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Abstract

Recent works on tokenizer-free multilingual
pretrained models show promising results in
improving cross-lingual transfer and reducing
engineering overhead compared to subword-
based alternatives. However, previous work
mainly focuses on reporting accuracy on a lim-
ited set of tasks and data settings, placing less
emphasis on other important factors when tun-
ing and deploying the models in practice, such
as memory usage, inference speed, and fine-
tuning data efficiency. We attempt to fill this
gap by performing a comprehensive empirical
comparison of multilingual tokenizer-free and
subword-based models considering the various
dimensions. Surprisingly, we find that subword-
based models might still be the most practical
choice in many settings, achieving better perfor-
mance for lower inference latency and memory
usage. Based on these results, we encourage fu-
ture work in tokenizer-free methods to consider
these factors when designing and evaluating
new models.'

1 Introduction

Several recent results (Clark et al., 2022; Xue
et al., 2022) have excited the research commu-
nity with the possibility of “tokenizer-free” models,
character-level and byte-level models, as an alter-
native to more traditional subword-based models.
Tokenizer-free models are especially appealing to
practitioners as they can eschew the two-step pro-
cessing pipeline of subword segmentation and re-
duce the corresponding difficulties in cross-lingual
transfer (Hu et al., 2020; Maronikolakis et al., 2021;
Rust et al., 2021; Wang et al., 2021) or domain
adaptation (Sato et al., 2020; Liu et al., 2021) due
to inconsistent subword units.

However, upon several attempts to apply
tokenizer-free methods, our analysis reveals sev-
eral practical difficulties in applying these methods.

'We will release code to train and evaluate models upon
de-anonymization.

This paper is a chronicle of some of the concerns
we uncovered; we highlight some challenges with
applying these models and propose best practices
for future results reporting in this area.

Specifically, we perform experiments finetuning
pretrained multilingual models, evaluating them
with respect to finetuning data efficiency, inference
time, and memory consumption. Based on these
multiple dimensions, we come to the somewhat
surprising conclusion that subword-based models,
in particular mBERT (Devlin et al., 2019), might
still be the most practical choice in most settings,
as they perform best while maintaining a relatively
low inference cost.

2 Tokenizer-free Multilingual Models

While multilingual pretrained models (Devlin et al.,
2019; Lample and Conneau, 2019; Liu et al., 2020;
Xue et al., 2021) have led to impressive perfor-
mance improvements for low-resource languages
through cross-lingual transfer, the standard word
representation method in these models relies on
subword segmentation (Sennrich et al., 2016; Kudo,
2018). In multilingual settings, subword tokeniza-
tion can be sub-optimal as supporting hundreds
of languages with various scripts and vocabularies
causes segmentation mismatch between languages
and over-segmentation in the lower-resourced lan-
guages (Wang et al., 2020).

To alleviate this problem, recent works pro-
pose removing the subword segmentation step by
using characters or bytes as lexical units (Clark
et al., 2022; Xue et al., 2022). In particular, these
“tokenizer-free” methods have been applied to both
encoder-only and encoder-decoder models. Tab. 1
presents an overview of the different tokenizer-
free multilingual models with comparable sub-
word models. Next, we briefly describe the two
tokenizer-free models we consider in this work.

CANINE (Clark et al., 2022) is a character-level
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Model ‘ Params  Vocab (%) Non-vocab ‘ Architecture Enc. Dec. ‘ Tokenization |sample? ‘ Corpus Langs
mBERT 178M  92M (52%) 86M Enc-only 12 - Subword X Wikipedia 104
CANINE 132M 25M (19%) 107 Enc-only 12 - Character v Wikipedia 104
mT5 (Small) | 300M  256M (85%) 44M Enc-dec 8 8 Subword X mC4 101
ByT5 (Small) | 300M 1.1M (0.3%) 298.5M Enc-dec 12 4 UTF-8 bytes X mC4 101

Table 1: Configuration of the pretrained models used. From left to right: number of parameters, number and ratio
of vocabulary-related parameters, number of non-vocabulary parameters, architecture, encoder / decoder depth,
tokenization scheme, whether downsampling was used, pretrained corpus, number of pretrained languages.

