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Abstract

Recent transformer language models achieve
outstanding results in many natural language
processing (NLP) tasks. However, their enor-
mous size often makes them impractical on
memory-constrained devices, requiring practi-
tioners to compress them to smaller networks.
In this paper, we explore offline compres-
sion methods, meaning computationally-cheap
approaches that do not require further fine-
tuning of the compressed model. We chal-
lenge the classical matrix factorization meth-
ods by proposing a novel, better-performing
autoencoder-based framework. We perform a
comprehensive ablation study of our approach,
examining its different aspects over a diverse
set of evaluation settings. Moreover, we show
that enabling collaboration between modules
across layers by compressing certain modules
together positively impacts the final model per-
formance. Experiments on various NLP tasks
demonstrate that our approach significantly out-
performs commonly used factorization-based
offline compression methods.1.

1 Introduction

The recent trend of pre-training Trans-
former (Vaswani et al., 2017) language models
on enormous unsupervised corpus has led to
outstanding performances on many downstream
tasks. For downstream tasks, these pre-trained
models are then either fine-tuned (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019) or
the prompting paradigm (Brown et al., 2020) is
used (especially in the so-called Large Language
Models), which avoids having a different model
per task (Lieber et al., 2021; Rae et al., 2021;
Smith et al., 2022; Thoppilan et al., 2022). In
each of the two paradigms, it has been shown

*Equal contribution
Correspondence to: mohammadreza.banaei@epfl.ch,

klaudia.balazy@doctoral.uj.edu.pl
1Our code is public: github.com/MohammadrezaBanaei/auto-

encoder-based-transformer-compression

that increasing the scale of language models
generally leads to better performance on a range
of downstream tasks (Devlin et al., 2019; Brown
et al., 2020). Indeed, for autoregressive language
models, Kaplan et al. (2020) demonstrated a
power-law relationship between the number of
parameters and the respective performance. Wei
et al. (2022) further showed that certain abilities of
language models emerge only when the number of
its parameters passes certain thresholds, providing
an incentive to scale these models further.

Although scaling up these language models
make them empirically powerful across many di-
verse tasks, it makes them infeasible to train for
many NLP practitioners due to huge pre-training
costs. More importantly, even using the available
pre-trained models for inference is becoming more
challenging (especially for memory-constrained ap-
plications like edge devices), with recent models
having hundreds of billions of parameters (Zhang
et al., 2022).

With the rise of NLP model sizes, there have
been many efforts to compress transformer lan-
guage models without compromising their perfor-
mance. Although being inherently different, many
of these efforts rely on knowledge distillation (Hin-
ton et al., 2015) to help the compressed model
(i.e., the student model) better imitate the parent
model (i.e., the teacher model). However, these ap-
proaches often need costly distillation on upstream
or downstream tasks (Sanh et al., 2019) as well
as expensive data augmentation techniques (Jiao
et al., 2019) to help improve the compressed model
performance. These approaches become even less
feasible when enormous language models are being
distilled.

Another line of research focuses on
computationally-cheap methods (i.e., offline
compression) where a smaller model can be
achieved from a pre-trained model without it
being necessarily fine-tuned over a downstream
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or upstream task. These offline methods include
weight pruning (Li et al., 2016; Han et al., 2015),
weight quantization (Zhou et al., 2016; Hubara
et al., 2016), tensor factorization (Lan et al., 2019;
Winata et al., 2019; Bałazy et al., 2021; Cordonnier
et al., 2020) and hybrid approaches (Wang et al.,
2019; Mao et al., 2020).

This paper proposes a novel offline factorization-
based method for compressing transformer lan-
guage models. The paper’s main goal is to pro-
pose an offline method that produces a competitive
language model (compared to the original model
perplexity) before any fine-tuning is performed.
Similar to Bałazy et al. (2021), we use an autoen-
coder model (see Figure 1a) to compress different
modules’ weights. However, unlike the previous
work, our approach is not limited to the token em-
beddings (a.k.a. word embeddings) and can be
applied to other transformer modules as well. We
also propose and thoroughly investigate the impact
of various enhancements for the approach of ob-
taining the compressed model. It is worth noting
that although the experiments and ablation studies
are only done BERTBASE model, our

In Section 4 we demonstrate that applying small
changes to the autoencoder architecture (e.g., in-
troducing non-linearity to the decoder) and its loss
objective results in superior performance to the Sin-
gular Value Decomposition (SVD) baseline as mea-
sured by model perplexity and its performance on
the downstream tasks. Moreover, inspired by the re-
dundancies present across self-attention heads (Cor-
donnier et al., 2020), in Section 4.2 we show that
the compressed models perform in general better
when compressing certain modules from different
layers together.

Additionally, in Section 4.6 we investigate the ef-
fectiveness of a (parameter) sensitivity-based2 com-
pression by incorporating fisher information (Pas-
canu and Bengio, 2013) in the loss objective. We
later show that incorporating these weights signif-
icantly improve the compressed language model
performance (i.e., perplexity).

Finally, in Section 4.7 and in Section 4.8 we
discuss the performance of our approach in com-
parison to various offline-compression baselines
and demonstrate that our method provides the best
or competitive quality of the compressed model.

Our main contribution can be summarized as
2We call it sensitivity as it measures how sensitive the

model performance is to the reconstruction error of a certain
parameter.

follows:

• We propose a novel autoencoder-based frame-
work for low-cost compression of transformer
language models and conduct an extensive
ablation study on its different aspects.

• We show that enabling collaboration across
layers by compressing different layers mod-
ules together boosts the performance.

• We demonstrate that our approach signif-
icantly outperforms other commonly used
offline-compression methods on various NLP
downstream tasks.3

2 Related work

Deep transformer language models have gained in-
creasing attention in recent years since the seminal
work of Devlin et al. (2019). Many recent efforts
demonstrate that scaling up these language models’
parameters generally results in better performance
on a range of downstream tasks (Devlin et al., 2019;
Brown et al., 2020; Kaplan et al., 2020). This
empirical observation resulted in recent language
models having over a thousand times more param-
eters (Lieber et al., 2021; Rae et al., 2021; Smith
et al., 2022) than the BERTBASE model (Devlin
et al., 2019). Although empirically powerful, these
models are becoming harder to use for memory-
constrained applications, which led to many efforts
toward language model compression in recent liter-
ature.

