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Abstract

Link prediction models based on factual
knowledge graphs are commonly used in
applications such as search and question
answering. However, work investigating
social bias in these models has been limited.
Previous work focused on knowledge graph
embeddings, so more recent classes of models
achieving superior results by fine-tuning Trans-
formers have not yet been investigated. We
therefore present a model-agnostic approach
for bias measurement leveraging fairness
metrics to compare bias in knowledge graph
embedding-based predictions (KG only) with
models that use pre-trained, Transformer-based
language models (KG+LM). We further
create a dataset to measure gender bias in
occupation predictions and assess whether the
KG+LM models are more or less biased than
KG only models. We find that gender bias
tends to be higher for the KG+LM models
and analyze potential connections to the
accuracy of the models and the data bias
inherent in our dataset. Finally, we discuss
limitations and ethical considerations of our
work. The repository containing the source
code and the data set is publicly available
at https://github.com/lena-schwert/
comparing-bias-in-KG-models.

1 Introduction

Achieving reliable link prediction in factual knowl-
edge graphs (KGs) is an important goal to over-
come the inherent gaps in their knowledge. Such
graphs are widely used by companies such as
Google, LinkedIn, Amazon, and Bloomberg across
a range of different real-world applications, includ-
ing search, recommender systems, and voice-based
question answering (Hogan et al., 2021; Weikum
et al., 2021; Ji et al., 2021). Typically, information
is stored in the shape of triples (h, r, t), consisting
of a head entity h, a relation r, and a tail entity t.

∗ Work conducted at Hasso-Plattner-Institute / University
of Potsdam.

Entities express concepts, while relations express
the connection between them, e.g., (Barack Obama,
occupation, politician). Link prediction models
score the plausibility of a given fact, with two dis-
tinct purposes: (i) They make the graph structure
available to machine learning models, e.g., in the
form of embeddings, (ii) and – if sufficiently reli-
able – may eventually be used to make plausible
predictions of missing facts, i.e., solving the prob-
lem of automatic knowledge graph completion and
refinement (Hogan et al., 2021; Paulheim, 2016).

While link prediction models are naturally eval-
uated for their accuracy, there have only recently
been studies that assess possible biases that they
may exhibit. Echoing prior position papers on bias
in factual KGs (Janowicz et al., 2018; Kraft and
Usbeck, 2022), we consider an analysis of bias as
essential for a thorough model evaluation, espe-
cially because a) KGs contain sensitive informa-
tion about humans (e.g., gender), b) historical facts
naturally contain historical biases, and c) the ap-
plications of KG-based models are increasingly so-
cially relevant due to their proliferation into widely
deployed systems such as search engines and con-
versational agents (Kraft and Usbeck, 2022; Hogan
et al., 2021). To achieve a meaningful bias analysis
for the link prediction task, we argue that a model-
agnostic approach is necessary. Only then can bias
be measured comparatively across different model
classes, highlighting strengths and weaknesses as
well as potential causes for biased behavior.

However, existing bias measurement approaches
are highly model-dependent (for a recent in-depth
review, refer to Kraft and Usbeck 2022). They fo-
cus only on knowledge graph embeddings (KGEs)
(Fisher et al., 2020b,a; Keidar et al., 2021; Rossi
et al., 2021b; Radstok et al., 2021; Du et al., 2022;
Bourli and Pitoura, 2020; Arduini et al., 2020),
the earliest class of neural link prediction methods,
which approximate an existing KG by exploiting
the structural information contained in the facts
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of a KG (Ji et al., 2021). As KGs are incomplete
and typically contain a large of number of enti-
ties that only appear in a few triples, more recent
text-based models incorporate additional textual
data sources for improved results (Ji et al., 2021).
Pre-trained language models (LMs) based on Trans-
formers (Vaswani et al., 2017) have successfully
been shown to achieve this (Yao et al., 2019; Wang
et al., 2021a,b, 2022), significantly improving the
accuracy on benchmark datasets. However, models
of this sort have not yet been investigated for bias.

We thus propose to conduct model-agnostic eval-
uations of link prediction models, enabling us to
compare bias between representatives of KGE mod-
els and LM-based link prediction models, which
we henceforth refer to as KG only and KG+LM
models, respectively. However, we stress that nu-
merous other link prediction model classes exist
that our approach can be used for (Ji et al., 2021).
Like previous work by Keidar et al. (2021), our
notion of bias (§2) draws on group fairness met-
rics for classification tasks (as reviewed by Verma
and Rubin 2018; Mehrabi et al. 2021). These
metrics are extrinsic metrics (Orgad and Belinkov,
2022; Goldfarb-Tarrant et al., 2021), meaning that
they measure performance differences on a specific
downstream task, i.e., link prediction, for different
social groups (e.g., gender).

Our paper makes the following contributions:

• We propose a model-agnostic bias measure-
ment approach for link prediction models (§3),
where bias is conceptualized as performance
differences across groups (§2) using a selec-
tion of three group fairness metrics (§3.3).

• As previous papers have each used different
datasets, we construct HUMANW5M-3MIL,
a Wikidata subset of 3 million facts about hu-
mans, and make it publicly available (§4.1).

• We present experimental results comparing
gender bias in occupation predictions between
three KG only models and a KG+LM model,
finding that the KG+LM model is more biased
across the selected metrics (§4).

• We analyze our experimental results critically,
analyzing the bias results at multiple levels of
detail, and link the predictive bias to bias in
the dataset (§4.4 + 4.5).

2 Bias Statement and Definitions

We follow Blodgett et al. (2020) who stress the
importance of making the authors’ understanding
of bias explicit whenever it is investigated, follow-
ing the taxonomy of harms (Barocas et al., 2017).
Our understanding of bias in link prediction is
based on the idea of representational harm, more
specifically, “differences in system performance
for different social groups” (Blodgett et al., 2020,
p. 5456). For example, in the case of gender bias
in occupation predictions, a link prediction model
that predicts the occupations of women less ac-
curately than those of men would be deemed as
behaving harmfully. We consider this behavior as
harmful, because deploying such a biased model in
a downstream application can make it less useful
for women than men. The extent of harm that is
caused depends on the societal relevance of the ap-
plication, e.g., it might be used for job applications
or credit approval.

Beyond measuring bias in link prediction model
predictions, we also investigate data bias in the
knowledge graph (KG) datasets that we use. We
consider the data to be biased if it is highly imbal-
anced with regard to some ideal distribution across
social groups. An example of such an imbalance
would be a dataset that contained significantly more
facts about men than women and no facts about in-
dividuals with other gender identities.