encoder suggested as an alternative to mBERT (De-
vlin et al., 2019). CANINE operates on raw char-
acters and is pretrained using the masked language
modeling objective. To compensate for the compu-
tational efficiency loss due to increased sequence
length, CANINE uses convolutions to downsample
the sequence before passing the representations to
the transformer layers. The two weight variants
of CANINE (CANINE-S, CANINE-C) have the
same architecture but slightly different pretraining
objectives using either subwords or characters at
the last layer. As both variants performed similarly
in our experiments and Clark et al. (2022), we
only include CANINE-S for the main discussion,
leaving CANINE-C results in § B.3.

ByTS (Xue et al., 2022) is an encoder-decoder
transformer model similar to the mT5 (Xue et al.,
2021) model. ByT5 operates on the raw UTF-8
bytes of the input without any downsampling, lead-
ing to a longer sequence length while having a
much smaller vocabulary size than mT5. Both
ByT5 and mT5 are pretrained on the mC4 corpus2
using the span reconstruction objective proposed
by Raffel et al. (2020).

To keep the parameter count fixed between mTS5
and ByT5, ByT?5 allocates the parameters saved
from the embedding layer to additional encoder
layers. Although adding more depth to the encoder
is a reasonable design choice, our results in § 4
show that ByT5 suffers from a much higher in-
ference cost due to the deeper encoder, especially
when input/output sequence lengths are longer.

3 Experimental settings

We conduct a multi-dimensional evaluation fo-
cusing on two aspects: finetuning data efficiency
(§ 4.1) and inference cost (§ 4.2) to provide a bet-
ter understanding of the practical applicability of
tokenizer-free models. We finetune and evaluate

thtps ://www.tensorflow.org/datasets/catalog/
c4#c4multilingual

two subword-based models (mBERT, mT5) and
two tokenizer-free models (CANINE, ByT5), as
mBERT-CANINE and mT5-ByTS5 are directly com-
parable counterparts in terms of their pretraining
corpus as shown in Tab. 1. For the TS models, we
consider only the small models of both mT5 and
ByTS5 as the focus of our work is in the practical im-
plication of using multilingual pretrained models
at relatively resource-constrained settings.
Specifically, we finetune the models on three
multilingual natural language understanding tasks
adopted from the XTREME benchmark (Hu et al.,
2020). The three tasks we choose cover various
input, output formats — sequence-level classifica-
tion (XNLI), token-level classification (NER), and
extractive question answering (TyDi QA-GoldP).

3.1 Tasks

XNLI The Cross-lingual Natural Language Infer-
ence (Conneau et al., 2018) is a sequence classifica-
tion task in which the model predicts whether the
hypothesis sentence is an entailment, contradiction,
or neutral given the premise sentence. The task is
provided in 15 languages.

NER Named Entity Recognition (NER) is a struc-
tured prediction task, where the model predicts a
tag (location, person, organization) in IOB2 format
for each token in the input sentence. We use the
WikiAnn dataset (Pan et al., 2017) and select 20 out
of 282 languages for multilingual training based on
linguistic diversity and the language availability in
the other two tasks we consider.

TyDi QA-GoldP The Typologically Diverse
Question Answering (Clark et al., 2020) dataset
is an extractive QA benchmark in 11 languages.
While the original dataset includes two “primary”
tasks (SelectP, MinSpan), the secondary GoldP
task is the most widely adopted as it is compat-
ible with other SQuAD-style QA tasks (Rajpurkar
et al., 2016; Artetxe et al., 2020). For this reason,
we mainly compare models on TyDi QA-GoldP
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Figure 1: Average XNLI, NER, TyDi performance when each pretrained model is finetuned with varying numbers
of in-language finetuning data (102, 103, 104), all in-language samples (Single), or the entire multilingual dataset
(Multi). The exact numbers can be found in the Appendix (Tab. 2).

and discuss primary task results briefly through our
replication experiment of Clark et al. (2022).

