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Abstract

Leveraging contextual knowledge has become
standard practice in automated claim verifica-
tion, yet the impact of temporal reasoning has
been largely overlooked. Our study demon-
strates that time positively influences the claim
verification process of evidence-based fact-
checking. The temporal aspects and relations
between claims and evidence are first estab-
lished through grounding on shared timelines,
which are constructed using publication dates
and time expressions extracted from their text.
Temporal information is then provided to RNN-
based and Transformer-based classifiers before
or after claim and evidence encoding. Our time-
aware fact-checking models surpass base mod-
els by up to 9% Micro F1 (64.17%) and 15%
Macro F1 (47.43%) on the MultiFC dataset.
They also outperform prior methods that explic-
itly model temporal relations between evidence.
Our findings show that the presence of tempo-
ral information and the manner in which time-
lines are constructed greatly influence how fact-
checking models determine the relevance and
supporting or refuting character of evidence
documents.1

1 Introduction

Automatically verifying information and flagging
engineered falsities have been high on the politi-
cal, media, and - subsequently - research agenda
for quite some time (European Commission, 2022).
However, the role of time in machine-assisted fact-
checking has been inadequately investigated. Time
can affect the veracity of previously uttered claims
and the relevance of supporting or refuting evi-
dence. This is evident in research, for example,
where newly acquired knowledge may question,
confirm, or refute established facts. This study pro-
poses to ground claims and associated evidence in

1The code of this paper is publicly avail-
able: https://github.com/Marlon668/
VerificationClaimsWithTimeAttribution.
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Figure 1: An evidence-based fact-checking model veri-
fies a given claim against a set of Web documents serv-
ing as supporting or refuting evidence. In this study, we
let the model implicitly reason over the temporal aspects
of the claim and evidence, and their relations. For this,
both inputs are grounded at two levels on a shared time-
line: at the document level using their publication dates
(in yellow, dotted line) and at the content-level using
time expressions in their text (in blue, dashed line).

time and incorporate temporal reasoning abilities in
the claim verification process of computational fact-
checking models (Figure 1). Here, temporal rea-
soning is implicit since the models are not expected
to make explicit predictions about time. They in-
stead learn from data how to leverage temporal
information.

Grounding a claim or evidence document in time
is a complex task. On the one hand, it can be
achieved through document-level grounding, which
involves positioning the entire document on a time-
line based on its publication date. On the other
hand, a document may discuss several events that
have occurred in the past, present, or future. To fa-
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cilitate more fine-grained grounding on the content
level, time expressions in the text are used to to
place the document on multiple positions on a time-
line. Such expressions can be explicit (e.g., 27 June
2022), implicit (e.g., Christmas 2022), and relative
(e.g., mid-September), which may require addi-
tional temporal information for grounding (Ströt-
gen and Gertz, 2013; Leeuwenberg and Moens,
2019). In this study, we ground claims and evi-
dence on both the document and content level. This
is accomplished by extracting and normalising their
publication date and in-text time expressions, and
subsequently relating them in terms of distance in
time. This enables fact-checking models to reason
over the temporal relations between a claim and its
evidence on more than one level.

Contributions This study demonstrates that rea-
soning over temporal aspects and relations of
claims and evidence not only improves fact-
checking models’ prediction performance but also
influences their estimation of the relevance and
the supporting/refuting character of the evidence.
The effects on performance are even reinforced
when claims and evidence are grounded at both
the document and content level, showing the ap-
propriateness of multi-level temporal reasoning in
automated fact-checking.

2 Related Work

Automated fact-checking is usually a two-phase
process consisting of claim detection/selection and
claim verification (Zeng et al., 2021; Guo et al.,
2022). Time is arguably important in both phases.
When detecting and ultimately selecting claims to
fact-check, fact-checkers heed the current interest
of the public in certain topics and election cycles,
and rank the claims accordingly (Allein and Moens,
2020). Moreover, many selected claims mention
dates or time periods (Hidey et al., 2020). Shaar
et al. (2020) looked in the past and filtered out
claims that are semantically similar to previously
fact-checked claims to expedite the claim selection
process.

While evidence-based claim verification has
been widely studied (Zhong et al., 2020; Liu et al.,
2020; Chen et al., 2021; Si et al., 2021; Jin et al.,
2022; Xu et al., 2022; Hu et al., 2022), few stud-
ies explicitly focused on incorporating temporal
reasoning in the verification process. Zhou et al.
(2020) constructed (entity, value, time)-tuples rep-
resenting supposedly temporal facts and verified

their correctness using probabilistic graphical mod-
els. Allein et al. (2021) constrained the evidence
ranking in fact-checking models on time using
silver-standard evidence rankings respecting four
assumptions on temporal relevance. Instead of ver-
ifying the temporal correctness of claim tuples or
explicitly enforcing time-dependent evidence rank-
ings, we let fact-checking models reason implicitly
over temporal aspects of claims and evidence in
natural language when checking the claims.

3 Task Description

Classifier f takes a textual claim c and an asso-
ciated set of N text documents {ei}N serving as
evidence of c, and returns a claim veracity label y.

f : c, {ei}N −→ y (1)

To allow f to reason over temporal aspects of c
and ei, we extract and normalise publication dates
and time expressions in c and ei, and assign them
to time buckets. Temporal representations ct and
ei,t are sequences of time bucket indices and are
given as additional input to f :

f : c, ct, {ei}N , {ei,t}N −→ y (2)

4 Two-Level Grounding and Reasoning

To obtain temporal representations ct and ei,t, we
ground c and ei in time by positioning them on a
joint timeline using either their publication date
(ct = cdoct ; ei,t = edoci,t ) or in-text time expressions
(ct = ccont ; ei,t = econi,t ). A fact-checking model
can then reason over their temporal aspects and
relations at the document level or the content level,
respectively (Figure 2).

