
Findings of the Association for Computational Linguistics: EACL 2023, pages 1455–1470
May 2-6, 2023 ©2023 Association for Computational Linguistics

Language Model Decoding as Likelihood–Utility Alignment

Martin Josifoski,♢ Maxime Peyrard,♢ Frano Rajic,♢ Jiheng Wei,♣

Debjit Paul,♢ Valentin Hartmann,♢ Barun Patra,♠ Vishrav Chaudhary,♠

Emre Kıcıman,♠ Boi Faltings,♢ Robert West♢

♢EPFL ♠Microsoft Corporation ♣PSL University
{martin.josifoski, maxime.peyrard, robert.west}@epfl.ch

Abstract
A critical component of a successful language
generation pipeline is the decoding algorithm.
However, the general principles that should
guide the choice of a decoding algorithm re-
main unclear. Previous works only compare
decoding algorithms in narrow scenarios, and
their findings do not generalize across tasks.
We argue that the misalignment between the
model’s likelihood and the task-specific notion
of utility is the key factor to understanding the
effectiveness of decoding algorithms. To struc-
ture the discussion, we introduce a taxonomy
of misalignment mitigation strategies (MMSs),
providing a unifying view of decoding as a tool
for alignment. The MMS taxonomy groups
decoding algorithms based on their implicit
assumptions about likelihood–utility misalign-
ment, yielding general statements about their
applicability across tasks. Specifically, by an-
alyzing the correlation between the likelihood
and the utility of predictions across a diverse
set of tasks, we provide empirical evidence sup-
porting the proposed taxonomy and a set of
principles to structure reasoning when choos-
ing a decoding algorithm. Crucially, our anal-
ysis is the first to relate likelihood-based de-
coding algorithms with algorithms that rely
on external information, such as value-guided
methods and prompting, and covers the most
diverse set of tasks to date. Code, data, and
models are available at https://github.com/epfl-
dlab/understanding-decoding.

1 Introduction

Large transformer-based language models (LMs)
have been pushing the boundaries on tasks ranging
from natural language generation (Radford et al.,
2018) to information extraction (Josifoski et al.,
2022), theorem proving (Polu and Sutskever, 2020),
code generation (Zügner et al., 2021), and even pro-
tein generation (Ferruz et al., 2022). At inference
time, these models rely on a decoding algorithm
to generate an output. The goal of decoding algo-
rithms is to select an output of high utility from

Input
What is the shortest name of a

US president?

..…

Training Corpus
Text scraped from the Web

before 2021

Ja Jo …

John Joe …..… …James …..… ..…

Ja
0.5

mes
0.5

Jo
0.4

hn
0.8 e

0.1

0.25 0.32 0.04

Greedy
Beam Search (2 beams)
Highest Utility

Figure 1: Example of likelihood–utility misalignment.
Imagine a fictional LM trained before Joe Biden became
the US president. The input asks for the shortest name
of a US president. After Joe Biden’s inauguration, this
is ‘Joe’, but before, it was ‘John’. Greedy search re-
turns ‘James’ since its first token ‘Ja’ has the highest
likelihood. Beam search manages to find the highest
likelihood sequence ‘John’. Both fail to find the correct
answer ‘Joe’ with the highest utility since ‘Joe’ has a
very low likelihood.

the exponentially large output space. In contrast to
the generic language modeling training objective,
which is based on the data likelihood, the notion
of utility is task-specific. The potential gap be-
tween the two can create a misalignment between
model likelihood and task utility; see Fig. 1 for an
illustration of this concept.

Indeed, across different tasks, researchers no-
ticed that high likelihood is often not associated
with desired properties of the output (Stahlberg
and Byrne, 2019; Zhang et al., 2021; Klein et al.,
2017). Naturally, this has led to the development of
decoding strategies aimed at mitigating this prob-
lem. In the context of natural language generation
(NLG), Nucleus Sampling (i.e., top-p) (Holtzman
et al., 2020) has been proposed to avoid dull or de-
generate text. Similarly, in the context of machine
translation (MT), solutions ranging from simple
ad-hoc tweaks like enforcing a minimal sequence
length (Stahlberg and Byrne, 2019) to leveraging
a value model to directly optimize for utility in de-

1455

https://github.com/epfl-dlab/understanding-decoding
https://github.com/epfl-dlab/understanding-decoding

coding (Leblond et al., 2021) have been developed.
These methods for alignment are task-specific and
have been tested only in narrow domains, making
it difficult for practitioners to compare them.