The examples above also show that we measure
bias in a specific context, defined by a sensitive at-
tribute and a target property. A sensitive attribute
is an inherent characteristic of an entity worthy
of (legal or other) protection. Typical examples
are gender, race, ethnicity, religion or worldview,
disability, age, and sexual identity. Each sensitive
attribute usually defines multiple groups, categori-
cal options that a person can belong to, e.g., female
gender. We view a target property as some notable
property or achievement of an entity. Typical exam-
ples are their occupation, awards received, degrees,
or where a person was educated. Both the target
property and the sensitive attribute need to be ex-
pressed by one specific relation in the dataset. This
means that the dataset-specific meaning of the re-
spective relation matters: Here, we want to measure
the influence of gender on the accuracy of occu-
pation predictions. Following Keyes et al. (2021),
we define gender as a multiplicitous concept ex-
pressing, e.g., identity and behaviors, going beyond
bodily attributes that determine the biological sex
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of a person. While we only discuss gender in the
following, we note that for the gender identities “fe-
male” and “male” that we analyze, the distinction
between gender and sex is not explicit in Wikidata,
because the same entity is used to express both
concepts.1 In addition, due to data scarcity, we can-
not analyze gender bias for other gender identities,
such as “non-binary”.2 Due to a lack of reliable
information, we do not distinguish between cisgen-
der and transgender individuals when performing
our analysis of gender bias for women and men.
We refer to the HCI Gender Guidelines for further
information about the terminology and concepts
discussed above.3

3 A Model-Agnostic Approach for
Measuring Bias in Link Prediction

3.1 Our Main Idea
Prior work on bias in link predictions has studied
bias at the level of embeddings (Kraft and Usbeck,
2022). We instead propose to assess such bias in a
model-agnostic manner by measuring bias directly
on the test set predictions that each link prediction
model produces. This allows us to measure bias
on link prediction model classes that have not yet
been evaluated with respect to bias. We focus on
tail entity predictions for a given target relation, for
example (Barack Obama, occupation, ?). The pre-
dictions serve as the input for group fairness met-
rics that measure extrinsic performance, meaning
that we do not access any internal representations
of the model. As group fairness metrics are usually
defined for classification tasks (Verma and Rubin,
2018), we need to reframe the link prediction task
accordingly (§3.2). Using these metrics allows us
to investigate bias as a notion of metric-specific per-
formance differences (§3.3). The choice of the sen-
sitive attribute and target relation is largely subject
to their prevalence in the dataset (§3.5). Due to lim-
itations in the data (explained in Appendix B + C),
our experiments focus on gender as a sensitive at-
tribute using two gender identities and occupation
as the target relation. Without loss of generality,
we also use these as examples while explaining our
method, but stress that our approach can be used
for attributes and targets with more than two groups
(§3.3).

1e.g. https://www.wikidata.org/wiki/Q6581072
2The reasons for this are further discussed in §3.5, §4.1,

§6, §7, and Appendix B.
3https://www.morgan-klaus.com/

gender-guidelines.html (Version 1.1)

3.2 Recasting Link Prediction as a
Multi-Class Classification Task

Link prediction is typically defined as a ranking
task, where each model produces continuous plau-
sibility score values. For tail entity predictions –
which we use for bias measurement – the model
scores each possible entity in the dataset when
given a combination of a head entity and a rela-
tion (h, r, ?). A model that has learned the task
well should thus emit high scores for the entities
that are most plausible and the highest one for the
entity that is the true tail entity. This enables us to
reframe link prediction as a multi-class classifica-
tion task, by defining each tail entity as a separate
class. For example, when predicting occupation re-
lationships, the set of all occupations in the dataset
is the set of candidate tail entities, which can be
viewed as class labels. A model is expected to
predict true occupations, i.e., the true label, of a
given person provided as the head entity. We define
the tail entity that receives the highest plausibility
score, i.e., rank 1, as the predicted label.

We note that this framing of the link prediction
task best applies to one-to-one and many-to-one
relations. For one-to-many and many-to-many re-
lations, link prediction is technically a multi-label
multi-class classification task. For a given human
as head entity, there can be multiple true labels.4

However, we cannot account for this in our ap-
proach as we want to avoid data leakage between
the training/validation and test set: Our bias mea-
surement is solely based on the test set, so the
evaluation of our model predictions on the test set
should be independent of the training set. We there-
fore only consider the occupations in the test set
as true labels. We discuss a related aspect in re-
gard to extracting information about our sensitive
attribute in §3.5. This limitation applies to all sen-
sitive attribute groups, so we assume that this does
not influence the relative pattern in the bias scores
between the groups, only their absolute values.

3.3 Selection of Fairness Metrics

Fairness metrics measure the performance for a
given classifier, i.e., a link prediction model, using
the following definitions: The predicted tail entity
is denoted by ŷ, while the true one is indicated by
y. The set of classes Y consists of candidate tail

4For instance, our target relation occupation is a many-to-
many relationship, as a person can have multiple occupations
and multiple persons can have the same occupation.
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entities t ∈ {t1, . . . , tT−1} as well as the OTHER

class tT , where T is the total number of classes.
We focus on sensitive attributes s with two values,
s ∈ {0, 1}.5 In the following, we introduce the
three fairness metrics that we selected. The equa-
tions show how the performance gap G (Orgad and
Belinkov, 2022) is measured for each target prop-
erty class t, e.g., the absolute difference between
the metric calculated for men versus women for a
given occupation. We establish this notion of bias
in our bias statement (§2).

Demographic Parity (DP) measures the selec-
tion rate (SelR), i.e., the probability of a given class
to be predicted. For example, it answers the ques-
tion “Which percentage of the persons predicted to
be lawyers are men versus women?” It does not use
information about the true class of the respective
predictions (Verma and Rubin, 2018).

DPG(s, t) =|P (ŷ = t |s = 1)− P (ŷ = t |s = 0)|
=|SelR(s = 1, t)− SelR(s = 0, t)|

(1)
This metric can show a potential general imbalance
in the predictions. Such prediction imbalances may
also reflect data bias, allowing us to analyze this
connection. For using this metric in the context
of binary classification and debiasing, we refer to
work discussing the strengths and weaknesses of
this metric (Dwork et al., 2012; Hardt et al., 2016).