3.2 Details of Hardware and Measurements

We use a single Tesla V100 (32GB) GPU for all ex-
periments regarding inference cost measurements.
To obtain the peak GPU memory and inference la-
tency, we randomly select 100 samples from the
English test set for each task and measure the aver-
age cost of predicting one example at a time.

4 A Multi-dimensional Evaluation

4.1 Finetuning data efficiency

Most work presenting multilingual pretrained mod-
els evaluates downstream task performance under
multilingual finetuning or zero-shot scenarios. In
practice, however, downstream task datasets are
often available in the language of interest. Thus, in
addition to multilingual training, we compare mod-
els tuned on different data sizes within a single lan-
guage to evaluate their finetuning data efficiency.
Specifically, we finetune the four pretrained
models with varying numbers of task examples
- 102, 103, 10* (when available), all target language
samples (Single), and multilingual training (Multi)
to incorporate situations where the task dataset is
available in multiple languages. We experiment
with four downstream task languages — English,
Arabic, Russian, and Swahili — chosen based on
both linguistic diversity and various pretraining
resource conditions.” While the controlled experi-
ments are done on a subset of languages, we report
the task performance in all languages for zero-shot
evaluation, single language training, and multilin-

’The pretraining corpus sizes are noted in § B.4 (Tab. 8).

gual training in § B.3 for comprehensiveness.4

In Fig. 1, we report the models’ task performance
averaged over languages under different finetuning
settings. Notably, we find that mBERT achieves the
highest score for most settings. The only exception
is on XNLI Single and Multi, where ByTS5 slightly
outperforms mBERT. As the dataset size decreases,
it becomes more evident that mBERT is the most
sample efficient, especially in the most data-scarce
scenarios where only 100 finetuning examples are
available. The fact that mBERT outperforms mT5
and ByT5 on smaller datasets is quite surprising,
as one might expect T5 models to generalize better
in low-resource settings given their much larger
pretraining corpus.

Interestingly, we find that CANINE performs
poorly compared to mBERT in all three tasks, and
the performance gap increases as fewer finetuning
data are available. To explain this phenomenon,
we hypothesize that character-level models have
the additional burden of learning to compose char-
acters into semantically meaningful units and thus
require more data to learn task-specific higher-level
semantics. These results align with the NER results
on the CoNLL and MasakhaNER dataset in Clark
et al. (2022), where mBERT outperformed CA-
NINE in all languages except Ambharic, a language
not covered by mBERT’s vocabulary.

However, mBERT’s stronger performance in
TyDi QA-GoldP was unexpected as CANINE per-
formed better at the TyDi QA primary tasks in
Clark et al. (2022). Through replication experi-
ments to reconcile the contradictory findings, we
found that mBERT outperforms CANINE also in
the primary tasks when finetuned for more epochs
with our codebase, suggesting that the previous

4Hyperpalralmeters for all experiments are in Appendix A.
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Figure 2: The inference cost of the four models (l: mBERT, A: CANINE, @: mT5, ¢: ByT5) in each task. The
x-axis denotes the average inference time while the y-axis shows the peak GPU memory consumption. Thus, models
located near the bottom left corner are more cost efficient. The colors represent the model’s best task performance
(XNLI: Accuracy, NER: F1, TyDi QA: F1). The numbers used to generate the plot can be found in § B.2 (Tab. 3).

mBERT baseline was potentially undertrained.”
For mT5 and ByT5, we find that the two models
perform comparably in smaller datasets, while on
larger sets, ByT5 consistently outperforms mT5
on all tasks. We note that the mT5-Small model
could have been penalized in terms of capacity as
85% of the parameters are allocated to embeddings
as shown in Tab. 1, leaving only 44M parameters
for the non-vocabulary layers. This is even less
than that of mBERT (86M), and drastically smaller
compared to ByT5-Small, which assigns 298.5M
parameters to the non-vocabulary layers. Also,
given that the tasks concerned are not generation-
heavy, the extra depth on the encoder (12 for ByT5
vs. 8 for mT5) might have favored ByT5 over mTS5.

