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Abstract

Recent work on the Retrieval-Enhanced Trans-
former (Retro) model has shown that off-
loading memory from trainable weights to a
retrieval database can significantly improve lan-
guage modeling and match the performance of
non-retrieval models that are an order of mag-
nitude larger in size. It has been suggested that
at least some of this performance gain is due to
non-trivial generalization based on both model
weights and retrieval. In this paper, we try to bet-
ter understand the relative contributions of these
two components. We find that the performance
gains from retrieval largely originate from over-
lapping tokens between the database and the
test data, suggesting less non-trivial generaliza-
tion than previously assumed. More generally,
our results point to the challenges of evaluating
the generalization of retrieval-augmented lan-
guage models such as Retro, as even limited
token overlap may significantly decrease test-
time loss. We release our code and model at
https://github.com/TobiasNorlund/retro

1 Introduction

Large-scale generative language models have shown
promising results toward creating a general-purpose
foundation for many natural language applications.
While sheer scale-up has resulted in better lan-
guage modeling performance, the immense costs
are an inhibiting factor towards further improve-
ments (Sharir et al., 2020).

Recent work on retrieval-augmented language
models, such as the Retrieval-Enhanced Trans-
former (Retro; Borgeaud et al., 2022), suggests
that memory can be effectively off-loaded from
the model parameters to an external database. In
Retro, the information retrieved from the database
is used to augment the context from which the
model predicts new tokens, reducing the need to
memorize this information in the model parameters.
This opens up for smaller language models with
retained performance. Specifically, Borgeaud et al.
(2022) report that, with a large enough retrieval
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database, Retro can achieve a performance compa-
rable to GPT-3 (Brown et al., 2020) and Jurassic-1
(Lieber et al., 2021) on the Pile (Gao et al., 2020),
at only 4% of the parameters. Similarly, Retro
achieves significantly lower bits-per-byte perfor-
mance compared to a baseline of the same size
without retrieval.

Borgeaud et al. (2022) conclude that Retro has
the capacity for non-trivial generalization based
on both the model parameters and the retrieval
database, even though they find that part of the
performance gains can be attributed to lexical over-
lap between retrieval and test data. In this work,
we want to better understand the nature and mag-
nitude of this effect. Our findings indicate that
performance gains1 originate almost exclusively
from Retro’s ability to copy tokens verbatim from
retrieved data, effectively exploiting any (small or
large) overlap between training and test data. This
suggests that the ability of Retro to fuse retrieved
and in-parameter information may be more limited
than previously assumed.

2 Method
To investigate gains from retrieval, we re-implement
the Retro model described by Borgeaud et al.
(2022) (with a few deviations; see below). We
present the model here in brevity.

2.1 The Retro Model
Retro is an autoregressive language model trained
with the next-token prediction objective, where the
prediction probability is conditioned on additional
context retrieved from a database.

Retrieval Retrieval occurs at the granularity of
contiguous token chunks with a fixed size 𝑚. More
specifically, assume that Retro has already gen-
erated a sequence of tokens 𝑥1:𝑡 . Each token 𝑥𝑖

1Results on Retro were originally reported in bits-per-byte,
while we report results in loss.
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belongs to a chunk 𝐶𝑐 (𝑖) , where 𝑐(𝑖) = ⌈𝑖/𝑚⌉. The
probability of the next token 𝑥𝑡+1 depends on the pre-
viously generated tokens and the context retrieved
from the previously seen chunks:

𝑃
(
𝑥𝑡+1 | 𝑥1:𝑡 ,Ret(𝐶1), . . . ,Ret(𝐶𝑐 (𝑡+1)−1); 𝜃

)
Database Retro’s database takes the form of a
key–value storage 𝑅(𝑁) ↦→ [𝑁, 𝐹], where 𝑁 is
a chunk from one of the indexed documents, 𝐹
is the immediately following chunk, and the key
𝑅(𝑁) ∈ R𝑑 is the embedding of 𝑁 according to
some embedding model 𝑅. This database is used
to retrieve the 𝑘 nearest neighbors of a chunk 𝐶,
based on the embedding 𝑅(𝐶):