Predictive Parity (PP) measures the positive
predictive value (PPV), also known as precision
(Prec), for a given class (Verma and Rubin, 2018;
Chouldechova, 2017). Precision is a well-known
evaluation metric that accounts for the percentage
of correct predictions (true positives, TP) out of
all persons predicted as belonging to that class,
i.e., out of all true positives and false positives
(FP). Achieving high precision for a class therefore
means that if a classifier predicts a class, it is very
likely that this prediction truly belongs to this class
(Sokolova and Lapalme, 2009). The gap is:

PPG(s, t) =|P (y = t | ŷ = t, s = 1)−
P (y = t | ŷ = t, s = 0)| (2)

=|Prec(s = 1, t)− Prec(s = 0, t)|

We choose this and the following metric because
they are well-established in the algorithmic fairness

5In theory, the approach can be extended to the non-binary
case. This is shown by Keidar et al. (2021), however they
do not discuss how the choice of their averaging strategy
influences the interpretation of the bias score.

community (Verma and Rubin, 2018; Hutchinson
and Mitchell, 2019; Barocas et al., 2019), and each
focuses on different capabilities of a classifier. For
instance, the precision–recall trade-off implies a
trade-off between Predictive Parity and Equality
of Opportunity (Buckland and Gey, 1994). Also,
an impossibility theorem from the algorithmic fair-
ness community (Chouldechova, 2017) proves that
these two notions of fairness cannot be achieved
simultaneously in non-trivial scenarios.

Equality of Opportunity (EO) measures the
true positive rate (TPR), also known as recall (Rec)
(Hardt et al., 2016). For a given class, it measures
the percentage of correct predictions (true posi-
tives) out of all persons that actually belong to that
class. Achieving high recall for a class therefore
means that the classifier identified most of the per-
sons that truly belong to this class (Sokolova and
Lapalme, 2009). The corresponding gap is:

EOG(s, t) =|P (ŷ = t | y = t, s = 1)−
P (ŷ = t | y = t, s = 0)| (3)

=|Rec(s = 1, t)− Rec(s = 0, t)|

3.4 Analyzing Bias at Three Levels of Detail
In order to conduct a comprehensive and critical
analysis, we calculate the above metrics at three
levels of granularity. Each highlights a different
aspect of model behavior: (i) the broadest one pro-
vides one score per model, (ii) a more detailed
view yields one score for each sensitive attribute
group, e.g., men vs. women, and (iii) the most
detailed one provides one score for each target
property class and sensitive attribute group, e.g.,
female lawyers. For (iii), we calculate the metric
(selection rate, precision, or recall) for each indi-
vidual target property class without averaging, e.g.,
Rec(s = 1, t = 0). For (ii), we calculate the arith-
metic mean for a specific sensitive attribute group,
e.g., s = 1, across all T target property classes:

EOG(s = 1) =
1

T

T∑

i=1

Rec(s = 1, ti) (4)

Calculating the average in this way means that we
use macro-averaging assigning all classes equal
importance (Sokolova and Lapalme, 2009). For (i),
we invoke Equations 1–3 and average the results,
again using macro-averaging:

EOG(s) =
1

T

T∑

i=1

EOG(s, ti) (5)
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Table 1: Data for measuring link prediction bias on both datasets using occupation as the target property and gender as the
sensitive attribute. Based on the prevalence in the test set of HUMANW5M-3MIL, we use a minimum count threshold of 100.
This means that we consider all occupations with more than 100 occurrences as separate classes, aggregating the remaining facts
in the class OTHER.

Occupation in Test Set with Gender Thereof Men Thereof Women

other 1,534 399 336 84% 63 16%
politician 1,070 308 274 89% 34 11%
writer 262 69 58 84% 11 16%
lawyer 253 78 72 92% 6 8%
actor 158 47 34 72% 13 28%
association football player 142 32 31 97% 1 3%
poet 129 28 21 75% 7 25%
novelist 109 33 19 58% 14 42%
screenwriter 106 26 26 100% 0 0%

sum over all occupations 3,763 1,020 871 85% 149 15%

3.5 Data-Driven Choice of Target Property
Classes and Sensitive Attribute

For all link prediction models, the long tail distri-
bution typical for knowledge graph (KG) datasets
(Zhang et al., 2020) presents a challenge: A small
set of entities appears often, while most entities ap-
pear only a handful of times, even in large datasets.
We account for this by choosing the target property
classes, the sensitive attribute, and its groups based
on their prevalence in the dataset. This means that
each class needs to be properly represented for each
sensitive attribute group, as it is also discussed in
similar work in other domains (Seyyed-Kalantari
et al., 2020; De-Arteaga et al., 2019). To achieve
this, we reduce the number of classes significantly
by aggregating occupations below a minimum
count threshold in the class OTHER, similar to
Keidar et al. (2021). The count threshold is based
on the test set of the dataset since only this part is
used for bias measurement. Using only the test set
is necessary to avoid data leakage, as we directly
use a model’s predictions of the target property
facts as input for our measurement:

Given a trained link prediction model, we extract
only the facts concerned with our selected target
property from the test set tail entity predictions,
i.e., the (personXY, occupation, ?) facts. For each
person – corresponding to the head entity – we then
search the entire dataset for their sensitive attribute
information, e.g., a fact stating their gender. We
argue that retrieving the sensitive attribute informa-
tion from the entire dataset is reasonable and does
not constitute data leakage, since we only extract
ground truth facts from the dataset. To be clear, we
never predict the sensitive attribute of a person,
only their target property. This means that the data

basis for the bias measurement consists of persons
with a target property fact in the test set and a
sensitive attribute fact somewhere in the dataset.

While ensuring a sufficient data basis is neces-
sary for a valid bias measurement, using a mini-
mum count threshold is also connected to the
issues of data scarcity and data bias (§2): (i)
Facts about members of minority groups will natu-
rally be less frequent than for those of the majority
group. In addition, (ii) groups might be underrepre-
sented due to biased selection processes in society
that contributed to the creation of the data. In our
case, the threshold leads to us only considering
female and male as identities, while having to dis-
regard other gender identities due to data scarcity
and likely representation bias, as well. We argue
that a bias analysis can still be performed under
these circumstances, but that the data basis and
limitations should be clearly acknowledged.

4 Experiments

4.1 Creating the HUMANW5M-3MIL Dataset

We created HUMANW5M-3MIL, a modified sub-
set of Wikidata5M (Wang et al., 2021b) based on
Wikidata (Vrandečić and Krötzsch, 2014), consist-
ing of 3 million facts about humans, meaning that
the head entity of each triple is always a human
entity. For each entity in the dataset, a textual
description consisting of the first section of the
corresponding Wikipedia article in English is avail-
able as well as a short English label for each entity
and relation (Wang et al., 2021b). We argue that
a smaller dataset only consisting of human facts
is useful to reduce the noise in the dataset and
the time required to train and evaluate the mod-
els. This approach follows previous work (Bourli
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Table 2: Prediction quality of all trained link prediction models on the test set measured using typical accuracy metrics. We
report the metrics averaged over head and tail entity predictions and separately only for tail entity predictions. The best scores
are highlighted in bold. The arrows express whether a high or a low value of the metric corresponds to high accuracy.