4.2 Inference cost

Another key concern in utilizing pretrained mod-
els for downstream applications is the inference
cost, such as memory consumption and latency. In
Fig. 2, we plot each model’s inference latency and
peak memory consumption, color-coding their task
performance to provide a comprehensive view of
the trade-offs of deploying each model in practice.

In general, the encoder-only models, mBERT
and CANINE, require much less memory and in-
ference latency than mT5 and ByT5. Considering
performance alongside inference cost, we find that
mBERT is still the most practical choice among the
four models, achieving the best performance while
maintaining a relatively low inference cost.

While producing longer sequences than mBERT,
CANINE does not necessarily incur higher mem-
ory or latency costs, as it has fewer parameters
than mBERT. This helps CANINE, especially in
sentence-level tasks (XNLI, NER) where inputs are

’We include the finetuning code in our released codebase.

relatively shorter. However, for tasks with much
longer inputs (TyDi QA), the computational over-
head from the sequence length dominates the pa-
rameter reduction, leading to higher memory usage
and slower inference for CANINE.

For mT5 and ByTS5, inference costs vary accord-
ing to the task’s input and output length. For tasks
with shorter inputs and outputs like XNLI, ByT5
yields better performance than mT5 while retaining
similar costs. However, for token-level prediction
tasks like NER, ByT5 needs to generate tags autore-
gressively at the byte level, which drastically slows
down the inference time. However, the additional
cost is negligible in terms of memory consumption
as the inputs are still relatively short. For TyDi QA,
we observe an opposite pattern. As the input is a
long passage, the extended input sequence signifi-
cantly increases the memory consumption of ByTS5,
requiring more effort in tuning the batch size to fit
into the GPU memory.

5 Related work

Large-scale NLP models have achieved remarkable
performance in various natural language tasks, with
the recent ChatGPT demonstrating near human-
level language understanding capabilities. While
achieving impressive results in standard bench-
mark settings, the applicability of these models
have remained limited mainly due to practical
considerations including their high energy con-
sumption and environmental impact (Strubell et al.,
2019). Both the NLP and computer vision com-
munities have proposed evaluating models based
on practical metrics, such as training/inference effi-
ciency (Canziani et al., 2016; Dehghani et al., 2021;
Zhou et al., 2021), energy usage (Henderson et al.,
2020), robustness (Ribeiro et al., 2020; Kiela et al.,
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2021; Koh et al., 2021), and expected performance
(Dodge et al., 2019). Similarly, a recent study by
Liang et al. (2022) suggests a comprehensive eval-
uation suite for generative NLP models, including
measures of robustness, fairness, and efficiency.
Our multi-dimensional evaluation is an attempt to
expand these evaluation protocols to multilingual
settings and examine the trade-offs of various tok-
enization schemes.

6 Conclusion

In this paper, we present a multi-dimensional
evaluation of tokenizer-free multilingual models
focusing on their efficiency against finetuning
dataset size and inference cost. Based on our
experiments, we find that mBERT might still be
the most cost-effective choice for many tasks, and
show that the efficiency trade-offs of model design
choices (tokenization, decoder availability) depend
heavily on the task’s length statistics. Despite
our findings, tokenizer-free models still have a
significant advantage in reducing engineering
effort and potentially increasing robustness to
noisy data. We believe more work should be done
in developing efficient tokenizer-free models, and
encourage the community to consider these criteria
of practical applicability when developing and
evaluating tokenizer-free pretrained models.

7 Limitations

This paper mainly covers three NLP tasks, focusing
on smaller-sized multilingual pretrained models. In
future work, it would be interesting to run the multi-
dimensional evaluation we suggest on a broader set
of tasks and models. Although our results show
that subword models are a more practical choice in
some tasks, we note that other tasks or datasets may
exist where tokenizer-free methods achieve better
relative performance. For instance, tokenizer-free
models have been reported to excel in word-level
tasks, and noisy environments (Xue et al., 2022),
and the conclusions we reached may be different
in such settings. Moreover, we did not explore
more complicated generation tasks like translation
or summarization, where the difficulty in decoding
and longer decode horizons could paint a different
picture in a multi-dimensional evaluation.