Although many recent efforts for language
model compression take advantage of distilla-
tion (Hinton et al., 2015) techniques to better im-
itate the uncompressed model (i.e., the teacher
model) behavior, this paper focuses mainly on of-
fline compression methods. By offline, we refer to
approaches that do not need fine-tuning the whole
model on a downstream/upstream dataset. In the
case of language model compression, these meth-
ods aim to output a compressed model without
losing too much performance (measured by per-
plexity) that can then be fine-tuned (with or without
distillation) or prompted for a certain downstream
task. It is worth noting that these methods can
still be combined with distillation techniques, but
starting the finetuning from a better compressed

3It is worth noting that although the experiments and ab-
lation studies in this paper are only done on the BERTBASE

model, our proposed approach can potentially be used for any
transformer-based architecture.
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language model would generally reduce its costs
of training (e.g., by improving convergence time).

Offline compression methods, while being
diverse, can be roughly categorized into few
paradigms, namely weight pruning (See et al.,
2016; Li et al., 2016; Han et al., 2015; Fan et al.,
2019; Michel et al., 2019; Voita et al., 2019), quan-
tization (Gong et al., 2014; Hubara et al., 2016;
Zhou et al., 2016), tensor factorization (Lan et al.,
2019; Winata et al., 2019; Bałazy et al., 2021; Cor-
donnier et al., 2020; Panahi et al., 2021; Ren et al.,
2022) and hybrid approaches (Wang et al., 2019;
Mao et al., 2020).

This paper primarily focuses on the effectiveness
of low-rank factorization-based approaches in re-
cent literature (Lan et al., 2019; Panahi et al., 2021;
Ren et al., 2022) as an offline compression method.
Lan et al. (2019) proposed a SVD-based (Halko
et al., 2011) technique to compress the token em-
bedding module. Later works have shown that
more complex architectures like autoencoders can
result in better compression quality than SVD meth-
ods (Lioutas et al., 2020; Bałazy et al., 2021). By
taking advantage of the autoencoder, we are able to
more easily enforce different properties by either
changing its training objective or architecture (e.g.,
preserving l2 norm in reconstructed embeddings).
Bałazy et al. (2021) emphasized on the importance
of direction in token embedding compression, and
in this work we demonstrate its potential impor-
tance for other transformer modules as well in dif-
ferent compression ratios.

Moreover, Cordonnier et al. (2020) showed
the significance of redundant information in self-
attention heads and compressed different heads (in
a certain layer) together to improve compression
performance. Following a similar idea, we later
show that compressing heads from different layers
together would generally further boost the compres-
sion quality.

Hsu et al. (2022) proposed a weighted SVD
(using Fisher Information) (Pascanu and Bengio,
2013) to outperform the classical SVD. We further
investigate the benefits of a non-uniform compres-
sion (i.e., a weighted reconstruction loss in the
autoencoder loss objective) in Section 4.6 by ana-
lyzing different weighting schemes for parameters.

Moreover, Ren et al. (2022) proposed using
tensor decomposition techniques to compress lan-
guage models to relatively high compression ra-
tios while using a two-stage distillation technique.

Moreover, Panahi et al. (2021) proposes using the
Kronecker product as an alternative for the fac-
torization of transformer modules. Appendix A.7
discusses using Tucker (De Lathauwer et al., 2000)
or Kronecker-based methods as an offline approach.
It is worth noting that models with relatively high
compression ratios become highly dependent on
distillation techniques to perform reasonably on
downstream tasks. For instance, Ren et al. (2022)
claims that even randomly initializing the com-
pressed BERT nearly achieves identical perfor-
mance compared to tensor decomposition from a
pre-trained model.

3 Model

Our offline compression approach is based on the
an autoencoder neural network architecture, similar
to Lioutas et al. (2020) and Bałazy et al. (2021).
However, in this work, we focus on compressing
all the transformer weight matrices rather than just
the token embedding matrix. Furthermore, we
are exploring many more compression improve-
ments using autoencoder as well as investigating
architecture-independent techniques.

(a) Autoencoder-based compression with customizable objec-
tive function. Our approach minimizes the root mean square
error (RMSE) and cosine distance between the original and
reconstruction matrix. In this setting, the original matrix’s
latent representation and the decoder form the substitution
module.

(b) Classical matrix-factorisation-based compression with root
mean square error (RMSE) minimization objective. Two
smaller matrices, approximating the target matrix after multi-
plication, form the substitution module.

Figure 1: A high-level view of the matrix compression
approaches using classical matrix-factorization and au-
toencoder model that is leveraged in this work. The
purpose of the compression is to provide a parameter-
efficient substitution module to replace the original ma-
trix in the considered model.
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The autoencoder architecture consists of encoder
function h(·) that maps model input x ∈ Rm to
some latent representation l ∈ Rk. The second
element of the architecture is the decoder function
g(·) responsible for mapping l ∈ Rk into the ap-
proximation x̃ ∈ Rm of the input x.

Let us assume that we want to compress the ma-
trix A ∈ R(n×m). Using the gradient-descent algo-
rithm, we train the autoencoder model to produce
the appropriate approximation Ã of the original ma-
trix. As a compressed module, we understand the
hidden representation hΨ(A) ∈ R(n×k) together
with the decoding module gΦ(·). In this setting, the
formula for the compression ratio of the original
module can be expressed as:

n ·m
(n · k) + |Φ| , (1)

which is the ratio of the original matrix size to the
hidden representation size and the number of pa-
rameters in the decoder module |Φ|. We illustrated
the approach of compressing a matrix using the
autoencoder model in Figure 1a.

Our approach to offline compression based on
the autoencoder offers flexibility in performing the
ablation study as we are able to easily modify its
elements, for example, decoder module complexity
level or the loss function components. By using
an autoencoder architecture with a linear decoder
and the RMSE cost function, we can obtain the
equivalent approximation as provided by a simple
matrix factorization. An illustrative comparison of
our compression method with the classical matrix
factorization approach is shown in Figure 1.

