are not part
of WIKIDATA at all.2 Full prompt with in-context
examples is presented in Sec. B.1.

3.2 Relation Paraphrasing

A relation r may be described in multiple ways,
and the LM might work better with some of these
paraphrases (Jiang et al., 2021). Thus, we use a
procedure to obtain a set of paraphrases of r, de-
noted by P (r), and run all downstream crawling
tasks for all strings in P (r).

For relation paraphrasing we find that in-context
examples are not necessary and an instruction
prompt is sufficient. Tab. 1 shows a specific ex-
ample under the sub-task “Relation Paraphrasing”.
See Sec. A.1 for the three prompts and more tech-
nical details.

3.3 Object Generation

Our next goal is, for each r ∈ R, to generate a
set of objects O such that (e, r, o) is in the KG
for all o ∈ O. Importantly, we should also let the
LM declare it does not know the object, and thus
O would be empty. In this case, no edge will be
added to the output KG.

2For example, when the subject is a sports team, the
model repeatedly generated a relation regarding its MASCOT
or LARGEST WIN, which are facts outside of WIKIDATA.

1858



Sub-task Query Prompt Expected Output
Relation
Generation

Philippines Q: René Magritte A: ethnic group, place of birth, place
of death, sex or gender, spouse, country of citizenship,
member of political party, native language, place of
burial, cause of death, residence, family name, given
name, manner of death, educated at, field of work, work
location, represented by Q: Stryn A: significant event,
head of government, country, capital, separated from
Q: Philippines A:

leader name #
cctld # capital
# calling code

Pure Object
Generation

Barack Obama
# child

Q: Monte Cremasco # country A: Italy Q: Johnny Depp #
children A: Jack Depp # Lily-Rose Depp Q: Wolfgang Sauseng
# employer A: University of Music and Performing Arts
Vienna Q: Barack Obama # child A:

Sasha Obama #
Malia Obama

DK Object
Generation

Queen
Elizabeth
II # date of
death

Q: Heinrich Peters # occupation A: Don’t know Q: Monte
Cremasco # country A: Italy Q: Ferydoon Zandi # place of
birth A: Don’t know Q: Hans Ertl # sport A: mountaineering
Q: Queen Elizabeth II # date of death A:

Don’t know

Subject
Paraphrasing

Alan Turing Alan Turing is also known as: The father of
computing

Relation
Paraphrasing

notable work ’notable work’ may be described as a work of ’great
value’ or a work
of ’importance’

Table 1: The full list of sub-tasks in our approach, where for each sub-task we provide its name, a query, a
corresponding prompt, and the expected output. In ‘DK Object Generation’ the prompt declares in one of the
in-context examples that the model does not know the place of birth of Ferydoon Zandi, since querying for it leads
to a wrong answer (the query with the wrong answer isn’t shown).

We first explain prompt construction without
the use of “Don’t Know” output, and refer to this
as “Pure Object Genration”. We take Ko entities
e1, . . . , eKo from WIKIDATA. For each entity ei,
we choose one of its relations ri, and all the objects
Oi for this entity-relation pair in WIKIDATA. This
creates Ko examples for object generation. Similar
to relation generation, the target entity-relation pair
is concatenated to the Ko examples, and the list
of objects is parsed from the generated LM out-
put (see exact format in Tab. 1, under the sub-task
“Pure Object Generation”, and the full prompt with
in-context examples in Sec. B.2). Recall that for
each relation, we have multiple paraphrases. To
maintain high precision, we only accept objects
that were generated by at least two realizations of
the relation.

3.4 Learning to Output “Don’t Know”

A key desideratum for KGs is high precision,
namely the facts in the graph should be correct
with high probability. Towards this end, we want
to prompt the LM to output “Don’t Know” (DK)
for facts where it is likely to make an error.3

3A model might make an error because it is not confident
about the answer, or because its training data contains false
facts. In this work, we are agnostic to this distinction and our

But how do we know what the model does not
know? To capture this, we find cases where the
LM outputs erroneous facts, and use these to con-
struct in-context examples with a DK target. For
example, suppose we run ‘Pure Object Generation’
with e = BILL CLINTON and r = CHILDREN and
the model outputs O = KLAY THOMPSON. We
deduce that the model does not know who Clin-
ton’s children are, and therefore, can add the exam-
ple ei = BILL CLINTON, ri = CHILDREN, oi =
Don’t know to the prompt. In other words, we find
examples where oi is Don’t know through cases
where the model errs on its predicted objects. We
then construct a prompt with a total of Kdk exam-
ples, half of which are failure cases where with
oi = Don’t know and the other half are correct
predictions. We refer to this as “DK Object Gener-
ation”. See the corresponding row in Tab. 1 and the
full prompt with in-context examples in Sec. B.3.