Ret(𝐶) = ( [𝑁1, 𝐹1], . . . , [𝑁 𝑘 , 𝐹𝑘])

Architecture Retro is based on the original
Transformer architecture (Vaswani et al., 2017).
Chunk neighbors are encoded by the encoder and at-
tended to by the decoder. Due to the quadratic com-
plexity in self-attention, each neighbor is encoded
separately; all representations are then concate-
nated and made available to the decoder (Izacard
and Grave, 2021). The original decoder is modified
such that for the prediction of token 𝑥𝑡+1, cross-
attention (CA) can only attend to the neighbor rep-
resentations retrieved based on the previous chunk
𝐶𝑐 (𝑡+1)−1. This is called chunked cross-attention
(CCA). Furthermore, the encoder is modified to
include a restricted form of cross-attention to the
decoder. Specifically, the encoder CA attends to
the decoder hidden states immediately before the
first CCA. We refer to Borgeaud et al. (2022) for
more details.

Implementation Details For tokenizing docu-
ments, we use the pre-trained T5 tokenizer. The
retrieval was performed using approximate nearest
neighbor search with the high-performant faiss li-
brary (Johnson et al., 2019). We implement Retro
in PyTorch (Paszke et al., 2019) and use PyTorch
Lightning for distributing the training and valida-
tion data across GPUs and compute nodes. Our
implementation deviates from that of Borgeaud
et al. (2022) only in that we

• use learnable relative positional biases as in T5
(Raffel et al., 2020), with a bucket for each unique
relative position; and

• instantiate the chunk embedding model 𝑅 by a pre-
trained Sentence-BERT (SB) model (Reimers and

Gurevych, 2019) instead of Bert. We deemed
SB to be preferable over Bert as it is smaller (i.e.
cheaper to compute) and produces embeddings
of lower dimensionality (i.e. saves disk space).

2.2 Dataset
Borgeaud et al. (2022) used a multi-lingual version
of MassiveText (Rae et al., 2021) for both training
and retrieval data. To replicate the English portion
of this data, we sought open-source alternatives.
MassiveText comprises text from the categories
web text, news, code, books, and Wikipedia. By
pooling matching categories from Pile (Gao et al.,
2020) and adding the RealNews dataset (Zellers
et al., 2019), we obtain a large dataset composed
of all five categories, consisting of 36M documents
and 52B tokens. We keep the training/validation
splits from the Pile categories. For RealNews, we
use the provided training set and a subsample of
16,400 documents from the validation set. The full
description of our dataset is shown in Table 1.

2.3 Model Training
For our experiments, we train a Retro model that
resembles the 425M model2 in Borgeaud et al.
(2022), as shown in Table 2. We train and test on our
open-source version of MassiveText as described in
Section 2.2. During training, we retrieve neighbors
from the training set, while at validation time, we
retrieve from the union of training and validation
sets. We filter out neighbors that originate from the
same source document as the query chunk. Each
model is trained on sequences of no more than 1,024
tokens; longer sequences are truncated. We use a
chunk size of 64 and retrieve two neighbors during
both training and validation. We train the model
for 140k training steps with a batch size of 16. This
means that only 6% of the training documents are
actually used during training, excluding retrieved
neighbors. We use the Adam optimizer with a fixed
learning rate of 1e−4.

3 Experiments
Borgeaud et al. (2022) observed that retrieval in-
creases language modeling performance. To vali-
date this observation, we compare two configura-
tions of our model: Retro[on], where we enable
retrieval, and Retro[off], where we remove the
CCA layers, thereby reducing Retro to a standard
decoder-only language model. As we can see in

2The 425M parameters exclude embeddings.
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Figure 1: Comparing loss on validation set categories,
when using retrieval vs. no retrieval.

