
Findings of the Association for Computational Linguistics: EACL 2023, pages 1485–1493
May 2-6, 2023 ©2023 Association for Computational Linguistics

On the Generalization Ability of Retrieval-Enhanced Transformers

Tobias Norlund1,4∗ Ehsan Doostmohammadi2 Richard Johansson1,3 Marco Kuhlmann2

1 Chalmers University of Technology 2 Linköping University
3 University of Gothenburg 4 Recorded Future

Abstract

Recent work on the Retrieval-Enhanced Trans-
former (Retro) model has shown that off-
loading memory from trainable weights to a
retrieval database can significantly improve lan-
guage modeling and match the performance of
non-retrieval models that are an order of mag-
nitude larger in size. It has been suggested that
at least some of this performance gain is due to
non-trivial generalization based on both model
weights and retrieval. In this paper, we try to bet-
ter understand the relative contributions of these
two components. We find that the performance
gains from retrieval largely originate from over-
lapping tokens between the database and the
test data, suggesting less non-trivial generaliza-
tion than previously assumed. More generally,
our results point to the challenges of evaluating
the generalization of retrieval-augmented lan-
guage models such as Retro, as even limited
token overlap may significantly decrease test-
time loss. We release our code and model at
https://github.com/TobiasNorlund/retro

1 Introduction

Large-scale generative language models have shown
promising results toward creating a general-purpose
foundation for many natural language applications.
While sheer scale-up has resulted in better lan-
guage modeling performance, the immense costs
are an inhibiting factor towards further improve-
ments (Sharir et al., 2020).

Recent work on retrieval-augmented language
models, such as the Retrieval-Enhanced Trans-
former (Retro; Borgeaud et al., 2022), suggests
that memory can be effectively off-loaded from
the model parameters to an external database. In
Retro, the information retrieved from the database
is used to augment the context from which the
model predicts new tokens, reducing the need to
memorize this information in the model parameters.
This opens up for smaller language models with
retained performance. Specifically, Borgeaud et al.
(2022) report that, with a large enough retrieval

∗Corresponding author, tobiasno@chalmers.se

database, Retro can achieve a performance compa-
rable to GPT-3 (Brown et al., 2020) and Jurassic-1
(Lieber et al., 2021) on the Pile (Gao et al., 2020),
at only 4% of the parameters. Similarly, Retro
achieves significantly lower bits-per-byte perfor-
mance compared to a baseline of the same size
without retrieval.

Borgeaud et al. (2022) conclude that Retro has
the capacity for non-trivial generalization based
on both the model parameters and the retrieval
database, even though they find that part of the
performance gains can be attributed to lexical over-
lap between retrieval and test data. In this work,
we want to better understand the nature and mag-
nitude of this effect. Our findings indicate that
performance gains1 originate almost exclusively
from Retro’s ability to copy tokens verbatim from
retrieved data, effectively exploiting any (small or
large) overlap between training and test data. This
suggests that the ability of Retro to fuse retrieved
and in-parameter information may be more limited
than previously assumed.

2 Method
To investigate gains from retrieval, we re-implement
the Retro model described by Borgeaud et al.
(2022) (with a few deviations; see below). We
present the model here in brevity.

2.1 The Retro Model
Retro is an autoregressive language model trained
with the next-token prediction objective, where the
prediction probability is conditioned on additional
context retrieved from a database.

Retrieval Retrieval occurs at the granularity of
contiguous token chunks with a fixed size 𝑚. More
specifically, assume that Retro has already gen-
erated a sequence of tokens 𝑥1:𝑡 . Each token 𝑥𝑖

1Results on Retro were originally reported in bits-per-byte,
while we report results in loss.