3.5 Subject Paraphrasing
Similar to relations, an entity e may have several
names, and it may be easier for the LM to complete
the triplet (e, r, ?) with one of these. Thus, we
take a paraphrasing approach to extend an entity
name e into a set P (e). The procedure is identical

prompt’s goal is to encourage generation of correct outputs.

1859



Subject 
Paraphrasing

Relation 
Generation

…

Relation 
Paraphrasing

DK Object 
Generation

Barack Obama 
# a person’s 

husband or wife

Figure 2: An illustration of the full method for crawling a subgraph (LMCRAWL), starting from BARACK OBAMA
as the subject, until obtaining the triplet (BARACK OBAMA, SPOUSE, MICHELLE OBAMA).

to relation paraphrasing (Sec. 3.2), except we use
a single prompt instructing the LM to complete
the sentence “s is also known as”, where s is the
subject. To increase the number of paraphrases, we
sample from the model three times, resulting in up
to three paraphrases.

Both here and in Relation Paraphrasing
(Sec. 3.2), the LM occasionally generates nonsen-
sical paraphrases. Nevertheless, the DK method
handles those cases well, outputting "Don’t know"
for most of them. Thus, we argue that paraphras-
ing combined with DK emission is an effective
approach for controlling recall and precision.

3.6 LMCRAWL

Fig. 2 shows the application of the complete
pipeline (which we refer to as LMCRAWL) for
the entity BARACK OBAMA. First, we obtain all
paraphrases for e (Sec. 3.5). Then, we extract all
relations for these (Sec. 3.1). Next, we paraphrase
relations (Sec. 3.2). Finally, we extract the known
objects for these relations (Sec. 3.3-Sec. 3.4).

4 Experimental Setup

As mentioned in Sec. 3, we use WIKIDATA

(publicly available) in constructing the in-context
prompts. The number of in-context examples is
Kr = 7, Ko = 8, Kdk = 10.

Additionally, we use WIKIDATA to select seed
entities for evaluating our approach. For these
seeds, we consider the task of constructing KGs
around the corresponding entities.

We split the seed entities into a validation set
(20 entities), which is used to make design choices
(e.g., choosing prompt format), and a test set (120
entities), which is used only for the final evaluation.

For the development set, we manually chose 20
entities from WIKIDATA. These included women
and men with various professions, cities, countries,
and various cultural entities such as movies and
books. We also aimed to reprsent both head and
tail entities in this list.

To construct our test set, we defined 25 specific
world-entities related categories, which we refer to
as the test categories. Some of these were more
specific, such as AI Researchers, and some are
more general, such as Scientists (see Table.6 for
the full list). We chose 4 seeds out of each cate-
gory as follows. We first sorted the set of entities
of each group based on the number of WIKIDATA

facts associated with them (we view this count as
an approximate measure of popularity). Then, we
randomly sampled two entities out of the full list,
and an additional two out of the first 1000. Intu-
itively, the first two represent tail entities, while the
other two represents head ones. Thus we ended
up with 100 seed entities (i.e., 4 different entities
out of each of the 25 different subgroups). We re-
fer to these as the main test set (see Tab. 6). We
created an additional test set of 20 entities that is
meant to contain very popular entities. Its entities
were randomly sampled out of a set of size 1000,
which was manually constructed by choosing 40
very well-known entities (i.e., that all people would
know) from each of the 25 test categories.

All 140 entities were not used in the construction
of any of the prompts in Sec. 3. Tab. 2 shows the
full list of validation and head test entities.