Following Bałazy et al. (2021), we train our au-
toencoder with the multi-objective cost function
consisting of l2 norm loss and cosine distance loss:

Ψβ(X, X̃) = (1−β)·L2(X, X̃)+β ·CD(X, X̃),
(2)

where X represents the original matrix, X̃ is the
reconstructed matrix, L2(X, X̃) represents the root
mean square error (RMSE) loss function, and
CD(X, X̃) is the mean cosine distance loss for
all pairs of vectors (rows) of the original and
reconstructed matrices. The β hyperparameter
(0 ≤ β ≤ 1) is responsible for determining the
weight we would like to assign to the different
components of the loss function.

4 Experiments

This section describes our motivations and the re-
sults of various analyses and experiments that we

conducted to investigate the topic of offline com-
pression thoroughly.

We performed our experiments for different
weight matrices in the transformer architecture, as
each type of weight matrix may have different char-
acteristics, and a given compression method may
or may not be appropriate. The analyses described
below are performed for token embedding, self-
attention (keys, queries, values), and output-dense
weight matrices.

We focus our study on the BERTBASE

model (Devlin et al., 2019), but the same meth-
ods could be applied to other transformer archi-
tectures. All experiments are conducted for three
compression ratios (3, 10, and 25) to investigate
the differences given the different number of avail-
able parameters. All experimental settings of the
various studies presented in the following sections
are included in Appendix A.

We evaluate the quality of our compressed
models on the masked (Devlin et al., 2019) lan-
guage modeling task (using the WikiText-103 test
dataset (Merity et al., 2016)) and multiple datasets
from the GLUE benchmark (Wang et al., 2018).

4.1 Cosine distance objective

First, we investigate whether including the direc-
tion component in the compression objective has
a positive effect on the compression of weight ma-
trices other than token embeddings in the trans-
former model. Bałazy et al. (2021) demonstrated
that supplementing the loss function with the co-
sine distance between pairs of rows of the original
and reconstructed matrix produces noticeably bet-
ter compression results for the token embeddings
matrix. Unfortunately, their study does not exam-
ine other matrices in the transformer, whereas be-
cause of the different nature of these matrices, we
believe it is worth investigating.

Results In Table 3 and Table 4 (in Appendix A.1),
we present the effect of adding the cosine distance
component to the cost function for the keys and
output-dense matrices from the BERTBASE model.
It seems that for matrices other than token embed-
dings, considering the direction of vectors (rows
in the matrix) in most cases may have a positive
impact on the final results of the compressed model.
However, the benefits of using this component are
not as significant as in the case of the token em-
beddings matrix. Indeed, there are some exam-
ples where minimizing only Euclidean distance or

1791



adding only a small proportion of cosine distance
provides the best results. We suppose this behav-
ior is the consequence of the token embeddings
matrix nature, where the rows represent specific to-
kens used to construct the words. It seems that the
representation of the part or entire word is largely
encoded in the vector direction. This characteriza-
tion does not necessarily apply to other matrices
though often there is a subtle benefit from adding
a cosine distance component to the reconstruction
objective.

4.2 Concatenated and separated weight
matrices

(a) Separated matrices compression mode. All substitution
modules have separate decoder.

(b) Concatenated matrices compression mode. All substitution
modules share the decoder module that enables collaboration
between layers.

Figure 2: Separated and concatenated weight matri-
ces compression. We demonstrate that compressing
concatenated matrices from all layers provides a better-
performing substitution module. In the concatenated
setting, the substitution modules share a decoder that
allows for cross-layer collaboration and provides the
potential to further eliminate redundant information.

This section investigates whether compressing
separately each weight matrix from the consid-
ered model is the best possible strategy. Our in-

tuition is that compressing together the same type
of weight matrices from different layers may bring
certain advantages. First, it could allow for mini-
mizing redundant information in the model weights,
and second, it could enable collaboration between
compressed modules across different layers. Sup-
pose that the neural network model consists of
n layers (l0, l1, . . . , ln−1). Each layer li encapsu-
lates a particular weight matrix Wli . Convention-
ally, each Wli matrix is considered separately dur-
ing the compression process. In the concatenated
mode, we propose compressing a single matrix
W = [Wl0 ,Wl1 , . . . ,Wln−1 ] resulted from con-
catenating all Wli matrices. Given the proposed
compression process, the compressed weight ma-
trices share a common decoder as illustrated in Fig-
ure 2.

Results Experiments discussed in this section
demonstrate that compressing concatenated weight
matrices performs better than compressing each
matrix separately in terms of the compressed model
performance as well as the compression process
time. Figure 3 presents the performance achieved
by models with compressed output-dense matrices
in separated and concatenated modes (similar ex-
periments are presented for key, query, and value
matrices in Figure 7 in Appendix A.2). We report
the initial perplexity and the final score achieved
on the MRPC and SST2 downstream tasks for dif-
ferent compression ratios. We observe the apparent
dominance of the concatenated mode over the sep-
arated mode for both perplexity and downstream
task performance. This may indicate that sharing
the decoder helps to reduce redundant information
and saves parameters for further knowledge encod-
ing.

Furthermore, the separated compression mode is
more computationally expensive at the initial stage
as we must compress each matrix individually. In
the concatenated mode, we perform only a single
compression process on the matrices’ concatena-
tion.

Considering the better performance and faster
training process, we only analyze the concatenated
weight matrices compression in the following sec-
tions.

4.3 Initial perplexity vs downstream tasks
performance

Perplexity is a popular measure determining how
well the language model predicts a particular se-
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Figure 3: Initial perplexity and downstream tasks performance of output-dense matrices’ compression in sepa-
rated/concatenated compression modes4. Using the concatenated mode generally results in better performance for
this module. We observe similar pattern for key, query, and value weight matrices (see Figure 7 in Appendix A.2).

quence of tokens (the lower the perplexity the bet-
ter). This section introduces that the masked lan-
guage model perplexity metric may be considered
as a low-cost yet effective way to evaluate a com-
pressed module. We show that in most cases the
compressed models with the lowest initial perplex-
ity yields the best performance when fine-tuned on
a downstream tasks.

