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Abstract

Knowledge distillation (KD) is a highly promis-
ing method for mitigating the computa-
tional problems of pre-trained language mod-
els (PLMs). Among various KD approaches,
Intermediate Layer Distillation (ILD) has been
a de facto standard KD method with its perfor-
mance efficacy in the NLP field. In this paper,
we find that existing ILD methods are prone to
overfitting to training datasets, although these
methods transfer more information than the
original KD. Next, we present the simple obser-
vations to mitigate the overfitting of ILD: distill-
ing only the last Transformer layer and conduct-
ing ILD on supplementary tasks. Based on our
two findings, we propose a simple yet effective
consistency-regularized ILD (CR-ILD), which
prevents the student model from overfitting the
training dataset. Substantial experiments on
distilling BERT on the GLUE benchmark and
several synthetic datasets demonstrate that our
proposed ILD method outperforms other KD
techniques. Our code is available at https:
//github.com/jongwooko/CR-ILD.

1 Introduction

Recent advances in NLP have shown that using
PLMs such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) on downstream tasks
is effective. Although these models achieve state-
of-the-art performances in various domains, the
promising results of PLMs require numerous com-
putation and memory costs. Deploying such large
models on resource-constrained devices such as
mobile and wearable devices is impractical. It is
thus crucial to train computationally efficient small-
sized networks with similar performance to that of
large models.

KD is promising model compression technique
where knowledge is transferred from a large and
high-performing model (teacher) to a smaller
model (student). KD has been shown to be re-
liable in reducing the number of parameters and

computations while achieving competitive results
on downstream tasks. Recently, KD has attracted
more attention in the NLP field, especially due to
large PLMs. However, it is clear that the original
KD (Hinton et al., 2015) is not performing well
in terms of maintaining the performance of com-
pressed PLMs and that it needs to have additional
auxiliary training objectives (Sun et al., 2019; Jiao
et al., 2020).

ILD methods (Jiao et al., 2020; Wang et al.,
2020), which encourage the student model to ex-
tract knowledge from the Transformer layers of
the teacher network, have demonstrated efficacy
in improving student model performance and have
become a de facto standard in KD. Despite of suc-
cess of ILD methods, many research have been
proposed to design layer mapping functions (Li
et al., 2020; Wu et al., 2020) or new training ob-
jective (Park et al., 2021) to transfer the teacher’s
knowledge better. These ILD methods transfer
more knowledge to the student model from the in-
termediate Transformer layers of the teacher model.
However, we find that the use of ILD in fine-tuning
may induce performance degradation in some cases.
As shown in Figure 1, while existing ILD methods
such as TinyBERT (Jiao et al., 2020) and BERT-
EMD (Li et al., 2020) work well on standard GLUE
benchmark (Wang et al., 2019), we observe that
these methods have performance degradation com-
pared to original KD on ill-conditioned datasets
such as those with few-samples and label noise.
Because few-sample (Zhang et al., 2021) or hetero-
geneous datasets (Jin et al., 2021; Liu et al., 2022)
can be easily found in real-world datasets, the ex-
isting ILD methods, which show performance re-
duction in Figure 1, are hard to use in real-world
applications.

To mitigate such performance degradation, we
identify the main problem as that intermediate
Transformer knowledge can incur overfitting on the
training dataset of the student model. We further

158

https://github.com/jongwooko/CR-ILD
https://github.com/jongwooko/CR-ILD


MNLI SST-2 QNLI RTE60

70

80

90 KD
TinyBERT
BERT-EMD
Ours

(a) Standard

MNLI SST-2 QNLI RTE50

60

70

80

(b) Few-samples

MNLI SST-2 QNLI RTE
50
60
70
80
90

(c) Label Noise

Figure 1: The motivation of our work. While existing ILD methods (Jiao et al., 2020; Li et al., 2020) work well on
the standard GLUE benchmark (Wang et al., 2019), we observe that the existing ILD methods are problematic under
few-samples training datasets or the presence of label noise. However, our proposed method shows robustly higher
performance than the original KD for all datasets. We use BERTSmall (Turc et al., 2019) as the student model and
BERTBASE (Devlin et al., 2019) as the teacher model. The detailed descriptions for dataset are in Appendix B.

discover that distilling only the last Transformer
layer knowledge and using supplementary tasks can
alleviate the overfitting. Through our observations,
we finally propose a simple yet effective method,
consistency-regularized ILD (CR-ILD) with sev-
eral analyses. Our main contributions are:

• We design and conduct comprehensive exper-
iments to identify that overfitting is one of
the main problems for performance degrada-
tion of ILD in fine-tuning. To the best of our
knowledge, this is the first study to find that
existing ILD methods have overfitting issues.

• Based on our findings, we propose the consis-
tency regularized ILD (CR-ILD) that a student
self-regularized itself from risk of overfitting
from ILD. We further provide empirical (and
theoretical) analyses for our proposed method.

• We experimentally demonstrate that our pro-
posed method achieves state-of-the-art per-
formance on both standard GLUE and ill-
conditioned GLUE (few samples and label
noise), despite its simplicity.

2 Related Works

Model Compression of LMs. Transformer
encodes contextual information for input to-
kens (Vaswani et al., 2017). In recent years,
from the success of Transformer, Transformer-
based models such as GPT (Radford et al., 2018),
BERT (Devlin et al., 2019), and T5 (Raffel et al.,
2020) have become a new state of the arts, driving
out recurrent or convolutional networks on various
language tasks. However, the promising results of
these models are accompanied by numerous param-
eters, which necessitate a high computation and
memory cost for inference. Existing compression
techniques can be categorized as low-rank matrix
factorization (Mao et al., 2020), quantization (Bai
et al., 2021), and KD (Sun et al., 2019).

Knowledge Distillation for LMs. KD is one of
the most well-known neural model compression
techniques. The goal of KD is to enable the student
model with fewer parameters to achieve similar per-
formance to that of the teacher model with a large
number of parameters. In the recent few years, a
wide range of different methods have been devel-
oped that apply data augmentation (Jiao et al., 2020;
Liang et al., 2021), adversarial training (Rashid
et al., 2021), and loss terms re-weighting (Jafari
et al., 2021) to reduce the performance gap be-
tween the teacher and the student. In another line in
the NLP field, ILD-based methods have exhibited
higher effectiveness over original KD (Hinton et al.,
2015) methods for compression PLMs. Sun et al.
(2019) proposed the BERT-PKD to transfer repre-
sentations of the [CLS] token of the teacher model.
Jiao et al. (2020) proposed TinyBERT, which per-
formed Transformer distillation in both pre-training
and fine-tuning. Wang et al. (2020) distilled the
self-attention module of the last Transformer layer
of the teacher. Li et al. (2020) leveraged earth
mover’s distance (EMD) to determine the optimal
layer mapping between the teacher and student
networks. Park et al. (2021) presented new KD
objectives that transfer contextual knowledge via
two types of relationships.