Model Prediction Type MR ↓ MRR ↑ Hits@1 ↑ Hits@3 ↑ Hits@10 ↑

K
G

on
ly

TransE averaged 188,784 19.21 16.02 20.74 24.47
tail 11,620 38.29 32.04 41.29 48.63

DistMult averaged 176,300 15.62 11.14 18.42 22.44
tail 8,405 30.76 22.00 36.34 44.09

RotatE averaged 221,341 14.80 11.44 17.08 19.50
tail 19,552 29.56 22.86 34.12 38.92

K
G

+
L

M SimKGCIB averaged 91,588 32.96 30.19 34.08 38.02
tail 255 64.79 60.06 67.04 73.60

SimKGCIB+SN+PB averaged 91,737 32.91 30.31 33.93 37.60
tail 276 64.75 60.14 66.89 73.24

and Pitoura, 2020; Keidar et al., 2021), however
the respective datasets are not publicly available.
We also created this dataset due to issues we find
in Wikidata5M: (i) The relation P216, which ex-
presses human sex or gender, is not contained in the
dataset, despite gender being the most frequently
investigated sensitive attribute (Costa-jussà, 2019).
(ii) An exploratory analysis revealed data quality
issues in the entity labels such as typos or labels
not matching the current English Wikidata labels.
To address these issues, we merge the human facts
of Wikidata5M with gender facts and English la-
bels taken from a current Wikidata version (the
truthy triples file from January 2, 2022). We en-
sure that each entity has a label and a description,
meaning that we exclude entities that only have
one or the other. For all remaining human entities,
we extract the gender facts, if they exist. We limit
our analysis to male and female gender, as data
on non-binary gender identities and intersex peo-
ple is very scarce in Wikidata (Klein et al., 2016;
Zhang and Terveen, 2021)). In our case, other
gender identities and intersex people are only rep-
resented by fewer than 500 occurrences combined.
As the entities expressing human gender are not
part of Wikidata5M and therefore lack a descrip-
tion, we use the first section of the Wikipedia arti-
cles for masculinity7 and femininity8. The result-
ing dataset contains ca. 11 million triples, which
we randomly sample down to 3,101,160 triples,
to reduce the dataset size. The resulting dataset,
HUMANW5M-3MIL, contains 1,396,220 unique
entities – 1,269,907 thereof human – and 225 rela-
tions (Table 7). Table 8 shows that HUMANW5M-
3MIL is representative of the larger raw dataset,

6https://www.wikidata.org/wiki/Property:P21
7https://en.wikipedia.org/wiki/Masculinity
8https://en.wikipedia.org/wiki/Femininity

when considering the manually selected candidate
relations that express sensitive attributes or target
properties. For instance, the sex or gender rela-
tion comprises ca. 13.5% of each dataset. We use
comparably large evaluation sets, as our bias score
calculation is only based on the test set, specifically
a [0.9, 0.05, 0.05] train/validation/test random split
(compared to [99.9995, 0.00025, 0.00025] for Wiki-
data5M), as the evaluation split size of ca. 155,000
triples is still manageable for all models we train
on our dataset. Further details about the creation
process of the dataset are given in Appendix B. We
make the code for creating the dataset along with
the data files available.9

4.2 Models and Training Details
We demonstrate our model-agnostic approach by
comparing two model classes: knowledge graph
embeddings (KGEs) that learn only from the struc-
ture contained in the knowledge graph dataset (KG
only) and language model (LM)-based models that
further also have access to the entity descriptions
and relation labels (KG+LM).

KG only models: TransE, DistMult and Ro-
tatE. KGEs learn a dense embedding for each en-
tity and relation in the dataset, capturing relation-
ships between entities in a latent space (Nguyen,
2021). We choose TransE (Bordes et al., 2013) and
DistMult (Yang et al., 2015) because they are com-
mon baseline models from different model families
(Rossi et al., 2021a). RotatE (Sun et al., 2019) is
an expressive state-of-the-art model from the same
model class as TransE. We use the self-adversarial
negative sampling loss (Sun et al., 2019) for all
models. After hyperparameter tuning (Appendix
A), we train all models for 400 epochs, using a

9https://github.com/lena-schwert/
comparing-bias-in-KG-models
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Table 3: Bias in occupation predictions averaged across all occupation classes. The bias score correspond to performance gaps
between predictions for men and women. The highest bias scores per fairness metric are highlighted in bold. DPG: Demographic
Parity Gap, PPG: Predictive Parity Gap, EOG: Equality of Opportunity Gap. *: 3,763 occupation facts were available in total for
HUMANW5M-3MIL.

Model Class Model DPG PPG EOG # of Facts
(Selection Rate) (Precision) (Recall) Used*

KG only TransE 0.51 0.001 0.03 3,735
DistMult 0.47 0.004 0.001 3,758
RotatE 0.32 0.003 0.04 3,709

KG + LM SimKGCIB 0.57 0.04 0.08 3,726
SimKGCIB+SN+PB 0.54 0.02 0.12 3,721

Table 4: Link prediction bias results separated for men and women showing the absolute fairness metric scores. In some cases
the absolute difference of the male and female score does not exactly match the gap scores in Table 3, because all results were
rounded to two or three decimals. We highlight the entries with the highest difference in bold, i.e., the same entries as in Table 3.
DP: Demographic Parity, PP: Predictive Parity, EO: Equality of Opportunity

Model Class Model DP PP EO
(Selection Rate) (Precision) (Recall)
Male Female Male Female Male Female

KG only TransE 0.76 0.24 0.043 0.042 0.09 0.05
DistMult 0.74 0.26 0.043 0.047 0.109 0.108
RotatE 0.66 0.34 0.041 0.044 0.08 0.05

KG+LM SimKGCIB 0.79 0.21 0.49 0.45 0.32 0.41
SimKGCIB+SN+PB 0.77 0.23 0.51 0.49 0.31 0.43

Table 5: Deviation of predicted occupations for women from the data distribution using the KG+LM model
SimKGCIB+SN+PB. For each of the nine occupation classes, we calculate the difference between the selection rate and
the distribution of the occupations in the test set of HUMANW5M-3MIL.

Selection Rate Data Distribution Difference

averaged 0.23 0.15 + 0.08

other 0.12 0.16 – 0.04
politician 0.15 0.11 + 0.04
writer 0.25 0.16 + 0.09
lawyer 0.12 0.08 + 0.04
actor 0.33 0.28 + 0.05
assoc. football player 0.08 0.03 + 0.05
poet 0.40 0.25 + 0.15
novelist 0.42 0.42 ± 0.00
screenwriter 0.20 0.00 + 0.20

batch size of 1,024, an embedding dimensionality
of 512, and 32 negative samples per training triple.
For TransE and DistMult a learning rate of 0.001
and for RotatE a learning rate of 0.01 is used.