Results We examined the relation between the
initial BERTBASE perplexity after applying com-
pressed weight matrices and its final performance
after fine-tuning on a downstream task. In Fig-
ure 8 (in Appendix A.3) we report results for token
embeddings matrix, self-attention keys, queries,
values and final output-dense matrices. We observe
that in most cases models with the lowest initial
perplexity result in the best performance on the
downstream task (MRPC ans SST2). Therefore,
we consider the masked language model perplexity
metric to be a good low-cost method to preliminar-
ily evaluate the quality of a compressed module.

4.4 Linear and non-linear decoder module

In this section we investigate the effect of using
different decoder module in the autoencoder model
on the final model’s performance. We experiment
with a simple linear layer decoder and two non-
linear decoder versions.

Results Figure 4 presents initial perplexity and fi-
nal downstream tasks performance achieved when
using linear and non-linear decoder in the autoen-

4Each point represents one hyperparameter setting.

coder model while compressing token embeddings
matrix. We may observe that for the token em-
beddings better final results are produced when us-
ing non-linear decoder. However, as demonstrated
in Figure 9 (in Appendix A.4), a different pattern
is apparent for key matrices where linear models
considerably outperform the non-linear versions in
most cases.

4.5 Preserving vector norm

Furthermore, we examine whether preserving the
original l2 vector norms of the vectors representing
rows in the reconstructed matrix to be the same as
in the original vectors is beneficial for the compres-
sion.

Results Figure 5 presents initial perplexity and
downstream tasks performance when enabling or
disabling the preserving vector norm technique for
the token embeddings matrix. We may see that
in most cases the version with enabled preserving
vector norm achieves better results. In addition to
token embeddings, in Figure 10 (in Appendix A.5)
we also demonstrate the effect of preserving l2 vec-
tor norm during compression of the output-dense
matrix.

4.6 Sensitivity

Most offline compression methods focus only on
the raw weight matrices taken from the considered
pre-trained model. However, we could also lever-
age the unsupervised upstream dataset to improve
the compression quality. Hsu et al. (2022) pro-
posed using additional weights computed on the
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Figure 4: Initial perplexity and downstream tasks performance for the compressed token embeddings matrix when
using either a linear or a non-linear decoder module in the autoencoder model. Here we present results for different
hyperparameters settings (see Appendix A.4 for further details). A non-linear decoder seems to be a better choice
for compressing this module.

entire upstream dataset to enhance the low-rank
factorization method. They used the Fisher Infor-
mation weights I that measure the amount of the
observable information in dataset D about a single
model parameter w. A feasible approximation Îw
of the Fisher Information Iw for parameter w may
be expressed as:

Iw = E[( ∂
∂w logP (D|w))2] ≈ 1

|D|
∑

d∈D(
∂
∂wL(d;w))

2 = Îw (3)

where L is the target pre-training task objective
(e.g., cross-entropy or MSE).

For the entire weights matrix W , Hsu et al.
(2022) presented even more simplified and com-
putationally effective row-wise diagonal Fisher In-
formation matrix Î , where each diagonal value is
the sum of the corresponding row of the Fisher
Information approximation matrix ÎW :

Î = diag(

√∑

j=1

ÎW1j , ...,

√∑

j=1

ÎWnj ). (4)

We present the distributions of the row-wise
Fisher Information for the upstream dataset (i.e.,
masked language modeling on the WikiText-103
dataset) in Figure 6. We notice that each distribu-
tion contains some outliers which point to the po-
tentially irrelevant weights in the considered weight
matrix. In this section, we demonstrate that the
weights’ relevance information may be leveraged
in the compression process to improve the quality
of compressed modules.

Hsu et al. (2022) used the Fisher Information di-
rectly on the original model weights in their Fisher-
Weighted SVD (FWSVD) approach:

W ≈ FWSV D(W ) = Î−1SV D(ÎW ). (5)

In contrast, our method does not modify the orig-
inal weight matrices but rather uses the Fisher Infor-
mation in the loss function to help the model focus
more on important weights. Moreover, we apply
different transformations on the original Fisher In-
formation values to modify the relative importance
of the module weights to reduce the undesirable in-
fluence of outliers (Appendix A.6 discusses various
transformations we experimented with for different
modules).

CR Method Perplexity SST-2
(Acc)

MRPC
(F1/Acc)

3 AE 118.41 91.97 88.53 / 84.31
AE+Fisher 33.27 92.55 88.36 / 83.33

10 AE 712.98 88.07 85.87 / 80.88
AE+Fisher 250.59 89.33 87.27 / 81.62

25 AE 4926.08 82.80 84.19 / 77.45
AE+Fisher 2728.41 83.83 84.35 / 77.70

Table 1: The effect of adding the Fisher Information
to the autoencoder-based (AE) compression of token
embeddings. We report the compressed BERTBASE

upstream task perplexity (on the WikiText-103 dataset)
and the downstream performance over two GLUE tasks.
Each AE result represents a median from 3 runs with
different seeds.
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Figure 5: The effect of preserving l2 vector norm on the perplexity and downstream tasks performance while
compressing the token embeddings matrix for different hyperparameters settings. Preserving norm seems to
generally improve the compression performance for this module.

CR Architecture MRPC
(F1/Acc)

SST-2
(Acc)

RTE
(Acc)

QNLI
(Acc)

QQP
(F1/Acc)

1 BERTBASE 88.85/84.07 92.32 65.70 90.66 87.49/90.71

3 SVD 84.35/77.45 86.70 62.09 85.61 84.64/88.38
Our 85.25/77.77 90.25 62.45 88.68 86.07/89.71

10 SVD 78.46/68.38 82.00 52.71 77.48 79.36/83.45
Our 81.45/71.08 83.94 57.76 81.48 81.57/85.75

25 SVD 77.10/66.42 78.33 53.43 62.66 74.21/79.10
Our 81.60/71.32 80.05 55.23 72.96 78.45/83.11

Table 2: Final BERTBASE model compression (token embedding matrix, all key matrices, and all output-dense
matrices). The baseline SVD algorithm compresses each matrix separately. Our autoencoder-based approach,
incorporates mechanisms developed in the ablation study presented in this work (see Table 8 for the detailed AE
design choices). For each setting, we present the median score from experiments with three different seeds. Our
approach consistently outperforms the classical factorization method.