3 Observations: Two Things Everyone
Should Know to Mitigate Overfitting

In this section, we identify that overfitting is the
main problem for performance degradation while
conducting ILD in fine-tuning. This overfitting
problem can occur even in the standard GLUE
benchmark. Moreover, the ill-conditioned dataset,
where overfitting problems can occur more easily,
induces a larger performance reduction. Further-
more, we investigate that this overfitting problem
is able to be reduced by (1) distilling the last Trans-
former layer and (2) conducting ILD on supplemen-
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Figure 2: Performance distribution box plot across 20 random trials and the four datasets with different distillation
methods. As the student model, we apply Truncated BERT (Sun et al., 2019) which initialized as the bottom 6
layers from BERTBASE. Distilling knowledge of the last Transformer layer enhances generalization and reduces the
variance of fine-tuning. The red-dotted lines are baseline performances that only use prediction layer KD.
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Figure 3: Performance distribution box plot across
20 random trials for MRPC and RTE when
BERTSmall (Turc et al., 2019) is used as the student
model. Well-pretrained student models have more con-
sistent performance to the choice of layer mappings.

tary tasks. While our suggested findings already
have worked well in various domains (Wang et al.,
2020; Phang et al., 2018), these previous works
under-explored the effects of the techniques. How-
ever, this is the first work to use such techniques
with empirical justification for mitigating overfit-
ting problems.

Among the various ILD objectives, we focus on
the two most commonly used distillation objectives:
multi-head attention (MHA) and intermediate rep-
resentations (IR). Formally, for the student’s layer
ℓS ∈ [1,M ], the loss function of MHA and IR are
as follows:

LℓSMHA =
1

Ah

Ah∑

a=1

KLD(AT
m(ℓS),a||AS

ℓS ,a) (1)

LℓSIR = MSE(HT
m(ℓS),W

HHS
ℓ ), (2)

where m(·) is layer mapping function that returns
teacher layer m(ℓS) ∈ [1, L]. Note that KLD and
MSE are Kullback-Leibler divergence and mean
squared error, respectively. We denote A and H
as MHA and IR. T and S are superscripts for the
teacher and student model, and a and Ah indicate
the index and the total number of multi-attention
heads, respectively. Note that WH is a learnable
weight matrix for matching the dimension between
representations of the teacher and student. Consis-
tent with previous studies (Sun et al., 2020; Jiao
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Figure 4: Training loss of different distillation ap-
proaches (L-ILD, U-ILD, EMD-ILD) with increasing
Gaussian noise: models trained with L-ILD are more
tolerant of noise, which proves that our L-ILD leads
models to be more general.

et al., 2020), we observe that sequential training of
ILD and original KD (Hinton et al., 2015) shows
better than joint training of ILD and original KD.
We conduct an experimental study on sequential
training of ILD and original KD from our prelim-
inary experiments. All the detailed descriptions
of the scope of our empirical study are in Ap-
pendix C.1.

3.1 Layer Mapping: Distill Only the Last
Transformer Layer

One of the biggest challenges of ILD methods is
establishing a proper layer mapping function that
determines layers of the teacher and student models
to transfer knowledge. In this section, we observe
that transferring layer-to-layer information leads
student models to overfit training samples and is
the primary reason for the degradation of student
performance. Based on our findings, we suggest
that the last layer distillation (Wang et al., 2020,
2021) is promising layer mapping method. Our
empirical analyses can explain the suggested tech-
nique’s success in terms of mitigating overfitting.

Main Observations. We compare three distil-
lation strategies: last Transformer layer distilla-
tion (L-ILD), layer-to-layer distillation using uni-
form layer mapping (U-ILD), and optimal many-to-
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Figure 5: Comparisons for performance of ILD on different supplementary tasks. All students are BERTSmall,
distilled MHA and IR from BERTBASE teachers with L-ILD (blue) and U-ILD (orange). We present the results of
prediction layer KD on the supplementary tasks in red dotted lines. All results are averaged over 20 runs.
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Figure 6: The mean (solid lines) and range (shaded re-
gion) of training and validation loss during fine-tuning
BERT after conducting ILD on different supplementary
tasks, across 20 random trials.

many layer mapping using the EMD (EMD-ILD)
proposed in Li et al. (2020). In Figure 2, L-
ILD (blue box) outperforms other baselines on all
four datasets (MRPC, RTE, SST-2, QNLI) in terms
of the test performance and variance reduction over
the random trials. Note that the U-ILD, which is a
commonly used mapping function (Sun et al., 2019;
Jiao et al., 2020), leads to performance degradation
in most fine-tuning tasks.

We conduct same experiments on the stu-
dent model with different initialization (BERTSmall;
Turc et al. 2019) as shown in Figure 3. We observe
that L-ILD has a higher performance regardless
of the size of the dataset or initialized point. How-
ever, the performance gap between L-ILD and other
mapping functions gets smaller when the dataset
size becomes larger, and the student model is well
pre-trained. On the other hand, although EMD-
ILD alleviates the difficulties in layer mapping be-
tween the teacher and student, it exhibits lower per-
formance than L-ILD. We find that performances
of EMD-ILD vary across the pre-trained methods
while performances of L-ILD are not. These re-
sults validate that the inaccurate layer mapping
between the intermediate Transformer layers is not
the primary problem of ILD; instead, intermedi-
ate Transformer layer distillation itself is the main
problem in the fine-tuning stage.

Analysis. To better understand about the perfor-
mance degradation of distilling the knowledge of
intermediate Transformer layers, we evaluate the
generalizability of the student models of different
layer mapping functions by following Zhang et al.
(2019); Jeong and Shin (2020). We add Gaussian
noise over N (0, σ2I) with different noise radius σ
to the embedding vectors of the three models (L-
ILD, U-ILD, EMD-ILD) and then evaluate their
cross-entropy loss on the training set. More gener-
alizable models are robust to the noisy embeddings,
hence they have a lower training loss although the
magnitude of noise becomes larger.

As shown in Figure 4, transferring knowledge
of the intermediate Transformer layers leads the
student model to the flat minima that are robust
of noise and more generalizable (Hochreiter and
Schmidhuber, 1997; Keskar et al., 2016). We fur-
ther conduct the loss surface (Zhang et al., 2021)
and linear probing (Aghajanyan et al., 2021a) analy-
ses for evaluating the generalizable representations
of PLMs during fine-tuning and report the results
in Appendix E.1.

3.2 Training Data: Use Supplementary Tasks

In this section, we investigate the performance of
ILD in terms of training datasets for transferring
knowledge from teacher to student model. We
observe that conducting ILD even on the last Trans-
former layer has the risk of overfitting to the train-
ing dataset of target task (TT). The Previously sug-
gested augmentation module in Jiao et al. (2020)
generates 20 times the original data as augmented
samples, requiring massive computational over-
head for generating. From our observation, we find
that conducting ILD via supplementary tasks (ST,
Phang et al. 2018) is a simple and efficient method
for overfitting problem. Based on our observation,
we study to find the condition for appropriate ST,
which robustly improves the performance of ILD.
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Figure 7: The conditions for appropriate supplementary tasks. The student models trained on supplementary tasks
that have large datasets, longer effective sequence length, and high similarity with the target task tend to have higher
performances. Size, Len., and Sim. denote the size of the dataset, effective sequence length, and similarity.