4.1 Reasoning at Document Level
The publication date of c serves as reference point
for grounding ei. This way, we lay bare the tem-
poral relation between c and ei at the document
level. We adopt the approach of Allein et al. (2021)
and compute the distance in days ∆pub ∈ Z be-
tween the publication date of c and that of ei, where
∆pub < 0 indicates that ei was published before c,
∆pub = 0 indicates that ei and c were published on
the same day, and ∆pub > 0 indicates that ei was
published after c. The publication date of ei is then
assigned to a time bucket bpub ∈ T doc given ∆pub.
Ultimately, the document-level temporal represen-
tation of ei, edoci,t , is a sequence of indices corre-
sponding to bpub in T doc, with |edoci,t | = 1 since ei
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Figure 2: Illustration of two-level grounding: (a) at the document level using publication dates (PD) and (b) at
the content level using in-text time expressions (TE). All PD and TE are assigned to time buckets bpub and btext,
respectively. V means that a publication date was found (only for claims) and X that no publication date was found.

has only one publication date. When a publication
date for ei could not be extracted, edoci,t corresponds
to the index of a dedicated time bucket indicat-
ing date unavailability. Lastly, the document-level
temporal representation of the claim, cdoct , merely
indicates the availability of a publication date for
the claim. We motivate and discuss the choice of
T doc in Section 4.3.

4.2 Reasoning at Content Level

While the document-level approach grounds c and
ei as whole documents, the content-level approach
places them on various positions on a timeline us-
ing time expressions found in their text. Each time
expression in ei and c is first extracted and nor-
malised, and its distance in days ∆exp ∈ Z to the
publication date of c is computed. They are then
assigned to time buckets btext ∈ T con given ∆exp.
The choice of T con is discussed in Section 4.3. The
content-level temporal representation of ei is econi,t

is a sequence of indices where each index corre-
sponds to a btext ∈ T con. The length of econi,t equals
the number of time expressions found in ei, and
the jth element of econi,t corresponds to the index of
the time bucket of the jth time expression in ei. A
time bucket index can occur multiple times in econi,t .
The same grounding procedure is applied to obtain

content-level temporal representation ccont for c. In
contrast to cdoct , ccont does not merely reflect the
availability of a publication date for c but grounds
time expressions in the claim text with respect to
the claim’s own publication date. The content-level
grounding approach allows a fact-checking model
to reason over the temporal aspects of the events
discussed in ei and c, and their temporal relation to
the publication date of c.

4.3 Creating Time Buckets

Time buckets bpub ∈ T doc and btext ∈ T con repre-
sent time intervals with respect to the publication
date of c (e.g., bpub = [1, 4] indicates that ei was
published between 1 and 4 days after c had been
published). Following the cluster hypothesis of Jar-
dine and van Rijsbergen (1971) which states that
documents in a cluster contain similar information,
the similar information in a bucket is the distance
in time to c. For document-level grounding and rea-
soning, the construction and choice of T doc goes
as follows: (1) ∆pub for each ei in the training set
is computed; (2) all ∆pub are ordered in ascend-
ing order; (3) and, finally, all ∆pub are subdivided
in 20 quantiles, containing a similar number of ei
(µ = 8530.5, σ = 266.87). Each quantile repre-
sents one bucket bpub. Various numbers of quantiles
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were tested, and 20 returned the best performance
on the validation set. Three buckets denoting a lack-
ing publication date for ei, an available publication
for c, and a lacking publication date for c are added;
hence, |T doc| = 23. A similar procedure is applied
for constructing T con using ∆exp (|T con| = 24,
µ = 13390.75, σ = 2050.4). However, no extra
buckets btext denoting (un)availability of date are
added. An overview of all bpub and btext can be
found in Appendix A. Note that the intervals of
bpub and btext become smaller when its bounds ap-
proach 0, allowing for more fine-grained reasoning
for evidence published around or at the same time
as the claim. Time buckets approaching 0 (i.e., ei
situates around the same time as c) have smaller
intervals than those far from 0, with even a dedi-
cated time bucket for those evidence published or
discussing events happening on the same day as the
claim. The advantage of using such time buckets is
that the model is more robust against bias towards
larger buckets. In the fact-checking models, each
bucket corresponds to a unique embedding stored
in a randomly-initialised time embedding matrix,
which is updated during model training.