Results Table 1 presents the benefits of incorpo-
rating sensitivity for compression of token embed-
dings where both upstream perplexity and down-
stream task performance is improved. We further
demonstrate the positive influence of Fisher infor-
mation for three transformer modules in Table 5
(in Appendix A.6) for both autoencoder and SVD
methods. Additionally, Table 6 (in Appendix A.6)
presents the compression performance provided by
AE using different Fisher Information transforma-
tions. We observe that incorporating the Fisher
Information with batch normalization into the com-
pression process considerably improves the model
perplexity as well as the downstream task perfor-
mance.

4.7 Comparison with other offline
compression approaches

In Table 5, we compare our approach with the most
popular matrix factorization method, namely Sin-
gular Value Decomposition (SVD), for the com-
pression of three different transformer modules.
We may see that our approach outperforms or is
competitive with SVD in most settings. Addition-
ally, in Appendix A.7, we discuss the poor perfor-
mance of Kronecker Product and Tucker Decom-
position (as two other factorization-based methods)
in the offline compression setting. We also com-
pare our solution to a non-factorization baseline,
namely pruning, and show that our autoencoder-
based method also outperforms it in most studied
settings (see Table 7 in Appendix A.7).
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Figure 6: Row-wise Fisher Information distribution
for three different modules in the BERTBASE model.
The Fisher information values are passed as importance
weights in the autoencoder loss function to help the com-
pression model focus more on the module’s important
weights. Appendix A.6 discusses different transforma-
tions applied to Fisher information to help the compres-
sion model handle outlier Fisher information values.

4.8 Compressing multiple types of
transformer modules

For the final experiment, we took into considera-
tion all the analysis insides presented in this work
and prepared the concluding experiment on offline
compression methods. In this experiment, we com-
pressed multiple BERTBASE weight matrices at
the same time (token embedding matrix, all key
matrices and all output-dense matrices). We com-
pared the offline compression quality produced by
the autoencoder approach and the baseline SVD
factorization matrix method.

For the compression with SVD we classically
compressed each matrix separately. We tested three
different seeds and various number of iterations for
SVD algorithm. For the autoencoder approach, we
compressed considered matrices by selecting ap-
propriate mechanisms based on our ablation study.
For both SVD and our approach, we report the me-
dian of the final scores from the experiments with
three different seeds to exclude potential outliers.
The compressed matrices with the lowest perplex-
ity were applied into BERTBASE that was then
fine-tuned on various NLP tasks (MRPC, SST-2,
RTE, QNLI and QQP). In the resulting table we
reported the median of the final scores to exclude
potential outliers.

Final experiment results are presented in Table 2.
Our approach consistently outperforms the SVD
baseline on all tested downstream tasks.5

4.9 Compression time

Generally, compressing modules using autoencoder
and SVD takes a comparable amount of time. How-

5The hyperparameter setting for autoencoder is provided
in Table 8 in Appendix A.8

ever, using concatenated mode (as proposed in our
paper) speeds up this process significantly. In Ap-
pendix A.9, we report compression times for differ-
ent modules (Table 9) and the compressed models’
inference and fine-tuning time.

5 Conclusions

This work comprehensively studies various meth-
ods for the offline compression of transformer lan-
guage models. We analyze various changes in the
proposed architecture and its optimization function.
We test different input modifications and evaluate
the compressed language model performance in
each scenario. By analyzing various compression
settings, we show that our autoencoder-based ap-
proach outperforms classical matrix factorization
on various NLP downstream tasks. Furthermore,
we believe the techniques analyzed in this study
might also be useful for low-cost compression of
different weight matrices unrelated to language
models.

Limitations

A limitation of our approach that we may iden-
tify is the need to analyze each module type to
determine the best mechanisms for its compression.
Our module-specific findings could be reflected in
corresponding modules in other language models,
but this would require further investigation. Addi-
tionally, A (reasonably-sized) unsupervised corpus
must also be used for computing the Fisher In-
formation for the compression procedure, which is
more computationally demanding than other offline
approaches suggested in this study.
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A Experiments

In this section, we describe the general assumptions
for the experiments and the specific setting of the
hyperparameters for each individual experiment.

We train the autoencoder model using gradient
descent procedure and Adam optimizer (Kingma
and Ba, 2014). In most of our experiments, re-
sulting compressed modules are inserted into a
pre-trained language model and fine-tuned on two
different downstream tasks from GLUE bench-
mark (Wang et al., 2018), MRPC and SST2, with
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a default learning rate λ = 2 · 10−5 proposed by
Hugging Face Transformers6 (Wolf et al., 2019).

A.1 Cosine distance objective

In Table 3 and Table 4, we report the effect adding
the cosine distance component to the compression
objective for the keys and output-dense matrices
from the BERTBASE model.

Experimental setup We study the effect of the
cosine distance component in the loss function for-
mulated in Equation (2) on the compression qual-
ity of self-attention keys matrices and the fully-
connected output-dense weight matrices. We com-
press each of these matrices from each layer sep-
arately and then apply all the compressed matri-
ces from certain type (keys or output-denses) to
the transformer model to evaluate the compres-
sion quality. We inspect the effect of various ra-
tios between Euclidean distance component (L2)
and the cosine distance component (CD) in Equa-
tion (2), namely 1:0, 10:1, 1:1, 1:10 which cor-
responds to β ∈ {0.0, 0.0909, 0.5, 0.909}. For
each model we test different learning rates λ ∈
{5 · 10−3, 10−3, 5 · 10−4, 10−4}.

Compression
ratio

Cosine
coefficient

Initial
perplexity

MRPC
(Acc)

SST-2
(Acc)

3

0.0 22.9 74.5 91.0
0.0909 22.2 76.2 92.1

0.5 25.5 77.2 92.1
0.9091 27.0 76.2 91.4

10

0.0 45.8 72.5 91.5
0.0909 32.5 72.0 90.7

0.5 34.4 70.3 91.5
0.9091 43.2 71.3 91.6

25

0.0 116.9 70.3 90.6
0.0909 167.6 69.6 90.2

0.5 115.3 69.1 90.9
0.9091 507.7 69.3 90.1

Table 3: The impact of adding a component respon-
sible for preserving the direction in the compression
of the key matrices from the self-attention block in
BERTBASE model. We report the best (across different
learning rates) initial model’s perplexity after compres-
sion as well as it’s performance on a downstream tasks
for the different cosine coefficients (β in Equation (2)).
Adding a component to the compression objective that
aims to preserve the direction of the vectors in recon-
structed matrix may bring a slight improvement on the
quality of the result.