Ethics Statement

We hope our results encourage the community to
consider the practical concerns of running large lan-

guage models (LLMs) and designing tokenizer-free
pretrained models. As the state-of-the-art LLMs
are becoming more computationally extensive, it
has become increasingly difficult for researchers
and practitioners with less resources to utilize these
models for downstream applications. We hope our
multi-dimensional analysis can help researchers
and practitioners with less computational resources
decide which model to use in practice.
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A Tasks

For all tasks and models, we refer to the original
) 678
papers’ codebase for hyperparameters.

XNLI For encoder-only models, the first token
([CLS]) is used to map the sentence representation
to the label distribution. For encoder-decoder mod-
els, we generate the index of the label (e.g., ‘0”)
directly.

NER For encoder-decoder models, we follow the
input-output format (e.g., input: ‘tag: rick and
morty are cool .’, output: ‘PER: rick $$
PER: morty’) specified in the mT5 model’s origi-
nal codebase.

B Tables

B.1 Finetuning data efficiency
Tab. 2

B.2 Inference cost
Tab. 3

B.3 Experimental results for all languages
(Zero-shot, Single language (full),
Multilingual)

XNLI: Tab. 4, NER: Tab. 5, TyDi QA-GoldP:
Tab. 6, Tydi QA Primary: Tab. 7

B.4 Pretraining corpus size
Tab. 8

6https://github.com/google—research/language/
tree/master/language/canine

7https://github.com/google—research/
multilingual-t5

8https://github.com/google—research/byt5
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XNLI (Accuracy) NER (F1) TYDI QA (F1)

Finetuning setting | 10> 10° 10" Single Multi | 10> 10° Single Multi | 10° 10° Single Muldi
Arabic

mBERT 366 510 59.5 706 732 | 67.3 802 89.6 89.6 | 448 709 810 815
CANINE-S 328 366 533 658 697 | 462 712 849 880 | 384 598 792 805
CANINE-C 341 453 505 662 685 | 517 713 851 878 | 348 578 778 807
mT5 331 442 550 655 703 | 573 755 865 868 | 337 626 731 753
ByT5 237 420 552 729 733 | 606 775 854 877 | 334 673 758 759
English

mBERT 388 586 712 820 835|651 781 842 854 |324 676 736 76.0
CANINE-S 336 375 595 777 791 | 497 703 804 841 | 292 494 640 716
CANINE-C 341 507 612 77.1 780 | 528 706 81.1 841 | 275 478 573 716
mT5 333 509 664 790 799 | 40.1 63.1 719 725 | 250 528 594 644
ByT5 352 396 662 809 81.0 | 441 650 738 735 | 165 63.1 646 694
Russian

mBERT 357 455 529 663 681 | 813 89.9 90.0 909 | 429 743 798 824
CANINE-S 331 359 486 615 650 | 632 869 877 89.6 | 29.1 540 713 774
CANINE-C 331 429 454 608 644 | 700 865 865 90.0 | 323 589 714 797
mT5 330 449 580 632 681 | 543 706 710 723 | 290 658 715 766
ByT5 343 412 564 675 713 | 686 835 845 843 |325 735 788 803
Swabhili

mBERT 389 511 63.0 748 764 | 667 824 894 892 | 343 618 725 744
CANINE-S 337 392 542 697 730 | 545 756 865 888 | 274 466 672 718
CANINE-C 350 465 541 686 717 | 554 760 873 889 | 200 469 665 727
mT5 326 342 551 703 737 | 358 564 640 648 | 216 510 661 679
ByT5 320 420 534 734 756 | 314 570 626 663 | 269 616 711 730

Table 2: Task performance with varying finetuning data conditions (1027 1037 10* (for XNLI), full target language
dataset, multilingual dataset)