Main Observations. As shown in Figure 5, in
most downstream tasks, except for STS-B, the per-
formance of combining ILD with other STs is supe-
rior to that when using the original dataset. Among
the tasks with small dataset (CoLA, MRPC, RTE,
STS-B), although STS-B exhibits superiority as an
ST for ILD, all student models with ILD on CoLA
exhibit the worst performance for all TTs. For large
tasks (MNLI, QNLI, QQP, SST-2) as STs, student
models trained on MNLI and SST-2 exhibit the best
and worst performance for all TTs.

Analysis. To understand performance gain from
using STs, we compare the loss dynamics for
fine-tuning of RTE task using the cross-entropy
loss after conducting ILD on the TT (RTE) and
STs (MRPC, STS-B, QNLI). Notably, the student
model with ILD on RTE shows a faster decrease
and increase in the training and validation loss, re-
spectively, than the student model with ILD on the
STs, as shown in Figure 6. From the results, we
verify that conducting ILD over TT incurs mem-
orization of the student model to training data of
TT while performing ILD over ST prevents this
memorization yet effectively transfers knowledge
of the teacher model.

3.2.1 Ablation Study
Although the combination of ST with ILD gener-
ally improves the performances of student mod-
els, decreased performances are observed in some
cases. These results emphasize the need to se-
lect appropriate ST. In this section, we present
exploratory experiments on synthetic datasets ex-
tracted from the English Wikipedia corpus to pro-
vide further intuition for the conditions of convinc-
ing STs.

Dataset Size. According to the results in Figure 5,
student models trained on STs with large datasets,
such as MNLI and QQP, perform better. We con-
ducted experiments on synthetic datasets extracted

from the Wikipedia corpus with different dataset
sizes to validate our observations. The results in
Figure 7a and 7b indicate that as the size of the
synthetic datasets grows larger, the performance of
the student models improves.

Effective Sequence Length. A surprising result
of Figure 5 is that ILD on single sentence tasks such
as SST-2 or CoLA exhibits lower performances
than those of the smaller sentence pair tasks. This
phenomenon is much more evident in U-ILD. Mo-
tivated by these results, we conducted experiments
on synthetic datasets with the same dataset size
of 30k and different effective sequence lengths
(measured without considering [PAD] tokens). Fig-
ures 7c and 7d show that as the effective sequence
length of the datasets increases, so do the perfor-
mances of the student models.

Task Similarity. Finally, we investigate the effect
of task similarity between TTs and STs. We only
use datasets in the GLUE benchmark for computing
the similarity and do not use synthetic Wikipedia
datasets. To measure the task similarity, we use the
probing performance of the TT after performing
ILD for each ST, following Pruksachatkun et al.
(2020). We conduct ILD on different STs and then
conduct probing and fine-tuning on the TT. Fig-
ure 7e and 7f summarize the correlation between
the probing and fine-tuning performances for CoLA
and STS-B as the TT. The fine-tuning performances
get better as the probing performances get better,
and it is proven that ILD is better when done on an
ST that has a high correlation with the TT.

4 Method: Consistency Regularized ILD

In this section, we propose a simple yet effective
ILD method for improving the robustness of the
student models called consistency regularized ILD
(CR-ILD) that applies interpolation-based regular-
ization (Sohn et al., 2020; Zheng et al., 2021) on
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Figure 8: Comparison of training loss of different distillation approaches (ILD, ILD+MixUp, and CR-ILD) with
increasing Gaussian noise: models trained with CR-ILD are more tolerant to noise which verify that our CR-ILD
leads model to flat minima which have higher generalization.

Algorithm 1 Consistency Regularized ILD
Input: embedding layers WT

e ,W
S
e , model param-

eters ΘT ,ΘS , training dataset D, MixUp hyper-
parameter α, warmup iteration T , regularization
coefficient wCR

MHA, w
CR
IR

Output: ΘS

1: initialize t← 0
2: for each minibatch B do
3: sample |B| pairs of (xi,xj) for xi,xj ∈ B
4: sample λ ∼ Beta(α, α)
5: hS

i = WS
e xi,h

S
j = WS

e xj

6: hT
i = WT

e xi,h
T
j = WT

e xj

7: h̃S
i = Mixλ(h

S
i ,h

S
j )

8: h̃T
i = Mixλ(h

T
i ,h

T
j )

9: compute RMHA and RIR from h̃S
i ,h

S
i ,h

S
j

10: compute LMHA and LIR from h̃S
i , h̃

T
i

11: w̃CR
MHA = max( t

T , 1) · wCR
MHA

12: w̃CR
IR = max( t

T , 1) · wCR
IR

13: L ←∑
k∈{MHA,IR} LMk + w̃CR

k Rk

14: update ΘS using gradient descent methods
15: update t← t+ 1
16: end for

MHA and IR of the student models. Our method ef-
ficiently enhances the generalization by leading the
student model to the flat minima (Section 3.1) and
introducing appropriate ST (Section 3.2). We first
introduce the proposed method and then provide
analyses of CR-ILD.

4.1 Proposed Method: CR-ILD

To implement the CR, we apply MixUp (Zhang
et al., 2018), which is an interpolation-based reg-
ularizer to improve the robustness in NLP (Chen
et al., 2020). The direct application of MixUp
to NLP is not as straightforward as images, be-
cause the input sentences consist of discrete word
tokens. Instead, we perform MixUp on the word

embeddings at each token by following Chen et al.
(2020); Liang et al. (2021). Thus, MixUp samples
with embeddings hi,hj from sentences xi,xj and
λ ∈ [0, 1] are generated as:

Mixλ(hi,hj) = λ · hi + (1− λ) · hj ,

Note that λ ∼ Beta(α, α) is randomly sampled
value from Beta distribution with hyperparameter
α ∈ (0,∞) for every batch.

Then, we introduce our CR-ILD, as follows:

Rfθ = d(fθ(Mixλ(hi,hj)), Mixλ(fθ(hi), fθ(hj))),

where fθ denotes the Transformer layer outputs
(e.g., MHA and IR) of the model with param-
eter θ and embedded input hi,hj . Note that
Mixλ(fθ(hi), fθ(hj)) = λ·fθ(hi)+(1−λ)·fθ(hj)
is interpolation of outputs from hi,hj . d(·, ·) is a
distance metric for regularization, with KLD for
MHA and MSE for IR. For example, we have:

RMHA = KLD
(

MHA(Mixλ(hi,hj)) ||
Mixλ(MHA(hi),MHA(hj))

)

RIR = MSE
(

IR(Mixλ(hi,hj)) ,

Mixλ(IR(hi), IR(hj))
)

for CR terms of MHA and IR. Hence, the overall
loss function of CR-ILD is as follows:

L = LMMHA + LMIR + w̃CR
MHARMHA + w̃CR

IR RIR,

where w̃CR
MHA and w̃CR

IR are coefficients for regu-
larization. As the student models are underfitted
to training dataset in the early training phase, we
first set the coefficients to zero and gradually in-
crease the values to wCR

MHA and wCR
IR , respectively.