Evaluation metrics Given an entity s, our entity
expansion process returns a knowledge graph G,
that contains the entity s, other entities and rela-
tions between them.
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Dev Seeds Head Test Seeds
ABBA Aristotle
Alan Turing Canada
Angela Merkel Celine Dion
Augustin-Louis Cauchy China
Barack Obama Emanuel Macron
Bob Dylan Franz Kafka
Boston Celtics Grease
David Bowie Hamlet
Diana, Princess of Wales Jacinda Ardern
Eike von Repgow Lionel Messi
Inglourious Basterds Little Women
Marble Arch Manchester United F.C.
Marie Curie Margaret Hamilton
Mikhail Bulgakov Michelangelo
Moby-Dick Mike Tyson
Pablo Picasso Oprah Winfrey
Paris Rosalind Franklin
Philippines Steven Spielberg
Rachel Carson Serena Williams
Shahar Pe’er The Rolling Stones

Table 2: List of all validation and head test seeds.

Ideally, we want to compare G to a ground
truth graph that results from expanding the entity
s. Given such a graph, we could measure preci-
sion and recall over the gold and predicted sets
of triplets. However, using large LMs to generate
graphs leads to several challenges. First, there is
no ground-truth graph. While we could presum-
ably use the WIKIDATA graph, we found that it is
missing many correct facts predicted by the LM. In
fact, improving coverage is a key motivation for our
work! Second, facts may be reworded in several
equivalent ways, rendering comparison between
WIKIDATA graphs and predicted graphs difficult.

To circumvent these challenges, we use the fol-
lowing notions of precision and recall.

• Precision: To estimate precision we conducted
both manual and automatic evaluations (the au-
tomatic approach was more scalable). For the
manual evaluation we simply tried to validate
each of the generated facts by manually browsing
highly trustful web sources (Google, Wikipedia,
etc.) to check if the fact is true. The automatic
evaluation approach was implemented as follows.
In order to check the correctness of a given pre-
dicted triplet (e, r, o), we issue a query contain-
ing (e, r) to Google search, and search whether
o appears in the result. We limit the result to first
40 words which are not HTML labels or URL
links. If it does, we assume the triplet is correct.
4 See Sec. 5.3 for an accuracy estimation of the

4This paragraph typically contains either an “answer box”
or some summary of the first result page, in case there is no
answer box.

automatic method.
Manual evaluation was done for all the head test
set graphs, as well as all the 1-hop graphs of
the main test set. Additionally, we performed
manual evaluation for 20% randomly sampled
triplets from the 2-hop graphs (altogether, the
total portion of manually labeled facts from each
graph was ∼30%). The rest of the triplets were
automatically evaluated.

• Recall: Estimating recall is not possible since
we do not have access to the true ground truth
graph. Moreover, using WIKIDATA graph size as
an estimate for the number of true facts will be
misleading since it has low coverage in general,
and high variance in terms of coverage for differ-
ent entities. Thus, we simply report the number
of verified triplets in our KG. In other words,
we report recall without the denominator. We
refer to this as # of facts. This practice is similar
to open information extraction (Vo and Bagheri,
2017), where it is impossible to know the set of
all true facts and thus the convention is to report
the number of generated facts only.

Implementation details As the LM in our exper-
iments, we used the OpenAI text-davinci-002
model. We experiment with both greedy decoding
and sampling 3 outputs per query (temperature 0.8).
We generate graphs with either a single expansion
step or two expansion steps, recursively expanding
entities found in the first step. After a graph is gen-
erated, we remove duplicates by iterating through
the facts and removing a fact if the token-wise F1

between it and another fact is higher than 0.85.

Base Model and Ablations The simplest version
of our model includes only ’Relation Generation’
(Sec. 3.1) and ’Pure Object Generation’ (Sec. 3.3),
without the “Don’t Know” and paraphrasing com-
ponents. We refer to this version as Pure-Greedy
and Pure-Sampling, depending on the decoding
used (see Sec. 4). In other model variants, we use
DK to refer to using ‘DK Object Generation’ in-
stead of ‘Pure Object Generation’. Additionally,
SP and RP refer to adding ‘Subject Paraphrasing’
and ‘Relation Paraphrasing’ respectively.