XNLI NER TYDI QA
Latency Memory Accuracy | Latency Memory F1 | Latency Memory F1
mBERT 15.24 713.33 74.7 15.30 71097 88.4 16.10  748.34 78.13
CANINE-S 21.04 573.48 70.5 20.96 574.57 86.1 26.89 1006.74 74.13
mT5 4094 1204.19 72771 171.99 1207.76 80.7 | 281.52 1253.13 72.05
ByT5 3649 1221.54 74.7 | 333.72 122440 83.0 | 286.76 1948.30 74.48

Table 3: Inference latency (ms), peak GPU memory (mb), best average performance of each model in the three tasks
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Model ‘ en ar bg de el es fr hi ru SW th tr ur vi zh | avg

Zero-shot (en)
mBERT 82.0 64.1 675 704 655 737 728 593 674 502 532 602 57.5 68.7 68.1 | 654
CANINE-S 777 50.1 60.1 624 537 676 660 437 60.7 404 39.6 479 41.1 53.1 432|538
CANINE-C 771 53.1 614 635 583 685 664 477 633 41.0 392 48.8 444 534 39.1 550
mT5-Small 79.0 613 660 644 674 659 624 59.7 666 522 641 579 564 573 639 |63.0
ByT5-Small 80.9 659 70.2 712 67.7 765 750 586 679 624 584 63.6 556 69.5 649 | 67.2

Single-language
mBERT 820 706 762 76.6 751 7717 774 670 748 663 657 725 629 759 764 | 73.1
CANINE-S 7777 658 706 724 686 738 734 612 697 615 599 66.6 580 674 572|669
CANINE-C 77.1 662 71.1 720 698 728 726 623 686 60.8 57.1 657 582 673 60.0 | 668
mT5-Small 79.0 654 699 720 736 731 748 652 703 632 69.7 67.6 589 69.2 71.0 | 69.5
ByT5-Small 809 729 754 758 751 717 764 683 734 675 700 72.6 63.0 727 725 |73.0

Multilingual
mBERT 835 732 777 715 757 798 78.6 70.1 764 68.1 672 738 644 765 719 |74.7
CANINE-S 79.1 69.7 750 749 725 763 753 652 730 650 623 689 64.1 713 656|705

CANINE-C 78.0 685 737 741 729 757 749 638 717 644 577 679 626 69.7 587 | 69.0
mT5-Small 799 703 747 749 744 765 755 677 737 68.1 712 719 654 724 732|727
ByT5-Small 81.0 733 778 765 76,5 785 772 700 756 713 714 73.6 683 757 741|747

Table 4: XNLI Performance (Accuracy)

Model ‘ en ar bn de el es fi fr hi id ja ko ru sW ta te th tr ur zh | avg

Zero-shot (en)
mBERT 842 417 682 782 714 718 773 780 645 51.6 292 59.7 656 714 51.0 504 04 739 333 43.1 | 582
CANINE-S 80.8 29.6 49.6 70.7 635 664 667 741 41.1 473 05 293 577 598 284 197 0.1 558 220 54 |434
CANINE-C 81.1 383 569 709 664 648 680 735 434 466 1.8 287 61.7 589 369 21.6 02 589 298 8.1 |458
mT5-Small 719 329 566 67.1 423 700 65.1 753 562 453 255 239 369 49.0 380 359 3.6 587 587 313|472
ByT5-Small 738 459 o615 707 677 794 67.1 774 57.1 462 313 262 467 602 319 279 9.6 233 13 328469

Single-language
mBERT 842 89.6 96.1 903 914 925 922 912 912 93.6 744 888 894 90.0 865 804 762 932 957 83.1 | 885
CANINE-S 80.8 849 929 88.0 886 89.7 89.1 889 849 909 633 816 865 877 81.0 499 705 909 91.0 732|827
CANINE-C 81.1 851 935 875 89.1 89.8 8384 884 843 90.6 602 795 873 865 79.6 43.0 740 90.6 924 689 | 82.0
mT5-Small 719 86.5 86.6 837 83.8 88.0 87.8 867 855 853 659 802 64.0 71.0 826 745 646 863 93.0 75.1 | 80.1
ByT5-Small 73.8 853 883 824 87.6 86.6 864 847 830 845 699 832 62.6 845 803 69.1 745 834 90.5 73.2|80.7