KG+LM model: SimKGC LM-based models
utilize pre-trained Transformers (Vaswani et al.,
2017) that are fine-tuned on a knowledge graph
dataset. To that end, an input sequence is cre-
ated out of the entity descriptions instead of using
the entity and relation IDs. We choose SimKGC
(Wang et al., 2022), as it significantly outperforms
earlier models with respect to accuracy and com-
putational efficiency. It has a bi-encoder archi-
tecture using the pre-trained BERT-base (Devlin
et al., 2019). One encoder learns relation-aware

head entity embeddings and the other one tail en-
tity embeddings. The plausibility scoring of triples
is then simply achieved using cosine similarity. We
train the SimKGCIB and the SimKGCIB+SN+PB

model variants to investigate whether they exhibit
different bias behavior. We do not conduct hyperpa-
rameter tuning, as the parameters for Wikidata5M
used in the original paper (Wang et al., 2022) de-
liver strong results on our validation set. SimKGC
uses the InfoNCE loss with an additive margin (Le-
Khac et al., 2020). We train for 1 epoch using a
batch size of 1,024, a learning rate of 3× 10−5 and
a weight decay of 0.0001. We provide further de-
tails for reproducing the experiments in Appendix
A.
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4.3 Evaluation Protocol

We evaluate our link prediction models for accu-
racy using mean rank (MR), mean reciprocal rank
(MRR) as well as Hits@1, Hits@3, and Hits@10
(Rossi et al., 2021a). We calculate the ranks us-
ing the filtered setting (Bordes et al., 2013). Since
we only use tail entity predictions for measuring
bias, we compute the metrics (i) averaged across
head and tail entity predictions and separately (ii)
only for tail entity predictions. Following §3.5, we
choose gender as a sensitive attribute and occupa-
tion as the target property for measuring bias in the
trained models. We describe in Appendix C how
other combinations of sensitive attributes and target
property are not analyzed due to data scarcity.

4.4 Model Accuracy and Data Bias Results

Referring to Table 2, we note that the Hits@1 accu-
racy for tail entity predictions is the most relevant
metric for bias measurement, since the tail entities
with rank = 1 are used as the predicted class labels,
i.e., the predicted occupation. The performance
on tail entity predictions is clearly higher than the
one averaged across head and tail entity predictions
since there are fewer unique tail than head entities,
making this prediction easier. Performance on tail
entity predictions varies between 11.14 (DistMult)
and 60.14 (SimKGCIB+SN+PB). When comparing
the two model classes, the KG+LM models clearly
outperform the KG only models. Among the KG
only models, TransE obtains the best Hits@1 re-
sult (16.02), thus outperforming the two other more
recent and complex models.

Table 1 shows the absolute counts and the rela-
tive distributions of the occupation classes over the
two considered gender identities (male, female).
It also shows that we choose a minimum count
threshold of 100 facts per occupation, resulting in
eight distinct occupations, aggregating the remain-
ing ones in the class OTHER. When comparing the
relative distribution of facts per gender, it is evident
that the data is biased: Out of the 1,020 facts that
we use for bias measurement, 85% are about men
and only 15% about women, while a 50%–50%
distribution would be unbiased when considering
these two gender identities. The occupation with
the largest gender bias in the data is screenwriter
(100% men) and the one with the smallest bias is
novelist (58% men, 42% women). In addition, we
note again that gender identities beyond women
and men are severely underrepresented in the data,

constituting only 0.005% of the gender facts, which
is significantly lower than the 0.1–2% estimated by
Goodman et al. (2019).

4.5 Results on Gender Bias in Occupation
Predictions

For describing and analyzing the gender bias that
our models exhibit in its occupation predictions,
we consider the three levels of detail as introduced
in §3.4. Tables 3, 4, and 5 refer to levels of detail
(i), (ii), and (iii), respectively. These allow us to
answer three different research questions.

Q1: Are KG+LM models more biased than KG
only models?
As Table 3 shows, the bias scores are generally
higher for the KG+LM models than for KG only
models. Comparing the difference between the
most biased models for each class shows that it is
most pronounced for the demographic parity gap
(DPG): 0.57−0.47 = 0.1, followed by the equality
of opportunity gap (EOG) 0.12 − 0.04 = 0.08.
These results suggest that the additional textual
data the KG+LM models have access to leads to
biased occupation predictions and that this has the
most pronounced effect on DPG and EOG. The KG
only models, in contrast, here manage to obtain
fairly unbiased results, with scores close to zero.
We note that the column “# of facts used” shows
how many facts contributed to the score, since a
fact can only be considered when the predicted
tail entity is an occupation and not another type of
entity.

Q2: Does the bias originate in higher-quality
predictions for men or women?
To answer this question, we refer to Table 4, which
shows the previously described results separately
for men and women. For DP, we observe that the
selection rate for predictions for men is generally
higher. We connect this to the data distribution in
Q3. For PP and EO we make two observations:
First, most KG only models – which obtain essen-
tially unbiased results – obtain dismal precision and
recall scores (they only appear strong enough when
evaluated using ranking metrics). Second, for the
KG+LM models we observe opposing trends: With
regard to precision, the prediction quality for men is
slightly higher, while for recall, the prediction qual-
ity for women is noticeably higher. Especially the
latter trend is surprising since the data for women
is more limited. These observations show why this
level of detail is important for a comprehensive
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bias analysis: While KG only models exhibit far
less bias, they predict occupations inaccurately de-
spite an acceptable overall accuracy (Table 2). In
addition, we conclude that predictions for men are
not necessarily more accurate than those for the
women, despite the significantly larger amount of
data for men (85% of all occupation facts.).

Q3: Are there occupation classes that are pre-
dicted more often than expected based on their
distribution in the data?
We may consider the demographic parity results
for SimKGCIB+SN+PB, our most accurate model,
as an example. As explained earlier (§3.3), DP
measures selection rate imbalances that we expect
to mirror the data bias. Table 5 shows the per-class
differences between the selection rate (predicted
occupation) and the respective distribution in the
data (actual occupation) when predicting the oc-
cupation of women. Whenever the difference is
positive, the model predicts the given occupation
for more women than expected (and vice versa).
On average, the probability of women having a
given occupation is overestimated by 0.08, with the
occupations “poet” and “screenwriter” contribut-
ing the most to this score. Despite this, the model
does predict this occupation for some women, as
female screenwriters do exist in the training dataset.
This might be due to the entity descriptions that
this KG+LM model has access to, potentially be-
cause the person’s occupation might be similar to a
screenwriter or mention related words.