1485

belongs to a chunk 𝐶𝑐 (𝑖) , where 𝑐(𝑖) = ⌈𝑖/𝑚⌉. The
probability of the next token 𝑥𝑡+1 depends on the pre-
viously generated tokens and the context retrieved
from the previously seen chunks:

𝑃
(
𝑥𝑡+1 | 𝑥1:𝑡 ,Ret(𝐶1), . . . ,Ret(𝐶𝑐 (𝑡+1)−1); 𝜃

)
Database Retro’s database takes the form of a
key–value storage 𝑅(𝑁) ↦→ [𝑁, 𝐹], where 𝑁 is
a chunk from one of the indexed documents, 𝐹
is the immediately following chunk, and the key
𝑅(𝑁) ∈ R𝑑 is the embedding of 𝑁 according to
some embedding model 𝑅. This database is used
to retrieve the 𝑘 nearest neighbors of a chunk 𝐶,
based on the embedding 𝑅(𝐶):

Ret(𝐶) = ([𝑁1, 𝐹1], . . . , [𝑁 𝑘 , 𝐹𝑘])

Architecture Retro is based on the original
Transformer architecture (Vaswani et al., 2017).
Chunk neighbors are encoded by the encoder and at-
tended to by the decoder. Due to the quadratic com-
plexity in self-attention, each neighbor is encoded
separately; all representations are then concate-
nated and made available to the decoder (Izacard
and Grave, 2021). The original decoder is modified
such that for the prediction of token 𝑥𝑡+1, cross-
attention (CA) can only attend to the neighbor rep-
resentations retrieved based on the previous chunk
𝐶𝑐 (𝑡+1)−1. This is called chunked cross-attention
(CCA). Furthermore, the encoder is modified to
include a restricted form of cross-attention to the
decoder. Specifically, the encoder CA attends to
the decoder hidden states immediately before the
first CCA. We refer to Borgeaud et al. (2022) for
more details.

Implementation Details For tokenizing docu-
ments, we use the pre-trained T5 tokenizer. The
retrieval was performed using approximate nearest
neighbor search with the high-performant faiss li-
brary (Johnson et al., 2019). We implement Retro
in PyTorch (Paszke et al., 2019) and use PyTorch
Lightning for distributing the training and valida-
tion data across GPUs and compute nodes. Our
implementation deviates from that of Borgeaud
et al. (2022) only in that we

• use learnable relative positional biases as in T5
(Raffel et al., 2020), with a bucket for each unique
relative position; and

• instantiate the chunk embedding model 𝑅 by a pre-
trained Sentence-BERT (SB) model (Reimers and

Gurevych, 2019) instead of Bert. We deemed
SB to be preferable over Bert as it is smaller (i.e.
cheaper to compute) and produces embeddings
of lower dimensionality (i.e. saves disk space).

2.2 Dataset
Borgeaud et al. (2022) used a multi-lingual version
of MassiveText (Rae et al., 2021) for both training
and retrieval data. To replicate the English portion
of this data, we sought open-source alternatives.
MassiveText comprises text from the categories
web text, news, code, books, and Wikipedia. By
pooling matching categories from Pile (Gao et al.,
2020) and adding the RealNews dataset (Zellers
et al., 2019), we obtain a large dataset composed
of all five categories, consisting of 36M documents
and 52B tokens. We keep the training/validation
splits from the Pile categories. For RealNews, we
use the provided training set and a subsample of
16,400 documents from the validation set. The full
description of our dataset is shown in Table 1.

2.3 Model Training
For our experiments, we train a Retro model that
resembles the 425M model2 in Borgeaud et al.
(2022), as shown in Table 2. We train and test on our
open-source version of MassiveText as described in
Section 2.2. During training, we retrieve neighbors
from the training set, while at validation time, we
retrieve from the union of training and validation
sets. We filter out neighbors that originate from the
same source document as the query chunk. Each
model is trained on sequences of no more than 1,024
tokens; longer sequences are truncated. We use a
chunk size of 64 and retrieve two neighbors during
both training and validation. We train the model
for 140k training steps with a batch size of 16. This
means that only 6% of the training documents are
actually used during training, excluding retrieved
neighbors. We use the Adam optimizer with a fixed
learning rate of 1e−4.

3 Experiments
Borgeaud et al. (2022) observed that retrieval in-
creases language modeling performance. To vali-
date this observation, we compare two configura-
tions of our model: Retro[on], where we enable
retrieval, and Retro[off], where we remove the
CCA layers, thereby reducing Retro to a standard
decoder-only language model. As we can see in

2The 425M parameters exclude embeddings.