5 Methodology

5.1 Fact-Checking Model

We take the Joint Veracity Prediction and Evi-
dence Ranking model introduced in Augenstein
et al. (2019) as base model (Figure 3). Taking
c and ei represented by their word embeddings
w ∈ RD1 , the text encoder encodes them to their
latent representations h(c) and h(ei) ∈ RD2 . Meta-
data m linked to c is encoded in parallel, yielding
g(m). Next, h(c), h(ei), and g(m) are combined
into a joint claim-evidence representation si using
the matching approach introduced by Mou et al.
(2016):

si = [h(c);h(ei);h(c)−h(ei);h(c) ·h(ei); g(m)]
(3)

with [; ] denoting concatenation, and [·] the dot
product. The evidence scorer projects each si to
oi ∈ R, forming evidence score vector o ∈ RN .
The label scorer projects each si to its label score
vector qi ∈ RL forming scoring matrix Q ∈ RN×L,
with L the number of veracity labels. o⊺ ·Q gives
a final score vector for all labels L, to which a soft-
max is applied to obtain a probability distribution
over all veracity labels.
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Figure 3: Overview of the fact-checking model, where
temporal information on claim and evidence (in blue) is
integrated before text encoding (local level; in green) or
after text encoding (global level; in yellow).

5.2 Incorporating Temporal Reasoning

Temporal representations ct and ei,t are trans-
formed to their time embeddings, ĉt and êi,t, and
given as additional model input. The embedding
dimensions depend on the stage at which they are
integrated in the model.

Local integration ct and ei,t are integrated be-
fore encoding claim and evidence c and ei to h(c)
and h(ei). Time embeddings ĉt, êi,t for each time
bucket index in ct and ei,t are taken from the em-
bedding matrix and projected onto the same dimen-
sion as the word embeddings w ∈ RD1 of tokens
in c and ei using a linear transformation layer l.

For document-level reasoning (DLloc, eq. 4),
the embeddings (there is max. one publication
date; hence one time embedding per document) are
prepended to those of c and ei. These are then sent
to the text encoder.

c = [l(ĉdoct );w0, ..., w|c|]

ei = [l(êdoci,t );w0, ..., w|ei|]
(4)
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For content-level reasoning (CLloc, eq. 5), local
integration is more complex. Firstly, ccont and econi,t

may refer to more than one time bucket as there
may be more than one time expression in c and ei.
Secondly, the position of a time expression and the
predicate it belongs to may provide rich informa-
tion about a mentioned event. We first identify the
type of each token in c and ei (see Table 1).

Position, predicate, and time expression marking
Tokens Storm Al- berto expected to make landfall to- morrow
Type O O O O O B-PRED O B-TIME TIME

Pos / / / / / +2 / / /
Time / / / / / / / 0 /

Table 1: Additional sentence preprocessing when inte-
grating ccont and econi,t at the local level. The predicate
(PRED) and the time expressions (TIME) are marked,
with B indicating their first token, and the token distance
between B-TIME and B-PRED is computed.

We then introduce three new embeddings: pred-
icate embedding pr ∈ RD1 marks the predicate,
position embedding po ∈ RD1 marks the posi-
tion of the predicate, and expression embedding
te ∈ RD1 marks the time expression. These addi-
tional embeddings are learned during training. The
word embedding w of a token in c depends on that
token’s type (same for ei and econi,t ):

w =





γw + (1− γ)(l(ĉcont,j ) + te) if B-TIME

γw + (1− γ)te if TIME

γw + (1− γ)(pr + po) if B-PRED

γw + (1− γ)pr if PRED

w otherwise

(5)

Embedding ĉcont,j refers to the embedding of time
bucket btext to which the jth time expression in c
refers.

Global integration ct and ei,t are integrated af-
ter c and ei have been transformed by the text en-
coder to their latent representations h(c) and h(ei)
∈ RD2 . An embedding for each time bucket in
ct and ei,t is taken and projected onto the same
embedding space RD2 using a linear transforma-
tion layer k. If ct or ei,t are represented by more
than one time bucket, the embeddings are averaged.
Fusion is performed using a weighted sum. For
document-level reasoning (DLglob):

h(c) = αh(c) + (1− α)k(ĉdoct )

h(ei) = αh(ei) + (1− α)k(êdoci,t )
(6)

And for content-level reasoning (CLglob):

h(c) = αh(c) + (1− α)Avg(k(ĉcont ))

h(ei) = αh(ei) + (1− α)Avg(k(êconi,t ))
(7)

with Avg the average. We also experiment with
a combination of document-level and content-
level reasoning (DL+CLglob, eq. 8) where tempo-
ral information from both levels is provided to the
model:

h(c) = αh(c) + βk(ĉdoct )

+ (1− α− β)Avg(k(ĉcont ))

h(ei) = αh(ei) + βk(êdoci,t )

+ (1− α− β)Avg(k(êconi,t ))

(8)

6 Experiments

6.1 Dataset
Experiments are conducted on MultiFC2 (Augen-
stein et al., 2019), a large-scale dataset containing
34,924 English claims from various fact-checking
websites (= ‘domains’) where each claim is asso-
ciated with at most 10 a posteriori retrieved Web
documents (319,721 documents in total). It also
provides metadata on speaker, category, tags, and
linked entities regarding the claim. We refer to Au-
genstein et al. (2019) for a more detailed descrip-
tion of the data. Although other datasets for fact-
checking have been proposed (Zeng et al., 2021),
they either lack naturally occurring claims, publica-
tion dates, or multiple evidence documents (Thorne
et al., 2018; Jiang et al., 2020; Ostrowski et al.,
2021; Schuster et al., 2021). Nonetheless, the large
size, wide diversity of topic and data sources, and
high quality of the MultiFC dataset should be suf-
ficient for showcasing the appropriateness of our
approach.

6.2 Time Extraction and Normalisation
In this section, we discuss the procedure for extract-
ing and normalising publication dates and in-text
time expressions.