Note that both LMMHA and LMIR are computed by out-
puts from the teacher and student model with the
same MixUp samples as inputs through Eq. (1) and
Eq. (2). All ILD loss and CR term are computed
from the last Transformer layer outputs based on
Section 3. We describe the overall algorithm of
CR-ILD in Algorithm 1.
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Table 1: 6-layer student results on GLUE development set averaged over 4 runs. † indicates reported results from
the Park et al. (2021). Other results are from our re-implementation based on officially released code of original
works (Sun et al., 2019; Jiao et al., 2020; Li et al., 2020).

Model #Parmas #FLOPs Speedup CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B AVG

BERTBASE 110M 22.5B 1.0x 59.9 84.6 92.2 91.5 90.9 91.2 70.8 89.5 83.8

Truncated BERT (Sun et al., 2019) as student model initialization

KD 67.5M 11.3B 2.0x 36.7 82.1 90.0 88.9 89.2 90.4 65.7 88.5 78.9
PKD 67.5M 11.3B 2.0x 37.4 82.2 90.2 89.1 89.3 90.3 66.3 87.4 79.0
TinyBERT 67.5M 11.3B 2.0x 31.4 81.3 89.2 86.7 87.1 90.2 57.2 84.8 76.0
BERT-EMD 67.5M 11.3B 2.0x 34.6 81.5 88.5 87.9 89.1 90.2 66.4 87.9 78.3
Ours 67.5M 11.3B 2.0x 40.4 82.3 91.1 90.1 89.6 90.7 67.9 89.0 80.1

BERTSmall (Turc et al., 2019) as student model initialization

KD† 67.5M 11.3B 2.0x - 82.5 91.1 89.4 89.4 90.7 66.7 - -
PKD† 67.5M 11.3B 2.0x 45.5 81.3 91.3 88.4 85.7 88.4 66.5 86.2 79.2
TinyBERT† 67.5M 11.3B 2.0x 53.8 83.1 92.3 89.9 88.8 90.5 66.9 88.3 81.7
BERT-EMD 67.5M 11.3B 2.0x 50.5 83.5 92.4 90.4 89.4 90.8 68.3 88.5 81.7
CKD† 67.5M 11.3B 2.0x 55.1 83.6 93.0 90.5 89.6 91.2 67.3 89.0 82.4
Ours 67.5M 11.3B 2.0x 55.6 83.9 92.7 91.4 90.5 91.2 70.2 88.8 83.0

4.2 Analysis on CR-ILD

In this section, we provide analytical results of CR-
ILD to obtain further intuition on our proposed
methods. Our CR-ILD regularizes the student
model to not learn an undesirable bias by (1) en-
couraging generalizable student via incurring con-
sistent predictions between MixUp and original
samples and (2) generating appropriate ST through
MixUp operation.

To validate that our CR-ILD makes more gener-
alizable functions empirically, we conduct a simi-
lar experiment with Figure 4 for comparing three
models (ILD, ILD+MixUp, CR-ILD) as shown in
Figure 8. ILD+MixUp is the simple combination
of ILD and MixUp, which is the same as CR-ILD
with wCR

MHA, and wCR
IR for zero. Note that we only

use the last Transformer layer for all ILD methods
in Figure 8. From the results, we obtain that our
CR-ILD effectively regularizes the student model
not to overfit training data and to be robust to noise
injected in embedding spaces. Moreover, it is note-
worthy that this smooth regularization is from CR-
ILD, whereas the naive application of MixUp does
not regularize the student model efficiently.

Here, we introduce our theoretical analysis that
CR-ILD explicitly leads the functions (i.e., MHA,
IR) to be convex which is smooth for all data points.

Theorem 4.1 (Informal). Assume that fθ satisfies
the Assumption A.2. With the second order Taylor
approximation for λ in Definition A.1, the Lmix

becomes L̂mix which can be represented as:

L̂mix = Lstd −
2α+ 1

(4α+ 4)|I|
∑

j∈I
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j ,

+
α+ 1

(8α+ 4)|I|2
∑

i,j∈I
R∗(fθ(hi), fθ(hj),yi,yj)

where Hℓ,j = Hessℓ(fθ(hj),yj), and Dℓ,j =
Dℓ(fθ(hj),yj).

The detailed form of R∗(fθ(hi), fθ(hj),yi,yj)
can be found in Appendix A. Theorem 4.1 states
that the regularization effect of CR-ILD that makes
the significant performance gain of CR-ILD. When
we assume that the Hessian can be approximated
by the gradient square or outer product of the gra-
dients as in the Gauss-Newton method, the first
negative term can be treated as nearly constant. We
have the positive term, which performs regulariza-
tion, and the near-constant negative term. As we
discussed earlier, the trainable part of regularizing
term reduces the offset related to curvature infor-
mation. Furthermore, the regularization scheme of
CR-ILD can be explained variously. If we assume
that the set of data has a non-empty interior, f(h)
becomes a linear function, therefore, we can say
there is a trend that the function is regularized as a
simple smooth function.

Moreover, thanks to MixUp (Zhang et al., 2018;
Liang et al., 2021) operation, we can effectively
generate the appropriate ST (Section 3.2.1) via:

• From the MixUp operation, the possible num-
ber of MixUp samples can be increased in-
finitely with the choice of original samples
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Table 2: The performance averaged over 4 runs on the GLUE development set of 6-layer student models, which
were trained on a 1k down-sampled GLUE training set or a GLUE training set under symmetric label noise. We use
officially released codes for the re-implementation of PKD (Sun et al., 2019), TinyBERT (Jiao et al., 2020), and
BERT-EMD (Li et al., 2020). For label noise experiments, we do not consider STS-B for computing average values.

Model #Parmas #FLOPs Speedup CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B AVG

1k down-sampled (Zhang et al., 2021) for few-samples experiments

BERTBASE 110M 22.5B 1.0x 41.6 61.1 85.8 80.8 88.2 75.9 66.1 87.6 73.4

KD 67.5M 11.3B 2.0x 17.6 58.0 83.4 78.9 86.2 74.8 59.6 83.9 67.8
PKD 67.5M 11.3B 2.0x 17.7 57.8 83.8 75.2 86.3 73.9 59.1 83.4 67.2
TinyBERT 67.5M 11.3B 2.0x 9.3 55.5 80.2 71.7 85.2 72.0 57.8 82.1 64.2
BERT-EMD 67.5M 11.3B 2.0x 18.8 58.0 84.2 78.5 86.3 74.3 62.1 84.8 68.4
Ours 67.5M 11.3B 2.0x 20.1 59.6 85.0 80.3 87.2 75.7 63.5 85.8 69.7

Under the presence of uniform (symmetric) label noise (Jin et al., 2021; Liu et al., 2022) with 30% noise rate

BERTBASE 110M 22.5B 1.0x 39.6 81.7 90.4 86.4 82.3 86.3 57.0 - 74.8

KD 67.5M 11.3B 2.0x 37.3 80.3 88.4 85.6 81.3 86.1 59.6 - 74.1
PKD 67.5M 11.3B 2.0x 36.8 80.0 87.6 85.4 81.1 86.2 56.2 - 73.3
TinyBERT 67.5M 11.3B 2.0x 29.7 79.9 87.2 84.6 81.2 85.7 51.6 - 71.4
BERT-EMD 67.5M 11.3B 2.0x 38.5 80.6 87.8 84.9 81.2 86.0 57.0 - 73.7
Ours 67.5M 11.3B 2.0x 39.6 81.2 89.1 86.0 82.3 86.9 61.8 - 75.3

and λ. This operation increases the dataset
size with high task similarity since the MixUp
samples are created from the interpolation of
the original target task.