Multilingual
mBERT 854 89.6 959 89.8 913 929 92.0 91.2 893 934 749 88.1 892 909 860 80.6 765 931 955 823 | 884
CANINE-S 84.1 88.0 947 893 90.7 92.1 91.1 909 858 928 693 838 888 89.6 81.7 713 762 924 940 757 | 86.1
CANINE-C 84.1 878 956 89.2 91.1 925 90.7 909 882 926 679 815 889 90.0 81.6 695 777 92.0 93.7 72.1 | 859
mT5-Small 725 86.8 845 848 834 887 883 877 836 872 70.1 831 648 723 823 698 67.8 869 924 765 | 80.7
ByT5-Small 735 8777 884 86.1 887 903 899 893 847 873 703 838 663 843 81.8 780 726 886 926 765 | 83.0

Table 5: NER Performance (F1)
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Model ‘ en ar bn fi id ko ru SW te avg

Zero-shot (en)

mBERT 73.64 60.11 45.1 57.63 63.78 52.16 57.52 56.51 42.15 | 56.51
CANINE-S 64.78 44.85 20.13 39.73 4378 13.67 44.49 30.64 31.59 | 37.07
CANINE-C 63.96 42.19 2205 43.13 36.87 1744 4202 333 30.51 | 36.83
mT5-Small 59.39 4325 2251 4427 48.7 2205 4485 33.08 28.77 | 38.54
ByT5-Small 64.58 564 1586 5191 5585 2221 54.11 3544 31.43 | 43.09

Single-language

mBERT 73.64 79.86 70.78 76.08 79.93 62.76 7248 79.81 81.21 | 75.17

CANINE-S 6478 79.2 5581 70.13 70.0 4953 67.15 71.26 81.75 | 67.73

CANINE-C 63.96 77.79 50.92 67.28 66.26 49.84 6649 71.39 82.78 | 66.3

mT5-Small 59.39 73.07 67.92 6533 73.65 5493 66.13 71.49 80.93 | 68.09

ByT5-Small 64.58 7582 6991 7198 80.55 58.65 71.09 78.81 8539 | 72.97
Multilingual

mBERT 76.02 81.49 72.86 8041 84.87 67.09 7445 8242 83.52 | 78.13

CANINE-S 71.55 80.53 67.24 7542 7844 61.25 71775 7743 83.53 | 74.13
CANINE-C 71.56 80.74 62.6 7421 7628 65.79 72.66 79.71 84.43 | 74.22
mT5-Small 64.39 7534 76.89 70.01 76.73 59.24 67.86 76.62 8135 | 72.05
ByT5-Small 69.42 7586 709 7452 79.78 60.62 73.01 80.32 8593 | 74.48

Table 6: TyDi QA-GoldP Performance (F1)

Model ‘ en ‘ ar bn fi id ja sw ko ru te th | avg

MINSPAN

mBERT 65.1 | 83.1 66.7 69.0 658 53.0 71.7 628 664 871 645 69.0
CANINE-S | 614 | 832 647 66.6 639 495 67.8 567 63.0 825 61.0] 659
CANINE-C | 58.8 | 82.6 587 647 643 50.8 65.1 562 644 839 615|652

SELECTP
mBERT 51.1 | 73.6 56.6 59.0 568 43.6 64.7 482 508 83.1 534 | 59.0
CANINE-S | 492 | 71.5 564 583 546 415 60.1 405 493 772 50.7 | 56.0
CANINE-C | 474 | 71.0 465 538 544 402 560 340 488 78.0 49.1 | 53.2

Table 7: TyDi QA Primary Task Performance (F1)

Language | Wikipedia (Number of docs) mC4 (Number of examples)

English 2.5M 3B

Russian 319K 756M
Arabic 77K 53M
Swahili 7K 985K

Table 8: Pretraining corpus sizes for languages used in § 4.1 experiments. The number of Wikipedia documents per
language can be found here: https://en.wikipedia.org/wiki/Wikipedia:Multilingual_statistics
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