Figure 1, retrieval reduces the loss across all data
categories, and with 11% across the full valida-
tion set. GitHub data has the lowest validation
loss among all categories and is also where we see
the largest reduction in loss, at 42%. Wikipedia
sees the smallest reduction in loss, at only 3%. A
closer comparison to the results from Borgeaud
et al. (2022) is available in Appendix D.

3.1 Loss per Degree of Overlap
As Borgeaud et al. (2022) note, retrieval-based
models such as Retro may more easily exploit eval-
uation dataset leakage. To quantify how much of
the positive effect of retrieval on language modeling
performance can be attributed to such leakage, the
authors computed bits-per-byte (bpb) for evaluation
chunks with different amounts of consecutive token
overlap relative to their retrieved neighbors. This
analysis showed that, while the positive effect of
retrieval decreased with smaller overlaps, it was still
significant at overlap levels of at most 8 contiguous
tokens, which the authors considered small enough
to conclude that while Retro actually learns to
generalize from retrieval data, not merely copy-and-
paste it. Here we investigate the hypothesis that the
bpb reductions observed by Borgeaud et al. (2022)
are localized exclusively in the overlapping tokens.
If this was true, it would challenge the conclusion
that Retro learns non-trivial generalizations based
on retrieval data.

To test our hypothesis, we sort the validation set
tokens into buckets based on their leftward overlap.
Specifically, we put a token 𝑥𝑖 into a bucket Φ(𝑛),
where 𝑛 is the largest number such that 𝑥𝑖 and the
𝑛 − 1 tokens preceding it consecutively overlap
with some neighboring chunk in Ret(𝐶𝑐 (𝑖)−1). For
example, the bucket Φ(1) contains all tokens 𝑥𝑖 for
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Figure 2: Average loss from Retro[on] over tokens in
Φ(𝑛). Note the drastic decrease with increasing overlap.

which the unigram 𝑥𝑖 appears in some neighbor,
but not the bigram 𝑥𝑖−1𝑥𝑖; the bucket Φ(2) contains
all 𝑥𝑖 for which 𝑥𝑖−1𝑥𝑖 overlaps but not 𝑥𝑖−2𝑥𝑖−1𝑥𝑖,
and so on. As a special case, the bucket Φ(0)
contains all tokens that do not overlap with any of
its neighbors. This includes all tokens that occur in
a first chunk 𝐶1, which lacks neighbors.

In Figure 2 we plot the average loss per bucket,

1
|Φ(𝑛) |

∑︁
𝑥𝑖∈Φ(𝑛)

LRetro[on]
𝑥𝑖 , (1)

as a function of 𝑛. Here, LRetro[on]
𝑥𝑖 is the loss when

predicting token 𝑥𝑖 using Retro[on]3. We see that
the loss drastically decreases as the consecutive
overlap increases. For example, at an overlap of
𝑛 = 5 tokens, the loss is only 6% of the loss for non-
overlapping tokens. This suggests that Retro enters
“copy mode” when the previous tokens overlap with
those from a neighbor.

3.2 Loss Reductions per Degree of Overlap
For a more detailed analysis of the effect of overlap
on predictive performance, we look at the token-
specific loss differences between the two configura-
tions Retro[off] and Retro[on]:

ΔL𝑥𝑖 = LRetro[off]
𝑥𝑖 − LRetro[on]

𝑥𝑖

Note that a loss difference ΔL𝑥𝑖 is positive if the
access to the retrieved context reduces the token-
specific loss for 𝑥𝑖. The overall reduction in loss
visible in Figure 1 is the average of the loss differ-
ences across all tokens in the validation data. By
aggregating loss differences per bucket Φ(𝑛), we
get a fine-grained picture of how the reductions

3The sizes of each bucket (accumulated over the validation
data) are shown in the appendix, Figure 4.
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Figure 3: Token-specific loss differences, as distributed over different degrees of overlap. Positive diffs shows the
sum of all positive loss differences,

∑
𝑥𝑖∈Φ(𝑛) max(0,ΔL𝑥𝑖 ), and Negative diffs shows the sum of negative loss

differences,
∑

𝑥𝑖∈Φ(𝑛) min(0,ΔL𝑥𝑖 ). All diffs shows the total sum. We see that the vast majority of loss reductions
comes from overlapping tokens, e.g. 𝑛 > 0.

are distributed with respect to different degrees of
consecutive overlap. This is illustrated in Figure 3.