• If sentence xi contains more word tokens than
sentence xj , then the extra word embeddings
are mixed up with embeddings of [PAD] to-
kens. This operation lengthens the effective
sequence length of the dataset in Section 3.2.1,
which improves the performance of ILD.

From our analysis, we verify that our proposed
CR-ILD can effectively transfer the knowledge of
teacher models with less overfitting on the training
dataset.

5 Experiments

To verify the effectiveness of CR-ILD, we compare
the performance of ours with previous distillation
methods on the standard GLUE and ill-conditioned
GLUE benchmark. The descriptions for experi-
mental setup are in Appendix B and C.

5.1 Main Results
Standard GLUE. Following the standard
setup (Sun et al., 2019), we use the BERTBASE
as the teacher and 6-layer Truncated BERT (Sun
et al., 2019) and BERTSmall (Turc et al., 2019) as
the student models. Table 1 summarizes that Ours
consistently achieve state-of-the-art performances
for almost GLUE benchmark, except for SST-2
and STS-B for BERTSmall. Despite the simplicity

CoLA (Mcc 36.7% for Original KD) RTE (Acc 65.7% for Original KD)
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Figure 9: Ablation study on the standard GLUE (CoLA,
RTE) with Truncated BERT and BERTBASE as student
and teacher models, respectively.

and efficiency of our proposed method, we obtain
strong empirical performance.

Ill-conditioned GLUE. To verify the robustness
of our proposed method, we further conduct the
experiments on ill-conditioned GLUE, a synthetic
dataset with downsampling or injecting label noise
to the GLUE benchmark. Since STS-B is a re-
gression task, we cannot inject noise into STS-B.
Hence, we do not consider the STS-B task in label
noise experiments. The detailed descriptions for
ill-conditioned GLUE are in Appendix B. Table 2
demonstrate that our proposed method alleviates
the overfitting and enhances the performance of the
student model under few-samples training datasets
or the presence of 30% of label noise. The results
for other noise rate are in Appendix C. The experi-
mental results encourage us to use our method on
real-world applications which have a high risk of
overfitting on the training datasets. Notably, our
proposed method achieve higher performance than
the teacher model under the presence of label noise.
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5.2 Ablation Study
To obtain further intuition on CR-ILD, we conduct
an ablation study on each component (i.e., L-ILD,
ST through MixUp, and CR) of our method. Our
experiments are conducted on the standard GLUE
benchmark with Truncated BERT (Sun et al., 2019)
as the student models and BERTBASE as the teacher
models. Figure 9 summarizes that all our findings
are meaningful, as the performance improves with
each addition of a component.

6 Conclusion

This paper introduces a better use of ILD that trans-
fer knowledge by using outputs of Transformer
layers of the teacher and the student models. We
found that existing ILD methods may lead the stu-
dent model to overfit the training dataset of target
tasks and degenerate the generalizability. Further-
more, we investigated that conducting the ILD (1)
only for the last Transformer layer and (2) on sup-
plementary tasks can alleviate the overfitting prob-
lems. Based on our observations, we proposed
consistency-regularized ILD that incurs smoother
functions and enhance the generalizability of the
student models. Our proposed method effectively
distills the knowledge of teacher models by (1) en-
couraging the flat minima of function from consis-
tency regularization between original embeddings
and MixUp embeddings of the student models and
(2) efficiently generating appropriate supplemen-
tary tasks demonstrated in our findings via MixUp
operation. The experimental results showed that
our proposed method could achieve state-of-the-
art performance on various datasets, such as the
standard and ill-conditioned GLUE benchmarks.

Limitations

Our work handles the over-fitting of the student
network caused by the layer mapping between the
teacher and the student networks, which is widely
used in Jiao et al. (2020); Li et al. (2020). Although
we show that our proposed regularization technique
can mitigate the over-fitting of the student, the re-
lationship between layers inside the model and
the hidden state of tokens in one layer (Park et al.,
2021) was not sufficiently considered. In addition,
we back up our proposed idea with theoretical anal-
ysis and extensive experiments in sentence classi-
fication. We plan to perform token classification
and question-answering experiments to expand our
methods to other tasks.
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Appendix
Revisiting Intermediate Layer Distillation for Compressing Language Models: An

Overfitting Perspective

A Theoretical Analysis of CR-ILD

This section gives the theoretical argument that CR-ILD gives additional explicit regularization. We
analyze the effect of the MixUp objective function beyond the standard loss function when the CR
condition is satisfied. We use the below formulation for objective functions. For readability, we partially
apply one column style for this section.

Definition A.1 (Objective Functions). Let us define Dλ := Beta(α, α), h̃ij := λhi + (1 − λ)hj , and
ỹij := λyi + (1− λ)yj . Consider the index set I . Then the objective functions can be written as:

Lstd :=
1

|I|
∑

i∈I
ℓ
(
fθ(hi),yi

)
Lmix := Eλ∼Dλ

[ 1

|I|2
∑

i,j∈I
ℓ
(
fθ(h̃ij), ỹij

)]
,

We assume that CR loss is always optimized during training. That is, if CR loss is 0, each pair of
function values in the loss coincides. Therefore, we can write the first assumption as follows:

Assumption A.2 (Continuation of fθ (♠)). we assume that fθ has continuation on the expanded domain
{λhi + (1− λ)hj : λ ∈ [0, 1] , i, j ∈ I} and the for any convex combination, function value becomes:

fθ(λhi + (1− λ)hj) = λfθ(hi) + (1− λ)fθ(hj)

Note also that this continuation can always be well defined if {hi}i∈I are in general position. Under this
assumption, the MixUp loss possesses a regularization effect, which stabilizes the functional outcomes.

Theorem A.3. Assume that fθ satisfies the Assumption A.2. With the second order Taylor approximation
for λ, the Lmix becomes L̂mix which can be represented as:

L̂mix = Lstd +
α+ 1

(8α+ 4)|I|2
∑

i,j∈I

∥∥∥(fθ(hj),yj)− (fθ(hi),yi) + (2α+ 1)H−1
ℓ,j D

⊤
ℓ,j)

∥∥∥
2

Hℓ,j

− 2α+ 1

(4α+ 4)|I|
∑

j∈I
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j ,

where Hℓ,j = Hessℓ(fθ(hj),yj), and Dℓ,j = Dℓ(fθ(hj),yj).

Note also that the expectation on higher order of λ exponentially decreases as EDλ
[λn]∼2−n, if α is

sufficiently large. The above formulation indicates that the MixUp training with consistency regularization
gives further regularization terms, which stabilizes function values fθ(hi).