6https://github.com/huggingface/transformers

Compression
ratio

Cosine
coefficient

Initial
perplexity

MRPC
(Acc)

SST-2
(Acc)

3

0.0 327.4 83.1 91.0
0.0909 332.8 82.3 91.5

0.5 599.2 79.4 90.5
0.9091 1510.4 75.2 90.5

10

0.0 1396.5 74.5 88.1
0.0909 1917.8 74.5 85.9

0.5 2099.3 72.0 84.9
0.9091 2326.1 71.8 84.0

25

0.0 1988.0 73.8 84.5
0.0909 2099.0 73.8 85.3

0.5 2144.7 72.5 84.7
0.9091 2148.6 72.5 84.6

Table 4: The impact of adding a component responsible
for preserving the direction in the compression of the
output-dense matrices in BERTBASE model. Different
cosine coefficients refer to β in Equation (2). We report
the score for the model with the best initial perplexity
across different learning rates as well as it’s performance
on MRPC and SST2 downstream tasks.

A.2 Concatenated and separated weight
matrices

In Figure 7 we present the performance achieved
by models with compressed key, query and value
matrices when using separated and concatenated
mode in the compression process.

Experimental setup With the objective of com-
paring the compression of separate and concate-
nated matrices, we analyze the various matrices in
the transformer architecture: the key, query, and
value matrices from the self-attention module and
output-dense matrix (one of the fully connected
end matrices). We optimize loss function described
previously in Equation (2) with 1:1 and 1:10 ratios
for the l2 norm loss coefficient and cosine distance
coefficient, respectively. The decoder in the au-
toencoder model is a single fully connected layer.
The model is trained with different learning rates
λ ∈ {5 · 10−3, 10−3, 5 · 10−4, 10−4}.

A.3 Initial perplexity vs downstream tasks
performance

In Figure 8 we present the initial perplexity and the
performance on MRPC ans SST2 downstream tasks
for the language model with various compressed
modules.

Experimental setup We examine the initial
masked language model perplexity and down-
stream tasks performance relation for token embed-
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Figure 7: Initial perplexity and downstream tasks performance with separated and concatenated compression mode
for output-dense weights matrices, queries weights matrices and values weights matrices in the BERT model.

ding matrix, self-attention matrices: keys, queries,
values and final output-dense matrices. For simplic-
ity of the experiment, we use the linear decoder in
the autoencoder model. The loss and learning rate
combinations for the models’ training are the same
as in experiment in previous section. We conducted
all experiments with two different seeds to obtain
more reliable correlation information.

A.4 Linear and non-linear decoder module

In Figure 9 we present the initial perplexity and fi-
nal downstream tasks performance achieved when
using linear and non-linear decoder in the autoen-
coder model for key matrices compression. Unlike
token embeddings for key matrices, the linear mod-
els outperform non-linear ones in most scenarios.
Similar set of experiments on output-dense ma-
trices also showed that linear models outperform
non-linear ones.

Experimental setup We conduct experiments
with the following settings: linear encoder/decoder
and non-linear encoder/decoder. For non-linear
encoder/decoder case, we examine architectures

with 1 and 2 hidden layers. As non-linear activation
functions we use LeakyReLU (Maas et al., 2013)
and Tanh. We investigate the loss configurations
( Equation (2)) with 1:0, 1:1, 1:10 and 1:100 ratios
of the l2 norm loss to the cosine distance loss.

A.5 Preserving vector norm
In Figure 10 we show the potential benefits of
preserving l2 vector norm during compression of
the output-dense matrices for two different down-
stream tasks .

Experimental setup We repeat the same set of
experiments as in the previous section (Section 4.4),
but each experiment is executed with and without
the preserving vector norm option enabled.

A.6 Sensitivity
In Table 5 and Table 6 we report the positive impact
of adding Fisher Information (with different coeffi-
cient transformations) for weight matrix compres-
sion for both autoencoder and SVD approaches.

Experimental setup We precompute the Fisher
Information coefficients for token embeddings, self-

1800



Figure 8: Initial perplexity and final accuracy on MRPC and SST2 downstream tasks for token embeddings,
output-dense, keys, queries and values BERTBASE matrices compression.

attentions keys and output-dense weight matri-
ces. We apply them the best hyperparameter set-
ting obtained from the previous experiments. We
use various transformations for Fisher Information
coefficients: exponential transformation xa with
a = 0.1, 0.5, 0.9, 2.0, logarithmic transformation
loge(x) +C with a C equals to minimum value so
that all x are positive, logarithmic transformation
loge(x) + C + 10, and raw Fisher Information co-
efficients without any transformation (Vanilla). For
some transformations, we also add a batch sum nor-
malization (+BN). We also report results without
using Fisher Information (No Fisher).

A.7 Comparison to other offline compression
methods

Kronecker Product offline compression In-
spired by a promising results achieved by using
a Kronecker product for training the transformer
model from scratch (Panahi et al., 2021) we have
attempted to produce a compression of the orig-

inal transformer matrices by using a Kronecker
product of two matrices approximating the origi-
nal matrix. We have trained these matrices using
the gradient descent algorithm. Unfortunately, the
results were unsatisfactory for each of the tested
settings. For example, for concatenated key matri-
ces and a compression ratio of 10 the perplexity for
the Kronecker product was around 1500, while for
the autoencoder perplexity below 50 is achieved in
many different settings.