1486

github wikipedia_en pile_cc books3 realnews all
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A

vg
. L

os
s

Retro[on]
Retro[off]

Figure 1: Comparing loss on validation set categories,
when using retrieval vs. no retrieval.

Figure 1, retrieval reduces the loss across all data
categories, and with 11% across the full valida-
tion set. GitHub data has the lowest validation
loss among all categories and is also where we see
the largest reduction in loss, at 42%. Wikipedia
sees the smallest reduction in loss, at only 3%. A
closer comparison to the results from Borgeaud
et al. (2022) is available in Appendix D.

3.1 Loss per Degree of Overlap
As Borgeaud et al. (2022) note, retrieval-based
models such as Retro may more easily exploit eval-
uation dataset leakage. To quantify how much of
the positive effect of retrieval on language modeling
performance can be attributed to such leakage, the
authors computed bits-per-byte (bpb) for evaluation
chunks with different amounts of consecutive token
overlap relative to their retrieved neighbors. This
analysis showed that, while the positive effect of
retrieval decreased with smaller overlaps, it was still
significant at overlap levels of at most 8 contiguous
tokens, which the authors considered small enough
to conclude that while Retro actually learns to
generalize from retrieval data, not merely copy-and-
paste it. Here we investigate the hypothesis that the
bpb reductions observed by Borgeaud et al. (2022)
are localized exclusively in the overlapping tokens.
If this was true, it would challenge the conclusion
that Retro learns non-trivial generalizations based
on retrieval data.

To test our hypothesis, we sort the validation set
tokens into buckets based on their leftward overlap.
Specifically, we put a token 𝑥𝑖 into a bucket Φ(𝑛),
where 𝑛 is the largest number such that 𝑥𝑖 and the
𝑛 − 1 tokens preceding it consecutively overlap
with some neighboring chunk in Ret(𝐶𝑐 (𝑖)−1). For
example, the bucket Φ(1) contains all tokens 𝑥𝑖 for

0 20 40 60 80 100 120
Consecutively overlapping tokens, n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
vg

. L
os

s

Retro[on]

Figure 2: Average loss from Retro[on] over tokens in
Φ(𝑛). Note the drastic decrease with increasing overlap.

which the unigram 𝑥𝑖 appears in some neighbor,
but not the bigram 𝑥𝑖−1𝑥𝑖; the bucket Φ(2) contains
all 𝑥𝑖 for which 𝑥𝑖−1𝑥𝑖 overlaps but not 𝑥𝑖−2𝑥𝑖−1𝑥𝑖,
and so on. As a special case, the bucket Φ(0)
contains all tokens that do not overlap with any of
its neighbors. This includes all tokens that occur in
a first chunk 𝐶1, which lacks neighbors.

In Figure 2 we plot the average loss per bucket,

1
|Φ(𝑛) |

∑︁
𝑥𝑖∈Φ(𝑛)

LRetro[on]
𝑥𝑖 , (1)

as a function of 𝑛. Here, LRetro[on]
𝑥𝑖 is the loss when

predicting token 𝑥𝑖 using Retro[on]3. We see that
the loss drastically decreases as the consecutive
overlap increases. For example, at an overlap of
𝑛 = 5 tokens, the loss is only 6% of the loss for non-
overlapping tokens. This suggests that Retro enters
“copy mode” when the previous tokens overlap with
those from a neighbor.

3.2 Loss Reductions per Degree of Overlap
For a more detailed analysis of the effect of overlap
on predictive performance, we look at the token-
specific loss differences between the two configura-
tions Retro[off] and Retro[on]:

ΔL𝑥𝑖 = LRetro[off]
𝑥𝑖 − LRetro[on]

𝑥𝑖

Note that a loss difference ΔL𝑥𝑖 is positive if the
access to the retrieved context reduces the token-
specific loss for 𝑥𝑖. The overall reduction in loss
visible in Figure 1 is the average of the loss differ-
ences across all tokens in the validation data. By
aggregating loss differences per bucket Φ(𝑛), we
get a fine-grained picture of how the reductions

3The sizes of each bucket (accumulated over the validation
data) are shown in the appendix, Figure 4.