A.1 Derivation of the Theorem A.3

Let us write vx
θ,ij = fθ(hi) − fθ(hj), vθ,ij = (vx

θ,ij ,yi − yj). We first state the second-order Taylor
approximation of loss function ℓ:

Lmix = Eλ∼Dλ

[ 1

|I|2
∑

i,j∈I
ℓ
(
fθ(h̃ij), ỹij

)]

♠
= Eλ∼Dλ

[ 1

|I|2
∑

i,j∈I
ℓ
(
λfθ(hi) + (1− λ)fθ(hj), λyi + (1− λ)yj

)]

Taylor
=

1

|I|
∑

i∈I
ℓ(fθ(hi),y)

︸ ︷︷ ︸
=:Lstd

+
1

|I|2
∑

i,j∈I

[1
2
Dℓ,jvθ,ij +

1

2

α+ 1

4α+ 2
v⊤
θ,ijHℓ,jvθ,ij

]
,
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since Eλ∼Dλ
[λ] = 1/2 and Eλ∼Dλ

[λ2] = (α+ 1)/(4α+ 2). Then,

LmixLstd +
1

2|I|2
∑

i,j∈I

[
Dℓ,jvθ,ij +

1

2

α+ 1

2α+ 1
v⊤
θ,ijHℓ,jvθ,ij

]

= Lstd +
1

2|I|2
∑

i,j∈I

[
− 2α+ 1

2α+ 2
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j+

1

2

α+ 1

2α+ 1
(vθ,ij +

2α+ 1

α+ 1
H−1

ℓ,j D
⊤
ℓ,j)

⊤Hℓ,j(vθ,ij +
2α+ 1

α+ 1
H−1

ℓ,j D
⊤
ℓ,j)

]

= Lstd +
α+ 1

(8α+ 4)|I|2
∑

i,j∈I
∥vθ,ij + (2α+ 1)H−1

ℓ,j D
⊤
ℓ,j∥2Hℓ,j

− 2α+ 1

(4α+ 4)|I|
∑

j∈I
Dℓ,jH

−1
ℓ,j D

⊤
ℓ,j .
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B Dataset Description

Standard GLUE. The GLUE benchmark (Wang
et al., 2019) cover four tasks: natural language
inference (RTE, QNLI, MNLI), paraphrase detec-
tion (MRPC, QQP, STS-B), sentiment classifica-
tion (SST-2), and linguistic acceptability (CoLA).
We mainly focus on four tasks (RTE, MRPC,
STS-B, CoLA) that have fewer than 10k train-
ing samples. While BERT fine-tuning on these
datasets is known to be unstable, the ILD on
few samples is under-explored. The evalua-
tion metrics for each task of GLUE benchmark
are accuracy (MNLI, SST-2, QNLI, QQP, RTE),
Mcc (CoLA), F1 score (MRPC), and spearman cor-
relation (STS-B). We utilize original split of train,
validation (development) dataset for our experi-
ments.

Ill-conditioned GLUE. We use two types of
modification on GLUE benchmark, including
down-sampling for few-sample GLUE and inject-
ing label noise for corrupted GLUE. For generating
few-samples GLUE, we randomly down-sample
1k-sized dataset for each task by following Zhang
et al. (2021). For corrupted GLUE, we follow the
experimental setups of Jin et al. (2021) and inject
uniform randomness into a fraction of labels. All
other attributes are same for the standard GLUE.
Also, we do not modify the development dataset of
GLUE benchmark.

Extracted Wiki Corpus in Section 3.2.1 To gen-
erate synthetic data, we randomly generate the
sample which is consist of two sentences from
the Wikipedia corpus (version: enwiki-20200501
from Huggingface). We filter the generated sample
by sequence length (for experiments of effective-
ness of sequence length). We generate new dataset
for every single experiment instead of conducting
numerous experiment trials to reduce the random-
ness.

C Additional Description for
Experiments

C.1 Scope of Empirical Study in Section 3

Transformer-based Language Models. Trans-
former encodes contextual information for input
tokens (Vaswani et al., 2017). We denote the
concatenation of input vectors {xi}|x|i=1 as H0 =[
x1, . . . ,x|x|

]
. Then, the computation for encod-

ing vectors via stacked Transformer layers is via:

Hℓ = Transformerℓ(Hℓ−1), ℓ ∈ [1, L].

The attention mechanism in Transformer improves
the performance of NLP significantly and becomes
essential. For the ℓ-th Transformer layer, the output
for a self-attention head Oℓ,a, a ∈ [1, Ah] is via:

Qℓ,a = Hℓ−1W
Q
ℓ,a,Kℓ,a = Hℓ−1W

K
ℓ,a,

Aℓ,a = SoftMax(
Qℓ,aK

⊺
ℓ,a√

dk
),

Vℓ,a = Hℓ−1W
V
ℓ,a,Oℓ,a = Aℓ,aVℓ,a,

where the previous layer’s outputs Hℓ−1 ∈
R|x|×dh are linearly projected to a triple of
queries, keys, and values using parameter matrices
WQ

ℓ,a,W
K
ℓ,a,W

V
ℓ,a ∈ Rdh×dk , respectively. Note

that Ah is the number of attention heads.

Multi-Head Attention. Many approaches (Jiao
et al., 2020; Sun et al., 2020; Wang et al., 2020)
train the student, making the MHA of the stu-
dent (AS) imitate the MHA of the well-optimized
teacher (AT ).

LℓSMHA =
1

Ah

Ah∑

a=1

KLD(AT
m(ℓS),a||AS

ℓS ,a),

where KLD is KL-divergence as the loss function.
Note that m(·) is the layer mapping function for
input as student layer ℓS ∈ [0,M ] and output as
teacher layer m(ℓS) ∈ [1, L]. We compare the
KLD and mean squared error (MSE) for the loss
function, and report the results that KLD shows
better performance in Table 3.

Table 3: Comparison between KLD and MSE as the
loss function for MHA distillation.

CoLA MRPC RTE STS-B

MHA (KLD) 38.1 (1.5) 89.3 (0.5) 67.0 (0.8) 89.1 (0.1)
MHA (MSE) 37.6 (0.7) 89.1 (0.5) 66.5 (1.3) 89.0 (0.1)

MHA (KLD) + IR 38.4 (1.3) 89.3 (0.3) 67.2 (1.1) 89.1 (0.1)
MHA (MSE) + IR 38.0 (1.7) 89.1 (0.3) 66.3 (0.9) 89.1 (0.1)

Intermediate Representation. Additionally, we
study IR, common distillation objective regardless
of the network architectures. The MSE between
the IR of the teacher (HT ) and student (HS) is used
as the knowledge transfer objective:

LℓSIR = MSE(HT
m(ℓS),W

HHS
ℓ ).
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(a) CoLA (b) MRPC (c) RTE

Figure 10: 2D loss surfaces in the subspace spanned by δ1 = θ1 − θ0 and δ2 = θ2 − θ0 on MRPC and RTE.
θ0, θ1, θ2 denote the parameters of the Truncated BERT (blue), Last model (green) and Uniform model (red).
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Figure 11: Results from our layer-wise (x-axis) probe comparing student models trained on RTE with L-ILD and
U-ILD., respectively. The student model trained with L-ILD have more generalizable representations than U-ILD.