For non-overlapping tokens (𝑛 = 0), we can see
that there are both positive and negative differences,
with a small negative net. For all overlapping
tokens (𝑛 > 0), the net differences are positive,
and for buckets with 3 or more overlapping to-
kens, there are almost no negative differences at
all.4 This shows that the largest share of all loss
reductions originates from tokens that are consecu-
tively overlapping in neighbors. Interestingly, the
net differences are positive even for very small de-
grees of overlap. Borgeaud et al. (2022) considered
reductions in bits-per-byte from chunks with up
to 8 consecutively overlapping tokens as evidence
of a non-trivial generalization capacity. However,
our results suggest that even a small number of
overlapping tokens may cause a large reduction in
loss, which we take as an argument against this
conclusion.

4 Related Work
Equipping language models with a retrievable ex-
ternal memory has been extensively studied (Guu
et al., 2020; Karpukhin et al., 2020; Lewis et al.,
2020; Izacard and Grave, 2021; Li et al., 2022).
Explicitly leveraging the training data through re-
trieval to reduce perplexity is proposed in kNN-LM
(Khandelwal et al., 2020). kNN-LM matches the
leftward context with the leftward context of all
training data tokens, and explicitly interpolates be-
tween generating and copying the next token. A
recent study analyzes kNN-LM to better understand

4We note a sudden increase in accumulated loss difference
for 𝑛 > 64 which is expected considering the way in which we
construct the buckets; see Appendix C for more details.

the causes of performance gains (Xu et al., 2023).
Similar to our findings in Retro, lexical overlap
has also been found to play a significant role in ex-
plaining retrieval performance gains in kNN-LM as
well (Drozdov et al., 2022). The idea of kNN-LM
is extended in Spalm (Yogatama et al., 2021) to
instead learn a gating function that facilitates more
dynamic interpolation.

In both kNN-LM and Spalm, retrieval is incorpo-
rated at the top of the network. This might induce
a bias towards surface-level rather than semantic
augmentation. In contrast, retrieval in Retro is
incorporated in lower layers of the network, which
opens up for more sophisticated integration of the
retrieved information. Our results suggest, how-
ever, that retrieval in Retro also contributes at the
surface rather than at the semantic level, similar to
the previous works.

5 Conclusions and Future Work
The capacity of language models for generalization
is often measured intrinsically using perplexity,
loss or bits-per-byte on held-out validation data.
Low perplexity language models perform well as
few-shot learners on many downstream tasks due to
their capacity to both memorize and non-trivially
combine textual information from many sources
(Brown et al., 2020; Rae et al., 2021; Lieber et al.,
2021; Chowdhery et al., 2022). The hope is that we
can externalize memory to reduce the footprints of
language models without reducing generalization
and downstream task performance.

Our results show that the low loss in Retro al-
most exclusively originates from tokens overlapping
between retrieval and validation data, rather than
from more sophisticated generalization. To better
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understand this effect, it would be interesting to
modify the retrieval component and deliver seman-
tically similar but lexically different context during
training. If the retrieved context is uninformative,
the model will learn to ignore it, but if the con-
text is too specific (e.g. literal overlap) the model
will learn to copy. By better balancing between
these two modes, models may become better at
utilizing retrieved information at a deeper and more
generalizable level.

Limitations
We have made our best effort in trying to reproduce
the model and results of Borgeaud et al. (2022).
Nonetheless, our experiments were performed on
one of the smaller model sizes and with a dataset
that is only ∼2.5% of their size (52 billion vs. 2
trillion tokens). This was due to computational
constraints and lack of larger open datasets. How-
ever, as was also shown by Borgeaud et al. (2022),
the performance gain of retrieval is constant with
respect to model size. We speculate that larger
Retro models mostly improve with respect to loss
on tokens that are not overlapping, which would
not change our conclusions here.