1487

0 20 40 60 80 100 120
Consecutively overlapping tokens, n

1.5

1.0

0.5

0.0

0.5

1.0

1.5

S
um

 o
f t

ok
en

 lo
ss

 d
iff

s
1e6

All diffs (net)
Positive diffs
Negative diffs

Figure 3: Token-specific loss differences, as distributed over different degrees of overlap. Positive diffs shows the
sum of all positive loss differences,

∑
𝑥𝑖∈Φ(𝑛) max(0,ΔL𝑥𝑖), and Negative diffs shows the sum of negative loss

differences,
∑

𝑥𝑖∈Φ(𝑛) min(0,ΔL𝑥𝑖). All diffs shows the total sum. We see that the vast majority of loss reductions
comes from overlapping tokens, e.g. 𝑛 > 0.

are distributed with respect to different degrees of
consecutive overlap. This is illustrated in Figure 3.

For non-overlapping tokens (𝑛 = 0), we can see
that there are both positive and negative differences,
with a small negative net. For all overlapping
tokens (𝑛 > 0), the net differences are positive,
and for buckets with 3 or more overlapping to-
kens, there are almost no negative differences at
all.4 This shows that the largest share of all loss
reductions originates from tokens that are consecu-
tively overlapping in neighbors. Interestingly, the
net differences are positive even for very small de-
grees of overlap. Borgeaud et al. (2022) considered
reductions in bits-per-byte from chunks with up
to 8 consecutively overlapping tokens as evidence
of a non-trivial generalization capacity. However,
our results suggest that even a small number of
overlapping tokens may cause a large reduction in
loss, which we take as an argument against this
conclusion.

4 Related Work
Equipping language models with a retrievable ex-
ternal memory has been extensively studied (Guu
et al., 2020; Karpukhin et al., 2020; Lewis et al.,
2020; Izacard and Grave, 2021; Li et al., 2022).
Explicitly leveraging the training data through re-
trieval to reduce perplexity is proposed in kNN-LM
(Khandelwal et al., 2020). kNN-LM matches the
leftward context with the leftward context of all
training data tokens, and explicitly interpolates be-
tween generating and copying the next token. A
recent study analyzes kNN-LM to better understand

4We note a sudden increase in accumulated loss difference
for 𝑛 > 64 which is expected considering the way in which we
construct the buckets; see Appendix C for more details.

the causes of performance gains (Xu et al., 2023).
Similar to our findings in Retro, lexical overlap
has also been found to play a significant role in ex-
plaining retrieval performance gains in kNN-LM as
well (Drozdov et al., 2022). The idea of kNN-LM
is extended in Spalm (Yogatama et al., 2021) to
instead learn a gating function that facilitates more
dynamic interpolation.

In both kNN-LM and Spalm, retrieval is incorpo-
rated at the top of the network. This might induce
a bias towards surface-level rather than semantic
augmentation. In contrast, retrieval in Retro is
incorporated in lower layers of the network, which
opens up for more sophisticated integration of the
retrieved information. Our results suggest, how-
ever, that retrieval in Retro also contributes at the
surface rather than at the semantic level, similar to
the previous works.

5 Conclusions and Future Work
The capacity of language models for generalization
is often measured intrinsically using perplexity,
loss or bits-per-byte on held-out validation data.
Low perplexity language models perform well as
few-shot learners on many downstream tasks due to
their capacity to both memorize and non-trivially
combine textual information from many sources
(Brown et al., 2020; Rae et al., 2021; Lieber et al.,
2021; Chowdhery et al., 2022). The hope is that we
can externalize memory to reduce the footprints of
language models without reducing generalization
and downstream task performance.

Our results show that the low loss in Retro al-
most exclusively originates from tokens overlapping
between retrieval and validation data, rather than
from more sophisticated generalization. To better

1488

understand this effect, it would be interesting to
modify the retrieval component and deliver seman-
tically similar but lexically different context during
training. If the retrieved context is uninformative,
the model will learn to ignore it, but if the con-
text is too specific (e.g. literal overlap) the model
will learn to copy. By better balancing between
these two modes, models may become better at
utilizing retrieved information at a deeper and more
generalizable level.