5 Results

We next report results showing that our expansion
method is able to generate meaningful knowledge
subgraphs, when expanding seed entities.
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Main Test Set Head Test Set
one-hop two-hop one-hop two-hop

Precision # of Facts Precision # of Facts Precision # of Facts Precision # of Facts
Pure-Greedy 54.6± 8.2 6.2± 2.8 43.4± 6.1 26.1± 5.5 80.3± 8.4 14.4± 3.9 62.1± 7.3 82.3± 15.4
LMCRAWL 83.3± 7.9 5.4± 1.1 82.0± 7.5 21.4± 4.7 91.5± 11.4 11.0± 4.6 90.9± 4.9 61.2± 25.1

Table 3: Averaged results across all 100 main test seeds (left), as well as all the 20 head test ones (right).

Example graph: We begin with an illustrative
example for the graph of the seed entity ALAN

TURING. Fig. 1 shows a subset of the two-hop
extracted graph in this case. It can be seen that all
facts are sensible, except for the fact that the field
of Computer Science is named after Alan Turing
(although he is certainly one of its fathers). See
also Figs. 4 and 5 for additional example graphs.

Results on the Main Test set: Tab. 3 reports
averaged results of the Pure-Greedy base model
and LMCRAWL across the 100 main test seeds.
We observe that precision of Pure-Greedy is too
low to be useful for a KG – 54.6% for 1-hop graphs
and 43.4% for 2-hop graphs. Conversely, precision
with LMCRAWL is much higher: 83.3% for 1-
hop graphs and 82.0% for 2-hop graphs. While we
suffer a small hit in ‘# of facts’, the sizes of KGs
output by our approach are quite reasonable.

Results on the Head Test set: Tab. 3 reports
averaged results of the Pure-Greedy base model
and LMCRAWL across the 20 head test seeds.
Specifically, we achieve precision of 91.5% while
applying LMCRAWL for 1-hop graphs, and for
2-hop we have 90.9%. It can be seen that both
precision and number of facts in this case are higher
than in the main test set. This suggests that either it
is easier to extract facts from the LM about popular
entities, or that the LM indeed encodes more facts
for these (see Sec. 5.2 for further analysis).

5.1 Ablations
Next, we examine the contribution of each compo-
nent in our final approach on the validation set.

The Effect of Don’t Know Generation: The
goal of allowing the model to output “Don’t Know”
is to improve precision. Tab. 4 and 5 show results
for the model without using DK prompting (in Pure
rows) as well as with (DK rows) for both sampling
and greedy decoding. In both cases, the DK op-
tion leads to much higher precision, but reduces
the number of generated facts. However, we later
recover some of these lost facts using subject and
relation paraphrasing.

Method Precision # of Facts
Pure-Sampling 64.9± 20.2 22.2± 9.7
Pure-Greedy 77.5± 17.4 12.5± 6.0

DK-Sampling 71.4± 19.9 17.7± 9.4
DK-Greedy 82.9± 16.0 10.2± 5.9

+RP 80.9± 17.0 12.7± 5.4
+SP 80.6± 17.0 12.2± 7.0

LMCRAWL 88.3± 8.2 13.0± 5.9

Table 4: Averaged results over the 20 validation seed
(one-hop). DK: “Don’t know”. SP: Subject Paraphras-
ing. RP: Relation Paraphrasing.

Method Precision # of Facts
Pure-Sampling 40.0± 9.5 224.0± 81.1
Pure-Greedy 55.9± 9.7 87.8± 39.7

DK-Sampling 54.7± 8.6 144.0± 83.5
DK-Greedy 72.4± 7.5 45.8± 30.3
LMCRAWL 86.4± 6.1 69.8± 52.9

Table 5: Averaged results across all 20 validation seeds
(two-hop). DK: “Don’t know”. SP: Subject Paraphras-
ing. RP: Relation Paraphrasing.

The Effect of Paraphrasing: Tab. 4 shows re-
sults without the paraphrasing component in the
DK-Greedy row. Both paraphrasing techniques,
RP and SP, separately increase coverage, while
causing a minimal hit to precision. Interestingly,
combining RP and SP leads to improvements in
both precision and coverage for 1-hop and 2-hop
graphs (Tab. 4, 5).

5.2 Coverage vs. Entity Frequency

The frequency of entities on the Web is highly
skewed. That is, some entities appear many times,
while others are rare. We expect this will be re-
flected in the number of facts extracted for these
entities. Indeed, on WIKIDATA, head entities usu-
ally have many more facts compared to tail entities.
Here, we ask whether a similar phenomenon exists
in our predicted KGs.