5 Conclusion

We present a model-agnostic approach for measur-
ing bias in link prediction along with the first exper-
imental study that measures bias in language model
(LM)-based link prediction models (KG+LM),
comparing it with bias in knowledge graph em-
bedding (KGE) models (KG only). Using a selec-
tion of fairness metrics and analyzing our results
at three levels of detail, we find that the KG+LM
models are more biased. We discuss the relation-
ship between bias, link prediction accuracy met-
rics and data bias. For our experiments, we create
HUMANW5M-3MIL, a subset of 3 million facts
about humans contained in Wikidata (Vrandečić
and Krötzsch, 2014). We have made our code and
the dataset available to the public to encourage fur-
ther research on these topics.

6 Limitations

In the following we discuss the limitations of our
work and how they might be addressed.

Our study considers a single sensitive attribute,
gender, limited to two gender identities, female
and male. We also note that the approach can be
extended to sensitive attributes with more than two
groups, requiring additional decisions on how to
average the bias scores across the sensitive attribute
groups in an interpretable way. This limitation is
caused by data scarcity, as we describe in §3.5, §4.1
and Appendix B + C.

Using only the test set of a dataset for bias mea-
surement has a few methodological implications:
First, the bias in the test set might not be represen-
tative of the bias contained in the other splits of the
data set. In our approach we used simple random
splitting, where all facts are randomly distributed
over the three splits, meaning that the distribution
of the relations might not be the same in all splits.
This approach is called the transductive setting,
which is currently the most prevalent method of
splitting knowledge graph datasets (Wang et al.,
2021b). To rule out differences between the splits
to some degree, a potential solution is a stratified
split, conditioned on the relations in the dataset.
This would enforce, for instance, that each split
has the same relative amount of gender and occupa-
tion facts. This solution is however only applicable
when the researcher has control over the dataset
split creation process. Second, in order to have a
sufficient data basis for each target property class
across sensitive attribute groups (§3.5), the dataset
or the test split size needs to be quite large. How-
ever, training models on large datasets requires the
availability of adequate computational resources
that many researchers do not have access to.

Using fairness metrics for bias measurement
means that the notion of bias is closely connected
to what is considered as a “misclassification”. We
note that we do not take into account the severity
of misclassifications, e.g., that predicting a novelist
to be a writer is less wrong than predicting them
to be a diplomat. This would require a semantic
analysis of the labels of both the true and the pre-
dicted tail entities. This might also be addressed by
clustering entities with similar meanings together,
e.g., predicting groups of occupations instead of
single occupations.
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7 Ethical Considerations

For our analysis of gender bias, we rely on fac-
tual statements contained in Wikidata10, a crowd-
sourced, public knowledge graph. This means that
we utilize gender information that was added to
the platform by largely anonymous editors. These
statements – and other statements describing de-
mographics – might therefore not correspond to
the self-identification of the respective persons or
they might be incorrect, especially if human or
automated data quality control mechanisms fail
(Heindorf et al., 2019).

In addition, we acknowledge that knowledge
graphs reflect a limited world view, because their
creation process is subject to various biases, such
as representation bias, popularity bias, and sam-
pling bias (following the definitions by Mehrabi
et al. 2021). In the field of knowledge graphs, these
problems were first described by Janowicz et al.
(2018) and recently reviewed by Kraft and Usbeck
(2022). For example, facts about the non-Western
world are underrepresented and persons with occu-
pations in arts, sports, and science and technology
are overrepresented (Radstok et al., 2021; Beytía
et al., 2022).

One consequence of the biases mentioned above
is our decision to only consider male and female
gender in our analysis, as all other gender identities
combined, such as non-binary, amount to fewer
than 500 facts in the entire dataset. To analyze
bias for these gender identities, a larger dataset or
a different approach than ours would be necessary.
We discuss these limitations and our understanding
of gender in §2.

As described in our bias statement (§2), our no-
tion of bias focuses on performance differences
for different social groups. We note that this is a
very specific, limited conceptualization of bias that
could be extended by considering real-world distri-
butions or normative connotations such as stereo-
types. However, we believe that the contribution
of our work is still useful for analyzing whether
link prediction models work as intended, especially
because it allows for comparing different model
classes.

To conclude, we stress that the intended use of
our approach is to identify concerning model be-
havior in a specific context defined by a sensitive
attribute and a target property. We emphasize that
the selected fairness metrics should not, e.g., be

10https://www.wikidata.org

used as constraints during model training without
a deeper analysis of what notions of fairness are
suitable in the context of how the model will be
used.
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A Additional Details for Reproducing the
Experiments

We list the training and evaluation time as well as
the hardware used for all our models in Table 6.

KG only: TransE, DistMult, RotatE. For train-
ing the KG only models on HUMANW5M-3MIL,
we largely use the parameters contained in the
Graphvite configuration files from the official Wiki-
data5M benchmark11 published by Wang et al.
(2021b). To adapt to our dataset, we conduct minor
additional hyperparameter tuning. We explore a
small grid testing 6 hyperparameter combinations
for each model: batch size ∈ {512, 1024}, learning
rate ∈ {0.1, 0.01, 0.001}. We train TransE and
DistMult for 50 epochs (training time: ca. 3.5-7
h, evaluation time: ca. 35 min) and RotatE for 20
epochs (training time: ca. 2.5-5 h, evaluation time:
ca. 65 min). We choose our final parameter config-
uration based on the mean reciprocal rank (MRR)
on the validation set, as it has been observed to be
the most stable metric among the link prediction
metrics (Rossi et al., 2021a).

For all models, we use a batch size of 1,024, an
embedding dimensionality of 512, and 32 negative
samples per training triple. For TransE and Dist-
Mult a learning rate of 0.001, for RotatE a learning
rate of 0.01 is used. We train the models for 500
epochs, evaluating after each 100 epochs. Finally,
the models trained for 400 epochs are used, since
the MRR performance drops slightly afterwards.
We use the self-adversarial negative sampling loss
(Sun et al., 2019) for all models.. For TransE, we
use margin γ = 12 and adversarial temperature =
0.5. For DistMult, we use margin γ = 0 and ad-
versarial temperature = 2. Again following the
Graphvite configuration files, we also apply L3 reg-
ularization with a weight of 0.002. For RotatE, we
use margin γ = 6 and adversarial temperature = 0.2.