6.2.1 Publication Dates
The dataset provides the publication date of a claim
as structured metadata. The date is represented as
Year-Month-Day using rule-based temporal tagger
HeidelTime (Strötgen and Gertz, 2013). The pub-
lication date of an evidence document, however,

2The data is publicly available on CodaLab.
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is not given in the metadata. Since its publication
date is often communicated before the ellipsis (‘...’)
at the beginning of its text, we can automatically
extract the date from the text (Allein et al., 2021).
If we cannot extract a date at that position, we look
for occurrences of ‘published’ or ‘posted’ in com-
bination with a date. We again use HeidelTime for
structuring the publication dates. In total, we ob-
tain a publication date for 34,808 (99.67%) claims
and 213,165 (66.67%) evidence documents.

6.2.2 In-Text Time Expressions

Extracting and normalising in-text time expressions
is more challenging as they can be implicit or rel-
ative. Since in-text time expressions are usually
not annotated in datasets used for fact-checking,
we need to reside to pretrained methods for ex-
tracting them. We implement the Open Informa-
tion Extraction (OIE) model of Stanovsky et al.
(2018), which parses a sentence and labels its ar-
guments. In this work, we focus on temporal ar-
guments (ArgM − TMP ). Since inaccurate use
or absence of capital letters has been shown to de-
crease the performance of OIE models (Alam and
Awan, 2018), the OIE model is expected to return
a high number of inaccurate parses for capitalised
news headlines – which make up a large portion of
the claims in the data. We therefore implement a
pretrained Named Entity Recognition (NER) model
(Peters et al., 2017) to first detect people, locations,
and organisations in the text. Then, the first token
of each entity is capitalised while all other tokens
are lowercased. Although capitalised temporal ex-
pressions such as weekdays and holidays are au-
tomatically lowercased too, we observed a higher
quality of OIE parses when adopting this approach.
We normalise the extracted temporal expressions
using HeidelTime. The document creation time
(DCT) of a piece of information, in this study the
publication date, is used as reference point for nor-
malising in-text temporal expressions. In total, we
obtain 321,278 in-text time expressions.

Quality assessment Implementing pretrained ex-
traction and normalisation models inevitably intro-
duces noise in the data. We therefore manually
assess the quality of the NER, OIE, and Heidel-
Time models to ensure that the noise is limited.
The assessment is performed on a randomly se-
lected set of 10 claims and their accompanying
evidence documents (104 in total) from the dataset,
and performance is measured using precision (P),

recall (R), and F1. Regarding NER, we investi-
gate whether all entities have been recognised and
completely extracted. The label correctness does
not need to be evaluated. NER performance is
0.9054/0.9134/0.9094 (P/R/F1). For the OIE task,
we assess whether all temporal expressions have
been correctly extracted and parsed. OIE perfor-
mance is 0.9608/0.5568/0.7050 (P/R/F1), indicat-
ing that while quite some time-related expressions
have not been extracted, those found have been cor-
rectly parsed. Lastly, we evaluate the normalisation
of the found expressions: HeidelTime performance
is 0.9736/0.8409/0.9024 (P/R/F1). In all, we deem
the quality of the pretrained extraction and normal-
isation models sufficiently high.

6.3 Experimental Setup

Hyperparameter settings Both c and ei are to-
kenised3 and represented using word embeddings
(size = 300 (BiLSTM); 768 (DistilRoBERTa)).
We experiment with two neural text encoders for
encoding c and ei: a two-layered bidirectional
LSTM with skip-connections (dropout = 0.1,
hidden size = 128) and a pretrained Sentence-
DistilRoBERTa, which is a faster, distilled version
of Sentence-RoBERTa (Sanh et al., 2019; Reimers
and Gurevych, 2019). For sake of brevity, we con-
tinue to refer to this model as RoBERTa. Metadata
m is represented as a one-hot vector and encoded
by a CNN (filter size = 3, kernel size = 3) with
ReLU activation and 1D max pooling. The label
scorer consists of two fully-connected layers (hid-
den size = 100; 50), both with ReLU activation.
The evidence scorer is a fully-connected layer (hid-
den size = 100) with Leaky ReLU activation. All
parameters except those of the pretrained RoBERTa
model are initialised following a Xavier Uniform
distribution. More detailed settings for reproducing
the experiments, such as hyperparameter tuning, is
provided in Appendix B.

Pretraining and fine-tuning The experiments
are conducted on the disjunct, label-stratified train
(80%), validation (10%), and test set (10%) pro-
vided by Augenstein et al. (2019). We adopt the
pretraining and fine-tuning setup of Allein et al.
(2021) to ensure transparent comparison. During
pretraining, the model is trained on all 26 fact-
checking domains where each domain is only pre-
sented once in each epoch (batch size = 32 (BiL-

3Huggingface implementation of the DistilRoBERTa tok-
enizer: sentence-transformers/all-distilroberta-v1.
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BiLSTM RoBERTa
Micro F1 Macro F1 Fusion Weights Micro F1 Macro F1 Fusion Weights

Base .5520 (.0023) .3239 (.0064) - .6952 (.0195) .5532 (.0246) -

DLloc .5501 (.0095) .3343 (.0277) - .5640 (.0084) .3357 (.0174) -
DLglob .6006 (.0090) .4271 (.0107) α = 0.90 .6973 (.0439) .5608 (.0488) α = 0.75

CLloc .6098 (.0028) .4491 (.0120) γ = 0.50 .5685 (.0075) .3601 (.0090) γ = 0.10
CLglob .6089 (.0167) .4425 (.0167) α = 0.25 .6882 (.0208) .5744 (.0376) α = 0.10

DL+CLglob .6417 (.0033) .4743 (.0080) α = 0.20 .6947 (.0135) .5739 (.0332) α = 0.20
β = 0.40 β = 0.20

Table 2: Average test results over three (BiLSTM) and two (RoBERTa) runs - with standard deviation in brackets -
aggregated over all 26 fact-checking domains. Experiments are conducted for document-level (DL) and content-level
(CL) temporal reasoning, where temporal information is integrated before (loc) or after (glob) encoding.