One noteworthy limitation of our work is the
fact that we compare to a non-retrieval baseline
(Retro[off]) that was trained with access to re-
trieved context. We were not able to train a separate
non-retrieval baseline due to computational con-
straints, but note that the bits-per-byte results of
Retro[off] and the baseline in Borgeaud et al.
(2022) were close to identical.
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Figure 4: Number of validation set tokens in each bucket Φ(𝑛). Since the neighbors have a maximal length of
128 tokens, this is also the longest possible overlap 𝑛.

Documents Chunks Tokens

Training

Pile-CC 15,728k 269M 16.7B
Wikipedia En 5,082k 61M 3.8B
GitHub 5,417k 181M 11.4B
Books3 83k 191M 12.2B
RealNews 9,360k 130M 8.0B
Total 35,670k 833M 52.2B

Validation

Pile-CC 52.8k 900.4k 56.0M
Wikipedia En 17.4k 215.9k 13.3M
GitHub 18.3k 598.4k 37.7M
Books3 0.3k 727.6k 46.5M
RealNews 16.4k 234.5k 14.5M
Total 105.3k 2,676.8k 168.0M

Table 1: Statistics for our MassiveOpenText dataset. We use the web text, Wikipedia, GitHub and Books3 corpora
from the Pile, and news text from RealNews.

A MassiveOpenText statistics
Statistics on the number of documents, chunks and
tokens for each split and text category are shown in
Table 1.

B Retro model details
We show hyperparameters of our Retro model in
Table 2.

Param

Encoder

Num layers 2
Num heads 14
Hidden size 896
FFN 3584
CA layers [2]

Decoder

Num layers 12
Num heads 12
Hidden size 1536
FFN 6144
CCA layers [6,9,12]

Table 2: Hyperparameters of our trained Retro model.

C Consecutively overlapping tokens
As explained in Section 3.1, we sort validation set
tokens into buckets denoted Φ(𝑛) depending on the
longest overlapping leftward context.

In Figure 4 we show the number of tokens in
each bucket. We note a big “jump” from 𝑛 = 64 to
𝑛 = 65, which can be explained by the following
rationale. A neighbor [𝑁, 𝐹] to a chunk 𝐶𝑖 is
retrieved based on the similarity between 𝐶𝑖 and 𝑁 .
In the case where both𝐶𝑖 = 𝑁 and𝐶𝑖+1 = 𝐹, tokens
in 𝐶𝑖+1 will be put into Φ(𝑛) with 𝑛 = 65, . . . , 128.
The jump in Figure 4 indicates such duplicates are
common in our data.

D Model validation
As we aim to reproduce the 425M model trained in
Borgeaud et al. (2022), it is important to validate
that the implementations are equivalent and that
their evaluation results are comparable. However,
evaluations of the 425M model in Borgeaud et al.
(2022) on the Pile are not available, making it
hard to make direct comparisons. Borgeaud et al.
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(2022) report evaluation results on the C4 (Raffel
et al., 2022) dataset, with various sizes of retrieval
datasets. For their setup with 36B retrieval tokens,
which is the most similar to our own retrieval size,
they report that bits-per-byte is reduced by ∼ 2%
(from 0.92 to 0.90) when using retrieval. That
could be compared to our results on Pile-CC, as
both datasets originate from Common Crawl. In
our experiments, loss is reduced by 7% (from 3.05
to 2.83) on Pile-CC.

Evaluations on the Pile in Borgeaud et al. (2022)
are only reported for their largest model (7B params)
and largest retrieval set (2T tokens). For example,
on Pile–GitHub their reduction is ∼53% whereas
our reduction is 42%.

While these numbers are not directly comparable,
we believe they indicate that our reimplementation
of the Retro model is working as expected.
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