Limitations
We have made our best effort in trying to reproduce
the model and results of Borgeaud et al. (2022).
Nonetheless, our experiments were performed on
one of the smaller model sizes and with a dataset
that is only ∼2.5% of their size (52 billion vs. 2
trillion tokens). This was due to computational
constraints and lack of larger open datasets. How-
ever, as was also shown by Borgeaud et al. (2022),
the performance gain of retrieval is constant with
respect to model size. We speculate that larger
Retro models mostly improve with respect to loss
on tokens that are not overlapping, which would
not change our conclusions here.

One noteworthy limitation of our work is the
fact that we compare to a non-retrieval baseline
(Retro[off]) that was trained with access to re-
trieved context. We were not able to train a separate
non-retrieval baseline due to computational con-
straints, but note that the bits-per-byte results of
Retro[off] and the baseline in Borgeaud et al.
(2022) were close to identical.

Acknowledgements
This work was partially supported by the Wal-
lenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. The computations were
enabled by resources provided by the National
Academic Infrastructure for Supercomputing in
Sweden (NAISS) at Alvis partially funded by the
Swedish Research Council through grant agreement
no. 2022-06725, and by the Berzelius resources pro-
vided by the Knut and Alice Wallenberg Foundation
at the National Supercomputer Centre.

References
Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-

mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste

Lespiau, Bogdan Damoc, Aidan Clark, Diego
De Las Casas, Aurelia Guy, Jacob Menick, Ro-
man Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock,
Michela Paganini, Geoffrey Irving, Oriol Vinyals,
Simon Osindero, Karen Simonyan, Jack Rae, Erich
Elsen, and Laurent Sifre. 2022. Improving language
models by retrieving from trillions of tokens. In
Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 2206–2240.
PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling language
modeling with pathways.

Andrew Drozdov, Shufan Wang, Razieh Rahimi, Andrew
McCallum, Hamed Zamani, and Mohit Iyyer. 2022.
You can’t pick your neighbors, or can you? when and
how to rely on retrieval in the 𝑘 nn-lm. arXiv preprint
arXiv:2210.15859.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, Shawn Presser, and
Connor Leahy. 2020. The Pile: An 800gb dataset of
diverse text for language modeling. arXiv preprint
arXiv:2101.00027.

1489

https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. In Inter-
national Conference on Machine Learning, pages
3929–3938. PMLR.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Jeff Johnson, Matthĳs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through Memorization: Nearest Neighbor Language
Models. In International Conference on Learning
Representations (ICLR).

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. In Advances in Neural Information Process-
ing Systems, volume 33, pages 9459–9474. Curran
Associates, Inc.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and
Lemao Liu. 2022. A survey on retrieval-augmented
text generation. arXiv preprint 2202.01110.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
Technical report, AI21 Labs.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. Pytorch: An imperative
style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John

Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Maribeth
Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl,
Sumanth Dathathri, Saffron Huang, Jonathan Ue-
sato, John Mellor, Irina Higgins, Antonia Creswell,
Nat McAleese, Amy Wu, Erich Elsen, Siddhant
Jayakumar, Elena Buchatskaya, David Budden, Esme
Sutherland, Karen Simonyan, Michela Paganini, Lau-
rent Sifre, Lena Martens, Xiang Lorraine Li, Adhi-
guna Kuncoro, Aida Nematzadeh, Elena Gribovskaya,
Domenic Donato, Angeliki Lazaridou, Arthur Men-
sch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Niko-
lai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas
Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama,
Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi,
Vladimir Mikulik, Igor Babuschkin, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Chris Jones, James
Bradbury, Matthew Johnson, Blake Hechtman, Laura
Weidinger, Iason Gabriel, William Isaac, Ed Lock-
hart, Simon Osindero, Laura Rimell, Chris Dyer,
Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lor-
rayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. 2021. Scaling language models:
Methods, analysis & insights from training gopher.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2022. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-ĲCNLP),
pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The
cost of training NLP models: A concise overview.
arXiv preprint 2004.08900.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Frank F. Xu, Uri Alon, and Graham Neubig. 2023. Why
do nearest neighbor language models work?

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021. Adaptive semiparametric
language models. Transactions of the Association for
Computational Linguistics, 9:362–373.