STM); 16 (RoBERTa)), mitigating model bias to-
wards larger domains. After each epoch, the batch
order is randomly shuffled, and Adam with linear
scheduler (lr = 1e−4 (BiLSTM)) or RMSprop (lr
= 2e−4 (RoBERTa)) optimizes the model param-
eters using the cross-entropy loss on the predic-
tion output. The best-performing model for each
fact-checking domain is selected based on the val-
idation loss. Each domain-specific model is then
fine-tuned on only data from that domain and the
best-performing model is again selected based on
the validation loss.

7 Results

Table 2 reports model performance on the test
set, aggregated over all domains, in terms of Mi-
cro F1 and Macro F14. The results show that
the effect of temporal reasoning depends on (a)
the level at which temporal information is inte-
grated in the model (global vs. local), (b) the
grounding/reasoning level (document vs. con-
tent), and (c) the model architecture (BiLSTM
vs. RoBERTa). Regarding the integration level,
global integration (glob) substantially surpasses lo-
cal integration (loc) for document-level reasoning
(both models; .5501/.3343 −→ .6006/.4271 [BiL-
STM]; .5640/.3357 −→ .6973/.5608 [RoBERTa])
and content-level reasoning (.5685/.3601 −→
.6882/.5744 [RoBERTa]). Regarding the tem-
poral grounding and reasoning level, the results
show that the combination setup where claim
and evidence are grounded at both the document
and content level (DL+CL) yields the overall
highest performance for BiLSTM (.6417/.4743),
while marginally improving RoBERTa by 2%
Macro F1 (.5739). Lastly, temporal reasoning ap-

4Computed using the scikit-learn Python package.

pears to impact the prediction performance of the
less parameterised BiLSTM model more strongly
than that of the Transformer-based RoBERTa
model: .5520/.3239 −→ .6417/.4743 [BiLSTM];
.6952/.5532 −→ .6947/.5739 [RoBERTa]. A similar
effect was observed by Allein et al. (2021), who
explicitly modeled temporal relations between a
claim and its evidence by constraining model pa-
rameters on evidence rankings following various
assumptions on temporal relevance. This could
be attributed to the expressive power of large pre-
trained Transformers-based language models and
the orders of magnitude of their pretraining set size.

Table 3 shows the comparison between our best
performing set-up with the baseline from Augen-
stein et al. (2019) and the model with explicit tem-
poral reasoning from Allein et al. (2021). Overall,
our approach outperforms the baseline and the ex-
plicit temporal reasoning approach, especially on
the Macro F1-score. This demonstrates the appro-
priateness of our implicit, two-level temporal rea-
soning method over an approach without temporal
reasoning and one that explicitly models temporal
relations using only publication dates.

8 Discussion

Weighting text and time We ran experiments
with various weight values (α, β, γ) for combin-
ing the text features of a claim and its evidence
with their temporal information5. Table 2 presents
the best-performing weight values for each setting
based on the validation loss. When reasoning over
the document-level temporal relations (DL), the
results suggest that higher importance should be
attributed to the text of the claim and its evidence

5A full overview of tested values and the tuning approach
is provided in Appendix A.
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BiLSTM Transformer
Micro F1 Macro F1 Micro F1 Macro F1

No temporal reasoning (Augenstein et al., 2019) .5520 .3239 .6952 .5532
Explicit temporal reasoning (Allein et al., 2021) .6265 .3673 .5921† .3135†

Implicit temporal reasoning (Ours) .6417 .4743 .6947 .5739

Table 3: Results of our implicit temporal reasoning approach vs. the baseline results of Augenstein et al. (2019)
(our implementation) and the explicit temporal reasoning method of Allein et al. (2021), with a BiLSTM and a
Transformer text encoder. †: DistilBERT (Sanh et al., 2019) instead of RoBERTa.

rather than to their temporal information. How-
ever, this is the opposite when reasoning at the
content level (CL). The combined setup (DL+CL)
aligns with (CL) by attributing more importance
to time than text. This suggests that specially in-
text time expressions carry useful information for
fact-checking a claim.