Fig. 3 shows the number of facts generated for
a depth-1 graph by LMCRAWL for all entities of
type PERSON, as a function of the number of facts
that appear in the corresponding depth-1 WIKI-
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DATA graph of the same seed. Clearly, there is high
correlation (correlation coefficient is 0.61) between
the number of extracted facts and entity frequency
on WIKIDATA. This is rather surprising and en-
couraging since our procedure does not make any
use of entity frequency, and head and tail entities
are expanded in exactly the same way.

Figure 3: The # of triplets extracted by LMCRAWL as
a function of the # of triplets in WIKIDATA, for the set
of validation entities of type PERSON.

5.3 Precision is Possibly Underestimated

Our automatic approach for evaluating precision
uses Google search (see Sec. 4). We view this
as a conservative estimate of precision, since a
fact judged as true via this mechanism is highly
likely to be true. Conversely, a true fact might
not be verified due to search or string matching
issues. To quantify this, we sampled 500 generated
facts from Pure-Greedy and LMCRAWL that were
judged to be incorrect through Google search, as
well as 500 that were judged to be correct. We
manually inspected them and found that 4.1% of
the triplets that the automatic approach has labeled
as correct, are actually wrong, while 22% of the
triplets that the automatic approach has labeled
to be incorrect, are true (few demonstrations are
presented in Sec. D). Exact estimation of precision
would require full manual annotation, which we
avoided to minimize costs.

6 Related Work

Pretrained LMs are at the heart of recent NLP
research and applications. As mentioned earlier,
Petroni et al. (2019) and other works have observed
that LMs contain rich factual knowledge. We elab-
orate on other relevant works below.

Knowledge-base construction. KG construc-

tion typically involves both manual and automated
aspects. For example, popular KBs such as Word-
Net (Fellbaum, 2020), ConceptNet (Speer et al.,
2017) and WIKIDATA (Vrandečić and Krötzsch,
2014) were constructed by heavily relying on man-
ual effort, gathering knowledge from humans. To
reduce such manual labor, automated information
extraction (IE) methods have been extensively de-
veloped (Yates et al., 2007; Fader et al., 2011; An-
geli et al., 2015; Vo and Bagheri, 2017). Knowl-
edge in LMs is a fairly recent topic of interest, and
has mostly focused on probing for specific facts
(Petroni et al., 2019; Razniewski et al., 2021).

Most similar to our work are Hao et al. (2022),
who also extract KGs from LMs, However, they
require defining the relations of interest through
examples before crawling, while our specific goal
is to start with a seed entity and allow the LM
to determine the relevant relations. Another rele-
vant recent work is Alivanistos et al. (2022) who
also use in-context learning to extract a KG from
GPT3. But they also assume relations are provided,
whereas a key aspect of our approach is generating
the relations.

To the best of our knowledge, ours is the first
work to construct a knowledge graph via extracting
knowledge directly from LMs, using only one seed
entity (and no other given relations or entities).

Quantifying Uncertainty in LMs. Factual cor-
rectness in LMs has attracted recent interest, be-
cause it is a crucial requirement for LM applica-
bility. In this context, some works have studied
selective question answering, where LMs avoid an-
swering particular questions (Varshney et al., 2022).
Other works have considered calibration in LMs
(Jiang et al., 2021; Desai and Durrett, 2020),

Finally, recent works have investigated whether
models can express their certainty on output facts,
either in words or by producing the probability of
certainty (Lin et al., 2022; Kadavath et al., 2022).
A key aspect of our approach is the use of a “Don’t
know” mechanism, which is related to this line of
work since it lets the LM declare its certainty as
part of the output. Unlike Kadavath et al. (2022),
we do so in the context of crawling a KG and via
in-context learning (as opposed to fine-tuning).

7 Conclusion

Understanding large LMs is a key part of modern
NLP, as they are used across the board in NLP
applications. In particular, it is important to under-

1863



stand the body of knowledge these models possess,
so it can be used and revised as needed, thereby
avoiding factual errors and biases. In this work
we present an important step towards this goal by
extracting a structured KB from an LM.