Note that WH is learnable weight matrix for
matching the dimension between representations
of the teacher and student. We further compare the
IR and patience (Sun et al., 2019) in Table 3.

Table 4: Comparisons between Pool and Patience as
representation for IR distillation.

RTE (RTE) STS-B (STS-B) RTE (MNLI) STS-B (MNLI)

Pool 60.6 (1.2) 86.2 (0.3) 69.9 (0.8) 89.2 (0.1)
Patience 66.2 (1.0) 88.3 (0.4) 68.8 (0.5) 88.8 (0.2)

Pool + MHA 67.2 (1.1) 89.1 (0.1) 70.6 (1.0) 89.6 (0.1)
Patience + MHA 66.5 (1.5) 88.4 (0.2) 68.7 (1.2) 88.4 (0.2)

Prediction Layer. The most standard form of KD
is logit-based KD (Hinton et al., 2015) for training
prediction layer.

LPL = CE(zT /t, zS/t).

We use the cross-entropy (CE) as the loss function
with inputs zS and zT as the logit vectors of the
student and teacher. We compare the sequential and
joint training ILD (i.e., MHA, IR) and prediction
layer distillation (PLD) and report the results that
sequential training shows better in Table 5.

Table 5: Comparisons between Sequential and Joint

RTE (RTE) STS-B (STS-B) RTE (MNLI) STS-B (MNLI)

Sequential 67.2 (1.1) 89.1 (0.1) 70.6 (1.0) 89.6 (0.1)
Joint 66.7 (1.5) 88.8 (0.2) 68.9 (1.4) 89.3 (0.2)

D Experimental Setup

In this section, we describe the setup for our exper-
imental results. Note that all single experiments

are conducted on a single NVIDIA GeForce RTX
2080Ti GPU.

D.1 Setup for Section 3 and Section 4
For teacher model, we fine-tune the uncased, 12-
layer BERTBASE model with batch size 32, dropout
0.1, and peak learning rate 2 × 10−5 for three
epochs. For student model, we mainly use with
6-layer BERT model with initialize point as Trun-
cated BERT (Sun et al., 2019) and BERTSmall (Turc
et al., 2019). For fine-tuning student model, un-
der the supervision of a fine-tuned BERTBASE, we
firstly perform ILD for 20 epochs with batch size
32 and learning rate 5× 10−5 as follows Jiao et al.
(2020). Then, we conduct prediction layer distilla-
tion (PLD) for 4 epochs with choosing batch size
16 and learning rate from 2 × 10−5. Unlike the
logit-based KD, we only use PLD term and do
not use supervision from true labels. while We
utilize GLUE (Wang et al., 2019) benchmark for
exploratory experiments and set the maximum se-
quence length is set to 128 for all tasks.

D.2 Setup for Section 5
For achieve higher performance with our methods,
we conduct hyper-parameter search as follows:

• Peak learning rate (ILD): [2×10−5, 5×10−5]

• Batch size (PLD): [16, 32]

• MixUp parameter (α): [0.5, 1.0, 2.0, 3.0]

For other hyper-parameter settings are not in the
list, we use same parameter values as described in
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Table 6: The performance averaged over 4 runs on the GLUE development set of 6-layer student models, which
were trained on GLUE training set under symmetric label noise (10% and 20%). We use officially released codes
for the re-implementation of PKD (Sun et al., 2019), TinyBERT (Jiao et al., 2020), and BERT-EMD (Li et al., 2020).
For label noise experiments, we do not consider STS-B for computing average values.

Model #Parmas #FLOPs Speedup CoLA MNLI SST-2 QNLI MRPC QQP RTE STS-B AVG

Under the presence of uniform (symmetric) label noise (Jin et al., 2021; Liu et al., 2022) with 10% noise rate

BERTBASE 110M 22.5B 1.0x 54.0 83.1 91.1 90.0 90.6 89.7 67.5 - 80.9

KD 67.5M 11.3B 2.0x 44.9 81.6 90.6 88.9 88.7 89.6 65.0 - 78.5
PKD 67.5M 11.3B 2.0x 45.2 81.2 90.5 89.0 89.1 89.4 65.4 - 78.5
TinyBERT 67.5M 11.3B 2.0x 35.4 81.9 90.1 88.3 88.3 89.6 59.9 - 76.2
BERT-EMD 67.5M 11.3B 2.0x 48.2 81.3 90.5 88.0 89.2 89.1 66.1 - 78.9
Ours 67.5M 11.3B 2.0x 50.1 82.0 90.7 89.2 89.2 89.6 66.5 - 79.6

Under the presence of uniform (symmetric) label noise (Jin et al., 2021; Liu et al., 2022) with 20% noise rate

BERTBASE 110M 22.5B 1.0x 50.8 82.4 90.0 88.6 87.7 87.9 63.2 - 78.7

KD 67.5M 11.3B 2.0x 42.7 81.5 90.1 88.4 87.6 88.1 64.6 - 77.6
PKD 67.5M 11.3B 2.0x 41.8 81.4 89.4 87.9 87.5 88.0 63.0 - 77.3
TinyBERT 67.5M 11.3B 2.0x 31.6 81.8 89.0 87.7 87.6 88.0 56.7 - 74.6
BERT-EMD 67.5M 11.3B 2.0x 40.7 81.0 89.7 87.6 88.0 87.9 64.6 - 77.1
Ours 67.5M 11.3B 2.0x 44.6 81.9 89.8 88.6 88.1 88.2 65.2 - 78.1

main text or Appendix D.1. We find that 2× 10−5

is the best peak learning rate of ILD for all tasks
except for STS-B. For batch size of PLD stage,
RTE, MNLI and QNLI shows higher performance
with batch size of 32 and other tasks shows higher
performance with batch size of 16. For α, a hy-
perparameter for MixUp operation in CR-ILD, we
choose the value of 1.0 by the result of our hyper-
parameter search. All hyperparameter search are
conducted by using grid search with averaged
three runs.

E Further Experiments on BERT

E.1 Further Observation for Section 3.1
Loss Surface Analysis. To get further intuition
about the performance degradation of distilling
the knowledge of intermediate Transformer lay-
ers, we provide loss surface visualizations of the
U-ILD and L-ILD settings. The parameters of the
Truncated BERT, the Last model (student model
trained with L-ILD), and the Uniform model (stu-
dent model trained with U-ILD) are θ0, θ1, θ2, re-
spectively. In the subspace spanned by δ = θ1− θ0
and δ = θ2 − θ0, we plot two-dimensional loss
surfaces f(α, β) = L(θ0+αδ1+βδ2) centered on
the weights of Truncated BERT θ0. As shown in
Figure 10, transferring knowledge of the intermedi-
ate Transformer layers leads the student model to
sharp minima, which results in poorer generaliza-
tion (Hochreiter and Schmidhuber, 1997; Keskar
et al., 2016). Thus, the knowledge from the in-
termediate Transformer layer causes the student

model to overfit the training dataset and reduce the
generalization.