Tucker decomposition offline compression
Moreover, we also experimented with the Tucker
decomposition (De Lathauwer et al., 2000) as an of-
fline compression method. For token embeddings
compression, we observed that the compressed lan-
guage model starts having high perplexities even
in low compression ratios. For instance, for CR=3,
the model perplexity becomes almost 1500, while
the autoencoder model can achieve perplexities
below 40 for the same compression ratio. This find-
ing is consistent with the observation of (Ren et al.,
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Word embeddings Output dense Keys

CR Method Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

3

SVD 1842.38 89.68 83.71 / 75.49 99.98 91.74 88.77 / 84.07 22.04 92.32 85.30 / 77.45
SVD+Fisher 20.20 91.86 88.62 / 83.82 71.05 91.74 88.74 / 83.82 20.67 91.74 86.22 / 78.92

AE 118.41 91.97 88.53 / 84.31 70.69 91.74 86.17 / 78.92 22.35 92.43 84.48 / 76.23
AE+Fisher 33.27 92.55 88.36 / 83.33 64.67 91.40 85.58 / 77.94 22.27 92.32 84.44 / 75.98

10

SVD 13196.30 83.37 82.85 / 74.02 989.18 89.56 83.92 / 75.49 30.75 91.97 81.54 / 73.04
SVD+Fisher 65.17 87.73 85.01 / 77.70 723.61 90.14 84.76 / 76.47 41.49 91.74 81.00 / 72.06

AE 712.98 88.07 85.87 / 80.88 1197.19 88.42 83.97 / 75.49 29.01 91.40 80.42 / 72.30
AE+Fisher 250.59 89.33 87.27 / 81.62 1249.62 89.45 84.64 / 75.98 29.30 91.40 81.34 / 72.79

25

SVD 20178.74 77.64 82.33 / 71.81 1603.45 88.19 84.09 / 75.25 52.50 90.71 78.19 / 69.36
SVD+Fisher 913.23 75.23 82.02 / 73.77 1205.34 87.27 83.88 / 74.75 80.14 91.17 74.36 / 65.69

AE 4926.08 82.80 84.19 / 77.45 1462.41 85.61 82.02 / 72.06 69.24 91.74 78.78 / 69.36
AE+Fisher 2728.41 83.83 84.35 / 77.70 1453.44 87.56 84.54 / 75.98 73.28 90.83 78.40 / 69.61

Table 5: The effect of adding the Fisher Information to the SVD-based and autoencoder-based (AE) compression.
We report the BERTBASE upstream task perplexity and the downstream tasks final scores. Each autoencoder result
represents a median from 3 runs with different seeds and each SVD score is a result of the best iteration from run
with one seed. For autoencoder model compression we selected the Fisher Information transformation for each
of the compressed modules based on the results from Table 6 (x0.5 +BN for word embeddings; x2.0 +BN for
output-dense matrices; loge(x) + C + 10 for key matrices).

Figure 9: Initial perplexity and downstream tasks perfor-
mance when using linear and non-linear decoder mod-
ule in the autoencoder model for the compression of the
keys matrix. Using a linear decoder generally appears
to be a better choice for this matrix.

2022) that even randomly initializing the factorized
tensors perform very close to the models initial-
ized by e.g., tucker decomposition. Therefore, we
also do not find Tucker decomposition an efficient
method in the context of offline compression.

Pruning We also compare our proposed autoen-
coder framework with a pruning baseline as an-
other offline compression baseline. The pruning
algorithm here is based on PyTorch unstructured L1
pruning (Paszke et al., 2019). For this experiment,

Figure 10: The effect of preserving l2 vector norm on
the perplexity and downstream tasks performance while
compressing the output-dense matrices. We can see
that enforcing norm for compression of this module
generally improves the result.

we compress token embedding, keys, and output-
dense matrices using either autoencoder or prun-
ing approaches. The models are evaluated on four
GLUE tasks as presented in Table 7. We can see
that autoencoder-based compression outperforms
pruning baseline in most studies settings, especially
when higher compression ratios are studied.
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Word embeddings Output-dense Keys

CR=3 Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

x2.0 + BN 30.88 92.32 87.97 / 82.84 64.67 91.40 85.58 / 77.94 22.44 92.20 83.94 / 75.25
x0.9 + BN 24.97 92.55 88.32 / 83.09 62.93 91.51 86.13 / 78.92 22.18 92.20 84.04 / 75.49
x0.5 + BN 33.27 92.55 88.36 / 83.33 65.07 91.40 85.81 / 78.19 22.32 91.97 83.89 / 75.25
x0.1 + BN 58.08 91.86 86.47 / 81.13 68.19 91.40 86.17 / 78.92 22.29 91.97 83.99 / 75.25
Vanilla+BN 24.68 92.55 87.25 / 82.11 62.60 91.63 86.08 / 78.43 22.39 92.20 83.70 / 74.51
Vanilla 564.37 87.96 87.32 / 82.35 66.91 90.77 85.99 / 78.68 22.73 92.55 83.62 / 74.75
loge(x) + C + 10 68.46 92.43 86.91 / 81.62 68.61 91.86 86.04 / 78.68 22.27 92.32 84.44 / 75.98
loge(x) + C 236.24 92.09 86.75 / 81.13 68.17 91.74 86.17 / 78.92 22.26 91.97 84.36 / 75.74

No Fisher 118.41 91.97 88.53 / 84.31 70.69 91.74 86.17 / 78.92 22.35 92.43 84.48 / 76.23

Word embeddings Output-dense Keys

CR=10 Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

x2.0 + BN 147.29 86.93 84.85 / 77.94 1249.62 89.45 84.64 / 75.98 30.78 91.40 79.73 / 70.10
x0.9 + BN 95.32 88.30 85.22 / 78.92 1251.53 88.19 84.04 / 75.25 30.47 91.28 79.46 / 70.10
x0.5 + BN 250.59 89.33 87.27 / 81.62 1195.41 88.53 83.81 / 75.00 29.81 91.40 80.60 / 71.57
x0.1 + BN 567.88 87.16 84.73 / 77.21 1148.47 88.42 83.68 / 75.25 29.26 91.17 80.74 / 72.06
Vanilla+BN 136.84 88.99 85.86 / 79.90 1251.65 88.65 83.79 / 75.00 30.53 91.40 78.85 / 69.36
Vanilla 15994.88 79.70 81.22 / 68.38 1547.14 87.16 83.20 / 74.26 31.65 91.63 77.82 / 68.14
loge(x) + C + 10 806.71 88.30 86.06 / 80.15 1145.25 88.42 83.71 / 75.00 29.30 91.40 81.34 / 72.79
loge(x) + C 854.19 88.07 86.25 / 80.39 1148.46 88.99 84.09 / 75.25 29.25 91.17 80.14 / 72.06
No Fisher 712.98 88.07 85.87 / 80.88 1197.19 88.42 83.97 / 75.49 29.01 91.40 80.42 / 72.30