Impact on evidence relevance and label scores
We analyse how and to which extent temporal rea-
soning influences a model’s assessment of the rel-
evance (oi) and supporting/refuting nature (qi) of
evidence in relation to a claim. Since the model
computes oi and qi for each evidence document
associated with the claim, a ranking of all evi-
dence can be derived based on either oi or qi. We
then measure the difference in such rankings be-
tween the base and the best-performing temporal
models. Following Allein et al. (2021), we rely
on the Spearman’s rank correlation rs, which is
a non-parametric, distribution-independent metric
for computing the correlation between two rank-
ings. The correlation between the base model
and the temporal reasoning models with regard
to evidence relevance ranking is very weak, with
0 < |rs| < 0.19 for both BiLSTM and RoBERTa.
Also between the temporal models, those correla-
tions are generally very weak. Interestingly, the
impact of implicit temporal reasoning on a fact-
checking model’s estimation of evidence relevance
is arguably as strong as when performing explicit
temporal reasoning (Allein et al., 2021). The cor-
relations fall within the range of .17 < |rs| < .24.
The correlations regarding label scoring (qi) are
comparable to those for evidence ranking, ranging
from weak (0.2 < |rs| < 0.39) and to very weak.
We can thus conclude that a model’s estimation
of the relevance and supporting/refuting nature of
evidence documents is strongly influenced not only
by the ability to reason over time, but also by the
way a claim and its evidence are grounded on a
timeline.

Importance of time in final prediction While
we have shown that temporal reasoning strongly in-
fluences relevance estimations and label scores per
evidence document, we now measure how much
the time-aware fact-checking models rely on tem-
poral information for their final veracity predic-
tions. For this, we attribute the prediction of the
models to the input using integrated gradients (Sun-
dararajan et al., 2017). This attribution technique
measures the attribution strength of text and time
features on the final prediction. We focus on the
base BiLSTM model and its best-performing tem-
poral variants. Given the high dimensionality of
text and time embeddings, the attribution strengths
across all dimensions are summed to obtain an total
attribution value for claim, evidence, and time (ct
and ei,t). Figure 4 illustrates the attribution values
of a single data entry and presents the ranking of
evidence text and time according to their attribu-
tion strength. The models typically attributed the
prediction to both the claim and evidence, with a
stronger emphasis on the collected evidence than
on the claim. However, when time information
was introduced, the attribution strength of claim
and evidence texts strongly decreased, especially
when evidence was grounded at the content level
(CL/DL+CL). This indicates that time indeed influ-
ences model prediction.

Interestingly, the attribution ranking of temporal
information was found to be distinct from that of
the content, as demonstrated by the example in Fig-
ure 4. The publication dates that are closer to that
of the claim obtain higher attribution strength than
those far from the claim. In line with this, statisti-
cal correlation testing between ei,t and label scores
qi - where each label score in qi for ei,t in the same
bucket is compared to the label score in qi for ei,t
in different buckets - show that evidence contained
within the same time bucket tend to prefer the same
prediction labels as their label rankings strongly
correlate (ρ = 0.7). We can thus conclude that time
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Claim: From                                   ,Australians will begin receiving survey forms for the Australian Marriage Law Postal Survey, 
which the Government has commissioned in place of a plebiscite.
Title: Fact check: Is Australia the only advanced English-speaking country without same-sex marriage?
Publication date: November 30 2017
Label: in-the-red (chosen from 1: in-between, 2: in-the-red,3: in-the-green)

Evidence 2: 
Title: 'Turnbull Government - Wikipedia'
Text: The Turnbull Government was the federal executive 
government of Australia led  by the 29th Prime Minister of 
Australia, Malcolm Turnbull, from                to               . It  
succeeded the Abbott Government, which brought the 
Coalition to power at ….  A                                     leadership 
spill was called, with Turnbull challenging Abbott, and …
Publication date: 

Evidence 1:    
Title:   'Report on the conduct of the Australian Marriage 
Law Postal Survey’
Text:                            … Particular effort was made to ensure 
the survey was simple … Government  initiative to conduct 
a voluntary postal vote to give all Australians ... The ABS is  
Australia's national statistical agency,providing trusted 
official  Survey  collection was open between                                                                                               

    and 
Publication date:

Mid-September

2015 2018 

Nov 7, 2016

12 September 2017 7 November 2017

September 2015

November 7 2016 (-740 till -361 days)

Evidence 3:    
Title:   'Fact check: Is the same-sex marriage survey a 
'completely novel' idea?
Text:                              ... Is it correct that Australia has never 
before engaged in a survey like this one? ...  The Australian 
Marriage Law Postal Survey — as it is formally ... For a 
national  vote to take place in the case of a plebiscite, the 
Government must first ... the vote  to be conducted by the 
Australian Electoral Commission (AEC).
Publication date: 

Aug 21, 2017

Evidence 4:    
Title:   Report on the conduct of the Australian Marriage 
Law Postal Survey
Text: 2166 items ... Particular effort was made to ensure 
the survey was simple ... Source: Australian  Marriage Law 
Postal Survey,               ... 1.1 Government direction to the 
ABS ....  The survey collection was open between                            

    and ... 
locations to check the electoral roll and issue replacement 
forms.
Publication date: 

Evidence 5:    
Title:   postal survey on marriage equality
Text:                              ... Australia is now voting in a 
compulsory plebiscite or referendum on ... will begin  
mailing #MarriageEquality postal surveys & the YES vote 
can begin! ... The  question is, 'should the law be changed 
to allow same-sex couples to marry?'.  abs australia postal 
survey form marriage equality same-sex marriage.
Publication date: 

Evidence 6:    
Title:   How to have your say in Australia | SBS Radio
Text:                              ... For new migrants to Australia, the 
bureaucracy of government can sometimes ...  The current 
postal survey on same-sex marriage is not a "vote" such as 
in an ... or  not the law should be changed to allow same-
sex marriage. ... You will then  receive a survey-form in the 
mail, including a reply-paid envelope.
Publication date: 