There are many possible exciting extensions for
our work. The first is to expand it to a larger graph
corresponding to more expansion hops. This would
require many more calls to an API, which at present
is also costly, and it would be important to develop
more cost-effective approaches. Second, we have
introduced several approaches to controlling the
precision and recall of the proposed model, but
certainly more can be envisioned. For example,
we can introduce various consistency constraints to
increase precision (e.g., check that FATHER OF and
CHILD OF are consistent in the generated graph).
Finally, once a larger KG has been extracted, one
can query it to see how well it serves as a question
answering mechanism.

Overall, we find the possibility of seamlessly
converting LMs to KGs for better interaction and
control to be an exciting and fruitful direction for
future research.

Limitations

Producing the full internal KG out of an LM is still
a significant challenge. One challenge is cost (as
noted above). The other is error propagation issues.
Once the model makes a generation mistake in a
particular node of the generated graph, it may lead
to an increasing number of mistakes during the
next generation steps, expanding from that node.
That is one of our main rationales for creating and
evaluating only two-hop graphs, and not additional
hops (although ideally, the real goal is to uncover
the full internal KG).

Our automatic way of evaluating precision is
only approximate, which means our reported accu-
racy numbers for 2-hop are an approximation of
true precision (although we believe the true preci-
sion is in fact higher, as discussed in the text).

Another challenge we do not address is under-
standing the source of knowledge inaccuracies. Are
they due to limitations of our model in extracting
the knowledge, or due to the LM not containing
these facts at all. This is certainly important to
understand in order to improve knowledge repre-
sentation in LMs. We are also aware to the fact
that since the generated graphs are not perfectly ac-
curate, they might contain disinformation and mis-

leading facts. That would hopefully be improved
by future research.

Finally, the question whether we could have
come up with a better-reflecting “recall” metric
than the one we suggested is yet to be solved, as in
general it is still unclear how to measure knowledge
coverage.
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A Technical Details

A.1 Relation-Paraphrasing

We use 3 different instructions that have been man-
ually constructed. If we denote a specific relation
by r, then they are:

• "‘r’ may be described as"

• "‘r’ refers to"

• "please describe ‘r’ in a few
words:"

That is, for every original relation which has been
generated by the model, we perform additional
three different model calls, one with each of those
instruction prompts, resulting in three paraphrases.
If needed, we eliminate overlapping paraphrases.
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B Full Prompts

B.1 Relation Generation
Q: Javier Culson
A: participant of # place of
birth # sex or gender # coun-
try of citizenship # occupation
# family name # given name # edu-
cated at # sport # sports disci-
pline competed in

Q: René Magritte
A: ethnic group # place of birth
# place of death # sex or gender
# spouse # country of citizenship
# member of political party # na-
tive language # place of burial
# cause of death # residence #
family name # given name # manner
of death # educated at # field
of work # work location # repre-
sented by

Q: Nadym
A: country # capital of # coordi-
nate location # population # area
# elevation above sea level

Q: Stryn
A: significant event # head of
government # country # capital #
separated from

Q: 1585
A: said to be the same as # fol-
lows

Q: Bornheim
A: head of government # country #
member of # coordinate location
# population # area # elevation
above sea level

Q: Aló Presidente
A: genre # country of origin #
cast member # original network

B.2 Pure Object Generation
Q: Kristin von der Goltz #
mother
A: Kirsti Hjort

Q: Monte Cremasco # country
A: Italy

Q: Johnny Depp # children
A: Jack Depp # Lily-Rose Depp

Q: Theodor Inama von Sternegg
# place of birth
A: Augsburg

Q: Wolfgang Sauseng # employer
A: University of Music and Per-
forming Arts Vienna

Q: Hans Ertl # sport
A: mountaineering

Q: Nicolas Cage # sibling
A: Christopher Coppola # Marc
Coppola

Q: Manfred Müller # occupation
A: Catholic priest

B.3 DK Object Generation

Q: Heinrich Peters # occupation
A: Don’t know

Q: Monte Cremasco # country
A: Italy

Q: Nicolas Cage # sibling
A: Christopher Coppola # Marc
Coppola

Q: Hans Ertl # sport
A: mountaineering

Q: Klaus Baumgartner # work lo-
cation
A: Don’t know

Q: Ruth Bader Ginsburg # educated
at
A: Cornell University # Harvard
Law School # Columbia Law School

Q: Ferydoon Zandi # place of
birth
A: Don’t know
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Q: Wolfgang Sauseng # employer
A: University of Music and Per-
forming Arts Vienna

Q: Apayao # head of government
A: Don’t know

Q: Kristin von der Goltz #
mother
A: Don’t know

C Main Test Set

Table 6 provides our main test, which includes 100
different seeds - 4 from each of our predefined
entity group categories.