Linear Probing Analysis. Probing experiments
can be used for evaluating the degradation of the
generalizable representations of PLMs during fine-
tuning. Similar to Aghajanyan et al. (2021b), we
conduct the probing method by first freezing the
representations from the model trained on one
downstream task, and then fine-tuning linear clas-
sifiers on top of all Transformer layers to measure
the generalization performance of the layers of the
teacher and student models.

Through probing experiments, we observe that
the lower-level representations of the student model
related to U-ILD are overfitted to the training
dataset of the target task. Figure 11a shows that the
probing performances for 1 to 3 layers of the stu-
dent model with U-ILD are higher than those of the
Last model on the training set of RTE. According to
Howard and Ruder (2018); Zhang et al. (2021), it is
crucial to train PLMs so that lower layers have gen-
eral features and higher layers are specific to target
tasks. The overfitting of lower layers to the target
task leads to performance degradation in the higher
layers, as illustrated in Figure 11b. Moreover, for
the other tasks, the student models with L-ILD have
higher probing performance for all layers than the
Uniform models, except for the performance of the
first layer on MRPC as indicted in Figure 11c and
11d.
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E.2 Experimental Results for Different Label
Noise Ratio

We conduct additional experiments on the GLUE
benchmark with different label noise ratios (10%
and 20% of uniform label noise) as shown in Ta-
ble 6. While BERT-EMD (Li et al., 2020) shows the
second best performance in small noise ratio (10%)
and achieve better performance than the original
KD, the original KD and PKD (Sun et al., 2019)
present the higher performance in severe noise rate
(20% in Table 6 and 30% in Table 2) than BERT-
EMD. Surprisingly, our CR-ILD (Ours) shows the
best performance for all noise ratios consistently
which verifies that our proposed method encour-
ages the distilling of the knowledge effectively and
prevents overfitting on the training datasets.

F Further Experiments on
Encoder-Decoder Models

F.1 T5: Study on Encoder-Decoder Models
In this section, we apply our approaches to T5 to
generalize our result from the encoder-based model
to the encoder-decoder model. First, we explain our
experimental setup in the experiments conducted
on T5. Secondly, we examine (1) two findings
(last Transformer layer, supplementary task) and (2)
our proposed method, CR-ILD suggested with the
experiments on BERT can boost the performance
of T5 model as well as the encoder-based model.

F.2 Experimental setup
We experiment with our proposed training strate-
gies on the encoder-decoder model. As a teacher
model, we use T5BASE fine-tuned to the target task
with batch size 8, learning rate 1 × 10−3 for ten
epochs, which follows a training scheme for fine-
tuning T5 on an individual GLUE task proposed
in (Raffel et al., 2020). As a student model, we use
the pre-trained T5Small. During the distillation, we
distill the knowledge from the teacher model to the
student model consecutively, similar to the train-
ing scheme described in the experimental setup of
BERT distillation. We first distill the knowledge
using the given distillation objective (i.e., atten-
tion, intermediate states) depending on the task.
Unlike the BERT experiments, we fine-tune the
T5 model on the target task after the ILD since
the performance decreases in a few tasks when
we apply logit-based KD (Hinton et al., 2015). To
distill the transformer layers and the intermediate
states, we use methods proposed by (Wang et al.,

2021) and (Jiao et al., 2020). Specifically, before
distilling the attention scores, we applied relation
heads proposed in (Wang et al., 2021) and calcu-
lated attention scores since the number of attention
heads of the student and the teacher differs. After
matching the number of relation heads, we distill
attention scores of relation head and the hidden
states, using the methods of (Jiao et al., 2020).
Regarding the supplementary tasks, we use the
same hyperparameters as the ILD experiments. In
CR-ILD experiments, we set wCR

MHA as 0.2 and 0.3
for the MRPC and RTE task individually.

F.3 Experimental Results: Last Transformer
Layer and Supplementary Task

In this section, we focus on whether two findings
from the experiments on BERT show consistent
results in the experiments on T5.

Last Transformer Layer. We evaluate the su-
periority of distilling the last Transformer layer
knowledge in T5 models. Unlike BERT, T5 has
an additional Transformer layer of the decoder net-
work and cross-attention (CA). Therefore, we also
conduct additional comparisons between the distil-
lation on the decoder network and the distillation
on both the encoder and decoder network, as well
as the comparison between the last Transformer
layer mapping and uniform layer mapping. Fur-
thermore, we examine the effectiveness of the dis-
tillation on the cross-attention when we distill the
knowledge in the decoder network.

In Figure 12a, 12b, and 12c, the blue boxes, and
the orange boxes denote the distillation on the de-
coder network, the distillation on both the encoder
and decoder network, respectively. In most cases,
distilling only from the decoder network tends to
show higher results than distilling from the encoder
and decoder network. In addition, distilling the
last Transformer layer shows better performance
than the distilling Transformer layers uniformly.
Lastly, compared to distilling the self-attention and
the cross-attention of the last Transformer decoder
layer (green bar in Figure 12), distilling only the
self-attention of the last Transformer decoder layer
(the first blue bar) shows better performance. In
conclusion, We observe that distilling knowledge
from only the last layer of the decoder network
shows the highest performance across the target
tasks. This result is consistent with the previous
results of the experiments on BERT.
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Figure 12: We compare the performance for different layer mapping functions and distillation objectives in (a)-(c).
The distillations of the last layer, uniform layer mapping, self-attention, and IR are denoted by L, U, S, and R,
respectively. The blue (Enc.) and orange (Dec.) bar denote the application of ILD to the decoder network only and
to both encoder and decoder network, respectively. We also denote ILD with CA and CR as the green and brown
bars in (a)-(c), respectively. (d)-(e) are results for using ST for TTs of MRPC and RTE. We only distill self-attention
of the last layer of the decoder when using ILD with ST and CR

Supplementary Task We further evaluate the
effectiveness of the supplementary tasks on ILD
for the encoder-decoder models. Figure 12d and
12e summarize the performance of RTE and MRPC
tasks, dependiong on the supplementary task initial-
ization. Blue, red and orange lines denote distilling
self-attention of the last Transformer layer, logit-
based distillation, and fine-tuning, respectively. Us-
ing the distillation on the self-attention of the last
Transformer layer, initialization from the supple-
mentary task training shows better performance
than PLM initialization regardless of the supple-
mentary task.

F.4 Experimental Results: CR-ILD
In this section, we examine whether our CR-ILD
method could mitigate the over-fitting of the stu-
dent model when the teacher and the student are
T5 models. In Figure 12a, 12b, and 12c, the brown
box denotes to distill the self attention of last Trans-
former decoder layer with the consistency regu-
larization, CR-ILD. In order to see the difference
according to the presence or absence of the consis-
tency regularization, we compare the brown box
and the first blue box, which denotes to distill the
self attention of last Transformer decoder layer
without CR-ILD. In the all tasks (MRPC, RTE, and
SST-2), the consistency regularization boost the
performance of the student model. That is, the ef-
fect of the consistency regularization is consistent
with the result of the experiment on BERT.
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