Evidence 7:    
Title:   Australian Marriage Law Postal Survey - WikiVisually
Text: The Australian Marriage Law Postal Survey was a 
national survey designed to  gauge .... the government 
directed the Australian Statistician to begin the process  of 
.... The ABS advised Australians who received extra survey 
forms, addressed  to the ..... As of mid-September, 
prominent "No" campaigner Lyle Shelton was …
Publication date: 

Evidence 8:    
Title:   Bringing them home
Text:                               ... The Laws: Western Australia ... 
Australian Government responses to the Bringing  them 
home .... Bring students together to form mixed ability 
groups for a  discussion ... concepts of time, people and 
place help us to understand history.  ... Other surveys have 
produced similar results, such as a survey held in …
Publication date: 

Evidence 9:    
Title:   Hansard - 
Text:                              ... ACT government to provide 
adequate funding and services for the ..... Australian  
Criminal Intelligence Commission that, if we in the ACT did 
not ... We've become  a safe place to operate. …community 
through the anticipated marriage equality  plebiscite ... Not 
one postal survey has been sent out yet, and.
Publication date: 

2017 

12 September 2017 7 November 2017

Sep 12, 2017

Sep 21, 2017

Dec 2, 2001

17 August 2017

Aug 17, 2017

unknown

August 21 2017 (-145 till -35 days)

unknown

September 12 2017 (-145 till -35 days)

September 21 2017 (-145 till -35 days)

unknown

August 17 2017 (-145 till -35 days)

December 2 2001 (-∞  till -1596 days)

Strength of attribution

less more

(a) Ranking of evidence by attribution strength in terms of text
and publication date (DL reasoning).

Base DL CL DL+CL

Label (1) 5.3e−4 (1) 1.1e−7 (1) .076 (1) .174
distribution (2) 2.5e−3 (2) .530(✓) (2) .172 (2) .266

(3) .996 (3) .470 (3) .752 (3) .560

Claim (text) 16.029 2.688 0.0613 0.0049
Claim (PD) - 0.994 - 0.0296
Claim (TE) - - 0.0899 0.0441

Evidence (text) 5.279 0.4434 0.0007 0.001
Evidence (PD) - 0.3213 - 0.008
Evidence (TE) - - 0.005 0.008

(b) Predicted label distribution and absolute attribution
strengths. Note that strengths for evidence are for a single
evidence document.

Figure 4: Illustration of BiLSTM (glob) attribution
strengths for an example taken from MultiFC.

influences both interim and final prediction.

9 Conclusion

Grounding claims and associated evidence doc-
uments on a shared timeline and implicitly rea-
soning over their temporal relations noticeably im-
proves the verification performance of automated
fact-checking models. Time plays a dual role in this
process, serving both as a source of information for
verifying claims, as well as influencing the evalu-
ation of the relevance and supporting or refuting
nature of evidence documents. Further research
may look into integrating temporal reasoning in
claim detection and evidence retrieval processes

or implementing even more sophisticated temporal
reasoning during claim verification by examining
the temporality of events discussed in a claim and
their relation to the evidence.

Limitations

The limitations of this work mainly originate from
the data and the use of pretrained models for
grounding claims and evidence documents in time.
Since the evidence documents were retrieved af-
ter the claim had been fact-checked by giving the
claim verbatim to a search engine and selecting
the first ten search results, their quality and rel-
evance to the claim is not ensured. As a result,
evidence-based fact-checking models risk relying
on spurious signals in the evidence documents for
predicting a claim’s veracity. Moreover, the evi-
dence documents are presented as short snippets
which only reflect small parts of the full Web docu-
ments. This not only affects content representation,
but it also limits temporal information extraction
since many time expressions may have been omit-
ted from the shortened text. Regarding temporal
information extraction and normalisation, we had
to rely on pretrained models to obtain temporal rep-
resentations of claims and its associated evidence
documents. This not only introduces noise in the
input data, but also requires time-expensive prepro-
cessing.

Ethics Statement

Automated fact-checking technology aims to assist
people in distinguishing between verified and un-
verified content in professional contexts and during
their daily information consumption. Neverthe-
less, the fact-checking models constructed in this
paper - like all fact-checking models - should be
deployed with caution and its predictions should
never be taken as final without further human eval-
uation. Computational predictions are anything but
flawless, and incorrect predictions may unjustly
discredit the person or group who uttered the fact-
checked statement(s).
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A Time Buckets

Table 4 presents an overview of time buckets bpub
with their interval bounds used for document-level
grounding, while Table 5 presents time buckets
btext with their interval bounds used for content-
level grounding.

B Reproducibility Settings

This section contains settings for reproducing the
experiments in this paper.

Computing infrastructure The BiLSTM mod-
els were trained on a Skylake processor type with
one compute node, 9 cores per node, one GPU
(GPU partition of Skylake) and 5 GB memory per
core. The DistilRoBERTa models were trained on
a Cascadelake processor type with one compute
node with 4 cores per node, one GPU and 5 GB
memory per core.