D Automatic Precision Evaluation

As noted in the main text, the automatic precision
evaluation method (i.e., the one based on Google
search) may sometimes fail. Some of the failure
cases are: (a) Inexact string matching. For example
(BOSTON CELTICS, LEAGUE, NATIONAL BAS-
KETBALL ASSOCIATION (NBA)) is not verified,
but dropping (NBA) from the object would result
in a successful verification. b) Paraphrases: For
example (MARBLE ARCH, COUNTRY, UNITED

KINGDOM) is not verified but changing the object
to ENGLAND does succeed.

E Additional Generated Graphs

Figs. 4, 5 show additional example graphs (to the
one shown in Fig. 1), generated around the seed
entities ANGELA MERKEL and BOSTON CELTICS

respectively.
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Figure 4: An example of a generated depth-2 knowledge graph around the seed entity ANGELA MERKEL, using
LMCRAWL(see Sec. 3). For readability, back edges from 2-depth nodes to 1-depth nodes are omitted.

Figure 5: An example of a generated depth-2 knowledge graph around the seed entity BOSTON CELTICS, using
LMCRAWL (see Sec. 3).

1868



Categories Sampled Seeds Categories Sampled Seeds

Politicians

Wang Zhi
Cathy Rogers

Kate Wilkinson
Carles Campuzano

Producers

Alyssa Milano
Lenny Kravitz
Carter Harman
Nancy Meyers

Scientists

Pavel Krotov
Mirra Moiseevna Gukhman

Axel Delorme
Jesús Caballero Mellado

Actors

Jon Voight
Boris Savchenko

Tolga Tekin
Virginia Keiley

Basketball

Tom McMillen
Pat Kelly

Steve Moundou-Missi
Allen Phillips

Singers

Freddie Mercury
Angélique Kidjo
Camille Thurman
Giorgio Ronconi

Sports

Peteca
motorcycle racing

Basque pelota
mountain bike trials

Bands

Steve Miller Band
Hypocrisy

Afro Kolektyw
Frailty

Artists

Bořek Šípek
Loriot

George William Wakefield
George Trosley

TV Shows

Secrets and Lies
Spirited Away
Super Friends

The Life and Legend of Wyatt Earp

Paintings

Portrait of a Man
Landscape

The foot washing
The King’s rival

Foods/Restaurants

Tahu petis
Kandil simidi

Jim Block
kubang boyo

Writers

Aleksandr Volkov
Osamu Tezuka

Elizaveta Sergeevna Danilova
Henry Saint Clair Wilkins

Animals

donkey
jaguar

mustang
whale

Books

The Green Berets
Alfred de Musset

Demain le capitalisme
The labyrinth

Plants

maple
rose

catmint
conflower

Landmarks

Trafalgar Square
Mount Everest

Yosemite National Park
Matterhorn

Architects

Louis Kahn
Christopher Wren
Michael Graves

Domenico Fontana

Cities

Vatican City
Cherdyn
Toulon

MiljøXpressen

Drummers

Alan Montagu-Stuart-Wortley-Mackenzie
Mihály Deák
Joey Kramer

Stephanie Eulinberg

Countries

Niger
Sweden
England

Singapore

Biologists

Wangari Muta Maathai
James Rothman
Joanna Siódmiak

Barbara Bajd

Philosophy

Evgeny Torchinov
Nikolay Umov
Monica Giorgi

Larysa Tsitarenka

AI Researchers

William T. Freeman
Stephen Falken

Joseph Weizenbaum
Robby Garner

Movies

Spider-Man: Far from Home
Sonic the Hedgehog

Unearthed
Another Man’s Poison

Table 6: List of all main test set seeds
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