1490

https://dl.acm.org/doi/abs/10.5555/3524938.3525306
https://dl.acm.org/doi/abs/10.5555/3524938.3525306
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
http://arxiv.org/abs/2202.01110
http://arxiv.org/abs/2202.01110
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.2112.11446
https://doi.org/10.48550/ARXIV.2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.48550/ARXIV.2004.08900
https://doi.org/10.48550/ARXIV.2004.08900
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/ARXIV.2301.02828
https://doi.org/10.48550/ARXIV.2301.02828
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan
Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi.
2019. Defending against neural fake news. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

1491

https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf

0 20 40 60 80 100 120
Consecutively overlapping tokens, n

105

106

107

|
(n

)|

Figure 4: Number of validation set tokens in each bucket Φ(𝑛). Since the neighbors have a maximal length of
128 tokens, this is also the longest possible overlap 𝑛.

Documents Chunks Tokens

Training

Pile-CC 15,728k 269M 16.7B
Wikipedia En 5,082k 61M 3.8B
GitHub 5,417k 181M 11.4B
Books3 83k 191M 12.2B
RealNews 9,360k 130M 8.0B
Total 35,670k 833M 52.2B

Validation

Pile-CC 52.8k 900.4k 56.0M
Wikipedia En 17.4k 215.9k 13.3M
GitHub 18.3k 598.4k 37.7M
Books3 0.3k 727.6k 46.5M
RealNews 16.4k 234.5k 14.5M
Total 105.3k 2,676.8k 168.0M

Table 1: Statistics for our MassiveOpenText dataset. We use the web text, Wikipedia, GitHub and Books3 corpora
from the Pile, and news text from RealNews.

A MassiveOpenText statistics
Statistics on the number of documents, chunks and
tokens for each split and text category are shown in
Table 1.

B Retro model details
We show hyperparameters of our Retro model in
Table 2.

Param

Encoder

Num layers 2
Num heads 14
Hidden size 896
FFN 3584
CA layers [2]

Decoder

Num layers 12
Num heads 12
Hidden size 1536
FFN 6144
CCA layers [6,9,12]

Table 2: Hyperparameters of our trained Retro model.

C Consecutively overlapping tokens
As explained in Section 3.1, we sort validation set
tokens into buckets denoted Φ(𝑛) depending on the
longest overlapping leftward context.

In Figure 4 we show the number of tokens in
each bucket. We note a big “jump” from 𝑛 = 64 to
𝑛 = 65, which can be explained by the following
rationale. A neighbor [𝑁, 𝐹] to a chunk 𝐶𝑖 is
retrieved based on the similarity between 𝐶𝑖 and 𝑁 .
In the case where both𝐶𝑖 = 𝑁 and𝐶𝑖+1 = 𝐹, tokens
in 𝐶𝑖+1 will be put into Φ(𝑛) with 𝑛 = 65, . . . , 128.
The jump in Figure 4 indicates such duplicates are
common in our data.

D Model validation
As we aim to reproduce the 425M model trained in
Borgeaud et al. (2022), it is important to validate
that the implementations are equivalent and that
their evaluation results are comparable. However,
evaluations of the 425M model in Borgeaud et al.
(2022) on the Pile are not available, making it
hard to make direct comparisons. Borgeaud et al.

1492

(2022) report evaluation results on the C4 (Raffel
et al., 2022) dataset, with various sizes of retrieval
datasets. For their setup with 36B retrieval tokens,
which is the most similar to our own retrieval size,
they report that bits-per-byte is reduced by ∼ 2%
(from 0.92 to 0.90) when using retrieval. That
could be compared to our results on Pile-CC, as
both datasets originate from Common Crawl. In
our experiments, loss is reduced by 7% (from 3.05
to 2.83) on Pile-CC.

Evaluations on the Pile in Borgeaud et al. (2022)
are only reported for their largest model (7B params)
and largest retrieval set (2T tokens). For example,
on Pile–GitHub their reduction is ∼53% whereas
our reduction is 42%.

While these numbers are not directly comparable,
we believe they indicate that our reimplementation
of the Retro model is working as expected.

1493