Word embeddings Output-dense Keys

CR=25 Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

Perplexity
SST-2
(Acc)

MRPC
(F1/Acc)

x2.0 + BN 2779.96 80.73 83.99 / 75.98 1453.44 87.56 84.54 / 75.98 77.04 91.06 77.95 / 68.63
x0.9 + BN 1983.19 83.49 82.08 / 73.04 1371.93 87.96 83.31 / 74.26 71.90 90.60 79.66 / 70.34
x0.5 + BN 2728.41 83.83 84.35 / 77.70 1438.66 87.73 83.20 / 74.26 74.69 90.71 79.73 / 70.59
x0.1 + BN 5502.34 82.45 84.12 / 76.96 1447.31 85.89 82.58 / 73.28 74.34 91.17 78.68 / 69.85
Vanilla+BN 2167.99 80.50 82.60 / 73.77 1384.83 87.10 83.87 / 75.49 71.37 90.71 78.97 / 69.85
Vanilla 14880.66 77.29 80.19 / 70.10 1748.90 86.35 82.26 / 73.28 66.53 91.17 76.92 / 67.65
loge(x) + C + 10 5426.84 82.45 83.90 / 76.47 1449.46 86.93 82.89 / 73.53 73.28 90.83 78.40 / 69.61
loge(x) + C 4359.66 82.91 83.89 / 76.47 1446.55 86.58 81.79 / 72.06 76.81 91.06 77.78 / 68.63

No Fisher 4926.08 82.80 84.19 / 77.45 1462.41 85.61 82.02 / 72.06 69.24 91.74 78.78 / 69.36

Table 6: Incorporating Fisher Information coefficients in the autoencoder-based compression process for different
compression ratios (CR) on the SST2 and the MRPC tasks. The first column demonstrates the transformation(s)
applied to Fisher information before being passed to autoencoder loss function (more details in Appendix A.6).We
also report the perplexity of the compressed model on the upstream task. Each score is the median of experiment
results with three different seeds.

CR Architecture MRPC
(F1/Acc)

SST-2
(Acc)

RTE
(Acc)

QNLI
(Acc)

1 BERTBASE 88.85/84.07 92.32 65.70 90.66

3 Pruning 86.25/80.15 90.37 56.47 88.68
Our 85.25/77.77 90.25 62.45 88.68

10 Pruning 79.61/69.61 79.93 50.21 70.65
Our 81.45/71.08 83.94 57.76 81.48

25 Pruning 80.86/69.36 75.11 51.97 60.57
Our 81.6/71.32 80.05 55.23 72.96

Table 7: Comparison of BERTBASE model compression using autoencoder (AE) and pruning approaches (com-
pressing token embedding matrix, all key matrices and all output-dense matrices). For AE we present the median
score from experiments with 3 different seeds.
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A.8 Hyperparameter setting for the final
experiment

This section presents the hyperparameter setting
used for the Section 4.8 where multiple modules
(token embedding, keys and output-dense) are com-
pressed together. The autoencoder hyperparame-
ters setting for this experiment can be found in Ta-
ble 8.

A.9 Compression time
In Table 9 we report compression times for keys,
output-denses and token embeddings matrices from
BERTBASE model using autoencoder and SVD
compression approaches. For autoencoder we
present times for both separated and concatenated
matrices compression (as proposed in our paper)
showing the advantage of using the latter approach.

We additionally performed experiments to
compare the inference time of uncompressed
BERTBASE with the extreme case of CR=25
using our approach (AE) and the SVD base-
line. Compressed modules are token embed-
dings, key, and output-dense modules. We ob-
serve that inference times are very similar, with
a slight increase in inference time when our model
is used. In particular, the evaluation times (in
seconds) for BERT/SVD/AE were respectively
0.474/0.477/0.493 (for the MRPC dataset) and
0.987/0.997/1.034 (for the SST2 dataset). More-
over, fine-tuning the BERTBASE model using com-
pressed modules from autoencoder for the bigger
datasets in GLUE, namely QNLI and QQP, takes at
most 15% and 25% longer than the SVD baseline,
respectively. It is also worth noting that when a
linear autoencoder is incorporated, the inference
time is the same as the SVD baseline.
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Module CR Learning
rate

Cosine:L2

coefficients Decoder Enforce
norm

Fisher
transformation

Token embeddings
3 5 · 10−4 10:1 Non-linear (1 hidden layer) Yes x0.5 +BN
10 5 · 10−4 10:1 Non-linear (2 hidden layers) Yes x0.5 +BN
25 10−3 10:1 Non-linear (1 hidden layer) Yes x0.5 +BN

Output-denses
3 10−3 1:10 Linear Yes x2.0 +BN
10 10−4 1:10 Linear No x2.0 +BN
25 5 · 10−4 0:1 Linear No x2.0 +BN

Keys
3 5 · 10−4 0:1 Linear Yes loge(x) + C + 10
10 5 · 10−4 1:1 Linear No loge(x) + C + 10
25 10−3 0:1 Linear No loge(x) + C + 10

Table 8: The best hyperparameters for the BERTBASE model compression described in Section 4.8. In this
experiment, token embedding matrix, all keys and all output-dense matrices are compressed using our proposed
autoencoder-based framework.

Method Mode CR Token
embeddings Keys Output-denses

SVD separated 3 ∼9.5min (∼5.5*12)min (∼6.0*12)min
SVD separated 10 ∼8.0min (∼5.5*12)min (∼6.0*12)min
SVD separated 25 ∼7.5min (∼5.5*12)min (∼6.0*12)min
AE separated/concatenated 3 ∼7.7min (∼5.5*12)min/∼6.1min (∼6.0*12)min/∼6.5min
AE separated/concatenated 10 ∼7.5min (∼5.5*12)min/∼6.0min (∼6.0*12)min/∼6.1min
AE separated/concatenated 25 ∼7.5min (∼5.5*12)min/∼5.9min (∼6.0*12)min/∼6.1min

Table 9: Training time to retrieve compressed modules (key, output-dense, and token embeddings) of BERTBASE

model using autoencoder (AE) and SVD approach. For the AE, we provide training times for the separated and
concatenated modes to demonstrate another benefit of using the concatenated version, given its much better training
time.
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