Average runtime Preprocessing, i.e., extraction
of timex annotations via Heideltime, open infor-
mation extraction (where before this a correction
of uppercase characters is done via Named Entity
Recognition), and construction of the dataset where
claims and evidence are already put into buckets
and the predicates and timexes are marked in the
text of all the data took approximately 150 hours.
Training a BiLSTM model for each domain took on
average 45 hours, while a DistilRoBERTa model
took 72 hours.
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Overview of time buckets for document-level grounding and reasoning: bpub
Start End Number of evidence documents
∞ days before the claim 1596 days before the claim 8536
1596 days before the claim 741 days before the claim 8547
740 days before the claim 361 days before the claim 8528
360 days before the claim 146 days before the claim 8517
145 days before the claim 35 days before the claim 8626
34 days before the claim 4 days before the claim 8962
3 days before the claim 1 day before the claim 7549
on the same day as the claim on the same day as the claim 8963
1 day after the claim 4 days after the claim 8735
5 days after the claim 24 days after the claim 8548
25 days after the claim 85 days after the claim 8345
86 days after the claim 187 days after the claim 8534
188 days after the claim 325 days after the claim 8551
326 days after the claim 498 days after the claim 8515
499 days after the claim 736 days after the claim 8502
737 days after the claim 1061 days after the claim 8533
1062 days after the claim 1436 days after the claim 8529
1437 dagen na de claim 1997 days after the claim 8537
1998 days after the claim 2605 days after the claim 8531
2606 days after the claim ∞ days after the claim 8522

Table 4: Overview of time buckets bpub with their interval bounds.

Overview of time buckets for content-level grounding and reasoning: btext
Start End Number of evidence documents
∞ days before the claim 18172 days before the claim 12853
18171 days before the claim 6295 days before the claim 12851
6294 days before the claim 2928 days before the claim 12856
2927 days before the claim 1678 days before the claim 12862
1677 days before the claim 989 days before the claim 12855
988 days before the claim 569 days before the claim 12863
568 days before the claim 323 days before the claim 12833
322 days before the claim 145 days before the claim 12935
144 days before the claim 42 days before the claim 12771
41 days before the claim 6 days before the claim 13191
5 days before the claim 1 day before the claim 13269
on the same day as the claim on the same day as the claim 22966
1 day after the claim 8 days after the claim 15135
9 days after the claim 42 days after the claim 12665
43 days after the claim 124 days after the claim 12832
125 days after the claim 241 days after the claim 12739
242 days after the claim 378 days after the claim 12888
379 days after the claim 581 days after the claim 12828
582 days after the claim 834 days after the claim 12852
835 days after the claim 1178 days after the claim 12862
1179 days after the claim 1582 days after the claim 12834
1583 days after the claim 2134 days after the claim 12848
2135 days after the claim 2734 days after the claim 12848
2735 days after the claim ∞ days after the claim 12842

Table 5: Overview of time buckets btext with their interval bounds.
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Number of model parameters BiLSTM:
16,129,125 learnable parameters per model;
DistilRoBERTa: 82,933,601 learnable parameters
per model.

Number of training and evaluation runs With-
out parameterisation by α, β, and γ: 150 epochs
pretraining, 100 epochs fine-tuning (both BiLSTM
and DistilRoBERTa).With parameterisation: 600
epochs pretraining, 300 epochs fine-tuning (BiL-
STM); 800 epochs pretraining, 300 epochs fine-
tuning (DistilRoBERTa).

Hyperparameter bounds We manually tested
following combinations for α when integrating
the time attribution vectors at the global level for
document-level (DL) or content-level reasoning:
α ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. Final α-values:
BiLSTM (DLglob): α = 0.10; BiLSTM (CLglob):
α = 0.25; DistilRoBERTa (DLglob): α = 0.75
(see Figure 5); DistilRoBERTa; DistilRoBERTa
(CLglob): α = 0.10. We tested following combi-
nations for γ when integrating the time attribution
vectors at the local level for content-level reason-
ing (CL): γ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. Fi-
nal γ-values: BiLSTM (CLloc): γ = 0.50; Distil-
RoBERTa (CLloc): γ = 0.10. We tested following
combinations for α and β when grounding the time
attribution vectors at both the document and con-
tent level (DL+CL): [(α = 0.20, β = 0.20), (α =
0.20, β = 0.35), (α = 0.20, β = 0.40), (α =
0.20, β = 0.55), (α = 0.20, β = 0.60), (α =
1
3 , β = 1

3), (α = 0.35, β = 0.20), (α =
0.35, β = 0.55), (α = 0.40, β = 0.20), (α =
0.40, β = 0.40), (α = 0.55, β = 0.20), (α =
0.55, β = 0.35), (α = 0.60, β = 0.20)]. Final
α- and β-values: BiLSTM (DL+CLglob): (α =
0.20, β = 0.40); DistilRoBERTa (DL+CLglob):
(α = 0.20, β = 0.20). We performed a hyper-
parameter search trial of 100 epochs pretraining for
each combination of hyperparameters. The criteri-
ons used to select the final hyperparameter values
are the prediction performance (Micro/Macro F1)
on the validation loss and the evolution of the vali-
dation loss (visualised on a plot, see Figure 5).

Other parameters tested

• Without linear scheduler;

• With linear scheduler with warm up;

• With linear learning scheduler;

• Learning rates: 0.001, 0.005, 0.0002 (only for
RMSprop), 0.0001, 0.00001 (for pretraining
and fine-tuning);

• Adam, RMSProp (Only BiLSTM), AdamW
(only DistilRoBERTa);

• With weight decay: 0.001, 0.0001;

• Without weight decay.
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Figure 5: Tuning α for DistilRoBERTa (DLglob) based on the prediction performance on the validation set (metrics:
Micro/Macro F1) and the validation loss.
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