KG + LM: SimKGC. We use the pre-trained
BERT-base in its “uncased" variant (Devlin et al.,
2019). Since the authors trained their model on
Wikidata5M, a superset of our dataset, we try us-
ing the exact same parameters as the original pa-
per (Wang et al., 2022). We use two of their
model variants to investigate whether using the self-
negative (SN) and pre-batch (PB) sample types lead
to different bias behavior compared to the “basic"
in-batch (IB) model variant. We therefore train
the SimKGCIB and the SimKGCIB+SN+PB model

11https://graphvite.io/docs/latest/benchmark.html

variants, using 2 pre-batch negatives for the latter.
We train for 1 epoch using a batch size of 1,024,
a learning rate of 3 × 10−5 and a weight decay
of 0.0001. The remaining parameters are: 400
warmup steps for the linear learning rate scheduler,
gradient clipping of 10.0, dropout 0.1, temperature
τ is initialized with 0.05, additive margin γ for the
InfoNCE loss is 0.02, α = 0.05 for graph-based
re-ranking is used, 2-hop neighbors are considered,
and a maximal token length of 50 for the entity
descriptions is used. As these parameters deliver
good results on the validation set, we do not con-
duct hyperparameter tuning.

Implementation details. All implementations
are done in Python. The code and data including
files to re-create the conda environment are con-
tained in the accompanying GitHub repository12.
All models are based on the deep-learning frame-
work PyTorch (Paszke et al., 2019).

• KG only: Knowledge Graph Embeddings:
For training models on HUMANW5M-3MIL

we use the model implementations and the
training pipeline of the v1.8.1 PyKEEN li-
brary (Ali et al., 2021). This framework en-
ables single-GPU training and the calculation
of evaluation metrics.

• KG + LM: SimKGC: We use the implemen-
tation that was published alongside the paper
of Wang et al. (2022). Their code13 includes
the calculation of evaluation metrics. The
implementations use the Huggingface Trans-
formers library v4.15 (Wolf et al., 2020).

• Data Bias: We use our own Python imple-
mentation.

• Link Prediction Bias: For calculating the pre-
dictive parity and equality of opportunity, we
use Microsoft’s fairlearn library (Bird et al.,
2020), that wraps around scikit-learn’s eval-
uation metrics. For calculating demographic
parity, we modify code from the repository
published by Keidar et al. (2021).14

B Additional Details About the Creation
of the Dataset

This section describes how we create the raw ver-
sion of HUMANW5M-3MIL. This raw version

12https://github.com/lena-schwert/
comparing-bias-in-KG-models

13https://github.com/intfloat/SimKGC/
14https://github.com/mianzg/kgbiasdetec
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Table 6: Training runtime, evaluation runtime and hardware used for training all of our models. *: NVIDIA A100-SXM-80GB,
+: AMD EPYC 7502 32-Core CPU.

Model Class Model Train. Time Eval. Time GPU(s) Used Other Hardware

KG only TransE 27 h 35 min 1x NVIDIA A100* 10 GB RAM, 32 CPUs+

DistMult 30 h 35 min 1x NVIDIA A100* 10 GB RAM, 32 CPUs+

RotatE 55 h 66 min 1x NVIDIA A100* 10 GB RAM, 32 CPUs+

KG+LM SimKGCIB 45 min 180 min 4x NVIDIA A100* 15 GB RAM, 50 CPUs+

SimKGCIB+SN+PB 45 min 180 min 4x NVIDIA A100* 15 GB RAM, 50 CPUs+

Table 7: Dataset statistics for the raw version of our dataset and the subsampled dataset HUMANW5M-3MIL that we use in our
experiments.

11mil. Raw Dataset HUMANW5M-3MIL

# of entities 1,732,021 1,396,220
# of human entities 1,503,491 1,269,907
# of relations 292 225
# of train triples - 2,791,044
# of validation triples - 155,058
# of test triples - 155,058
total # of triples 11,114,797 3,101,160

Table 8: Manually selected Wikidata relations of general interest for a bias analysis. This large selection can be considered
as candidate relations, since they must exist in sufficient quantity to enable a robust bias analysis. We show the triple counts
for each relation and the proportion of this count of the total size of each dataset. The raw dataset version contains 11,114,797
triples. Our final dataset, HUMANW5M-3MIL contains 3,101,160 triples. We ultimately only use the relations "gender" and
"occupation" for our bias analysis.

Wikidata Label Wikidata ID Relation Expresses... 11mil. Raw Dataset HUMANW5M-3MIL

sex or gender P21 gender 1,501,938 (13.51 %) 418,622 (13.50 %)
country of citizenship P27 nationality 1,143,007 (10.28 %) 319,123 (10.29 %)
place of birth P19 nationality 854,080 (7.68 %) 238,162 (7.68 %)
religion P140 religion 27,805 (0.25 %) 7,827 (0.25 %)
ethnic group P172 ethnicity 27,235 (0.25 %) 7,751 (0.25 %)
native language P103 nationality 19,771 (0.18 %) 5,495 (0.18 %)
medical condition P1050 disability 3,824 (0.03 %) 1,049 (0.03 %)
sexual orientation P91 sexual orientation 484 (0.004 %) 123 (0.004 %)

occupation P106 target property 1,095,357 (9.85 %) 305,806 (9.86 %)
educated at P69 target property 438,207 (3.94 %) 122,195 (3.94 %)
award received P166 target property 169,758 (1.53 %) 47,661 (1.54 %)
member of political party P102 target property 126,285 (1.14 %) 35,233 (1.14 %)
employer P108 target property 79,781 (0.72 %) 22,103 (0.71 %)
position held P39 target property 75,909 (0.68 %) 21,069 (0.68 %)
field of work P101 target property 17,757 (0.16 %) 4,956 (0.16 %)
military rank P410 target property 16,330 (0.15 %) 4,510 (0.15 %)
nominated for P1411 target property 12,854 (0.12 %) 3,627 (0.12 %)
academic degree P512 target property 5,315 (0.05 %) 1,558 (0.05 %)
doctoral student P185 target property 1,415 (0.01 %) 424 (0.01 %)

contains 11,114,797 triples, 1,732,021 entities –
thereof 1,503,491 human entities – and 292 rela-
tions. To reduce dataset size, we sample it down to
3,101,160 triples, creating HUMANW5M-3MIL.

Details on extracting the labels. As an alterna-
tive to using the textual descriptions for entities, i.e.,
the first section of the corresponding Wikipedia ar-
ticle, we propose using the shorter Wikidata labels.
As these contain less information for the KG+LM
model to process, using labels instead of descrip-

tions reduces the model runtime. We considered
using the alias files provided with Wikidata5M15,
but found that the entity aliases have quality issues
such as typos (e.g., for the ‘human’ entity Q5, the
first alias is ’Huamn’) or aliases that do not have the
same meaning as the current label (e.g., for the ‘uni-
verse’ entity Q1, the first alias is ‘Earth’s universe’).
After correspondence with the first author of the

15https://deepgraphlearning.github.io/project/
wikidata5m
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paper that introduced Wikidata5M (Wang et al.,
2021b), we learned that they created the alias files
using the “pageterms” property of the MediaWiki
API16. The faulty aliases are thus likely a result
of the use of that data source and do not represent
genuine entity labels. We therefore extract entity
and relation labels from the January 2, 2022 truthy
triples Wikidata dump17. The Wikidata dump files
are updated every week and contain the most re-
cent state of Wikidata in different data formats18.
We use the truthy triples file specifically, because
it only contains non-deprecated triples, which re-
duces the amount of metadata contained and there-
fore the file size.

Details on creating the subset of human facts.
We extract all facts that have a human head entity
from the raw triples file provided with the orig-
inal Wikidata5M files. A human head entity is
identified by its “instance of human” (QXX P31
Q5) statement. This initially leads to a subset of
9,804,421 facts about humans. In order to be able
to compare KG+LM models using either the shorter
labels or the longer descriptions as text input, we
only keep entities and relations that have both la-
bels and descriptions. This leads to a removal of
17,528 entities and 2 relations from the dataset, due
to deletions and additions that happened between
the creation of Wikidata5M (based on the July 2019
Wikidata dump, Wang et al. 2021b) and the extrac-
tion of the labels (January 2022 Wikidata truthy
triples dump). Removing these entities and rela-
tions means that we remove all facts that contain
them, leading to 191,178 facts that are excluded in
total.

Details on adding gender facts from current
Wikidata. In an exploratory analysis of Wiki-
data5M before creating our dataset, we counted the
occurrences of facts that we considered to be of
general interest for a bias analysis. With respect
to the gender relation (PID: P21) we found that its
count is unexpectedly low (about 4,000) compared
to the number of human entities in the dataset (1.5
million). Furthermore, we found that these facts
express animal sex and not human gender, because
the head and tail entities are non-human (tail enti-

16https://www.mediawiki.org/w/api.php?action=
help&modules=query%2Bpageterms

17https://dumps.wikimedia.org/wikidatawiki/
entities/

18https://www.wikidata.org/wiki/Wikidata:
Database_download

ties: Q44148, Q43445). When filtering for gender
facts in the human facts subset, we only found 384
facts overall. Through correspondence, the first
author of the paper that introduced Wikidata5M
(Wang et al., 2021b) informed us that they used
Wikidata’s “wbgetentities” API19 to align Wikidata
and Wikipedia entries. Since the Wikidata entities
for male20 and female gender21 are linked to the
same Wikipedia page describing gender22, the API
might have therefore omitted facts containing these
entities. We therefore use the January 2022 truthy
triples dump to extract the gender facts as well.
We extract 1,243,734 facts with gender male and
258,204 facts with gender female. Persons with
other gender identities, such as non-binary, or in-
tersex people have fewer than 500 occurrences in
the entire dataset.

We therefore consider only two gender identities
within the context of this study, as the data scarcity
would not allow our models to properly represent
the other gender identities contained in the dataset.

Adding the gender facts for women and men en-
tails adding two new (tail) entities to the dataset
(Q6581072, Q6581097). As these entities do not
have descriptions in the original dataset, we use the
first section of the Wikipedia articles for masculin-
ity23 and femininity24.

C Considering Additional Sensitive
Attributes and Target Properties

Beyond measuring gender bias in occupation pre-
diction, we did consider using other target proper-
ties and sensitive attributes for the analysis of the
HUMANW5M-3MIL subset. However – in contrast
to using “gender" and “occupation" – we found the
respective data bases to be lacking.

The relation “educated at" is the target prop-
erty with the second-highest counts in HumanWiki-
data5M. In total, the 438,207 facts have 9,330 dif-
ferent tail entities, i.e., educational institutions such
as universities. In the test set, the 8,684 “educated
at" facts still have 1,919 different tail entities, only
3 of those with more than 100 occurrences. If
the minimum count threshold were set at 100, this
would result in an “other" class with 8,439 facts,
leading to a very imbalanced class distribution. In

19https://www.mediawiki.org/wiki/Wikibase/API
20https://www.wikidata.org/wiki/Q6581097
21https://www.wikidata.org/wiki/Q6581072
22https://en.wikipedia.org/wiki/Gender
23https://en.wikipedia.org/wiki/Masculinity
24https://en.wikipedia.org/wiki/Femininity
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Table 9: Data basis for measuring link prediction bias using occupation as the target property and country of citizenship as
the sensitive attribute. This shows the insufficient data basis for a bias analysis: Even the three best represented countries of
citizenship (sum over all occupations ≥ 50) are not sufficiently represented across the individual occupations in the test set of
HUMANW5M-3MIL.

Occupation in Test Set with Citizenship USA France UK Other

other 1,534 437 146 33 41 217
politician 1,070 278 104 11 9 154
writer 262 68 9 13 4 42
lawyer 253 76 50 1 1 24
actor 158 44 18 5 2 19
association football player 142 34 2 1 10 21
poet 129 38 2 8 2 26
novelist 109 29 17 3 3 6
screenwriter 106 38 9 5 2 22

Sum over all occupations 3,763 1,042 357 80 74 531

addition, the three most frequent tail entities are
“Harvard University" (270 facts), “Yale University"
(121 facts), and “University of Michigan" (104
facts), which represent a very limited selection of
all educational institutions contained in the dataset.
We therefore disregard “educated at" as a target
property.

Moving on to additional potential sensitive at-
tributes, the relation “country of citizenship" is the
most promising candidate with 1,143,007 facts in
HumanWikidata5M. However, when creating an
overview of counts per occupation class similar
to Table 1, it becomes evident that the data for
each sensitive attribute group, i.e., country, is very
limited (Table 9). While there are in total 18,396
country of citizenship facts in the test set, this in-
formation is only available for 1,020 of the 3,763
occupation facts. The three countries with the high-
est counts are all Western countries, namely USA
(357 facts), France (80 facts), and the UK (74 facts).
Even for these countries, the majority of the occu-
pation classes are only represented by 0 to 5 facts.
The 110 other countries represented in the test set
are all aggregated in the “other" class, which is
again the largest class with 531 facts. This means
that the sensitive attribute groups are already quite
homogeneous, while the “other" group contains the
majority of diverse information about “citizenship".
Compared to using two groups for “gender” as the
sensitive attribute, choosing the sensitive attribute
groups as above would thus result in an unrealistic
and uninformative comparison. We hence decided
against including “country of citizenship" as a sen-
sitive attribute.

Similar considerations apply to the other rela-
tions of interest listed in Table 8, since these also
have too few facts per target property class or a very

broad distribution over sensitive attribute groups.
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