Recently, Meister et al. (2022) and Wiher et al.
(2022) explored the likelihood–utility misalign-
ment across tasks. However, these studies still
largely focus on a group of similar tasks — NLG
tasks — and, more crucially, do not include decod-
ing strategies that make use of external sources of
information at inference time. Therefore, a general
framework to structure our thinking about decoding
algorithms is still missing.

Our work makes the first step towards filling this
gap. We propose a unified perspective of decod-
ing as a tool for mitigating the likelihood–utility
misalignment without modifications to the model.
Looking at decoding through this functional lens,
in Sec. 3, we provide a taxonomy of misalign-
ment mitigation strategies (MMSs). The taxonomy
groups decoding algorithms based on the implicit
assumptions about likelihood–utility misalignment
that need to hold for them to be effective.

Equipped with this taxonomy, we conduct a com-
prehensive empirical analysis in which we choose a
representative set of decoding algorithms and a rep-
resentative set of tasks to cover the relevant types
of misalignment. We identify three main sources
of misalignment: training imperfections (finite da-
taset, differentiable surrogate loss), distribution
shift, and changes in the model’s intended usage,
which we call utility drift. Then, we measure the
likelihood–utility misalignment across tasks (RQ1)
by estimating: the correlation between likelihood
and utility for the generated outputs after decod-
ing (RQ1-a) and the correlation between likelihood
and utility among candidate outputs explored by
the decoding algorithm (RQ1-b). We proceed by in-
vestigating the benefits of decoding algorithms that
leverage external information at inference (RQ2).
Finally, we experiment with large generalist LMs
(LLMs) and show that prompting can be seen as
means for improving the alignment at inference
time (RQ3).

Our experiments reveal that: (i) When no distri-
bution shift or utility drift happens, decoding based
solely on the likelihood is enough to provide high
utility, i.e., likelihood is a strong predictor of utility.
(ii) In such cases, there is no significant difference
between different kinds of decoding algorithms,
and we would recommend keeping beam search.

(iii) In the presence of distribution shift or utility
drift, value-guided beam search is both an effective
and efficient decoding algorithm that leverages a
value model at inference time to fix misalignment.
Finally, (iv) for LLMs, prompting is a mechanism
that sets the model in a state where the likelihood
is well-aligned with the utility. This perspective
provides a tentative explanation for the empirical
success of prompting LLMs.

This work studies the fundamental problem in
decoding, which involves a complex interaction
between models, tasks, and data. Our unifying con-
ceptual framework (the MMS taxonomy), accom-
modating all known decoding algorithms, enables
the systematic study of decoding in a considerably
broader scope than previously. By sharing the tax-
onomy and open-sourcing our implementations, we
hope to pave the way for a more structured discus-
sion in the future.

2 Background

High Utility Is the Goal. For a task t and input x,
the utility function assigns a score ut(y|x) to each
element y in the output space Y . This score quan-
tifies the goodness, or quality, of the output y with
respect to a specific input x. For instance, in trans-
lation, the utility quantifies the extent to which the
output conveys the same message as the input. For
question answering, the utility simply quantifies
the correctness of the answer. These task-specific
notions of utility are operationalized in the evalua-
tion metrics. The development of evaluation met-
rics that correlate with the human-defined notion
of utility is a very active research area (Sai et al.,
2022) and beyond the scope of this work. In our
analysis, we use the canonical evaluation metric
of each task as the utility function. For partially-
decoded sequences, the utility can be approximated
using a value function (see Sec. 3.3).

Given some input x, an ideal model would gener-
ate the element from the output space correspond-
ing to the highest utility score: argmaxy∈Y ut(y | x).

Unfortunately, most of the practically relevant
utility functions are not amenable to optimization,
forcing us to work with proxy functions, such as
the canonical likelihood.

Language Models. A language model corresponds
to a probability distribution p over y ∈ Y , where
Y is the set of all sequences that can be con-
structed using a vocabulary V . In this work, we
focus on conditional LMs p(·|x). Usually, these

1456

conditional distributions are modeled autoregres-
sively (parametrized by θ): pθ (y | x)=∏|y|

i=1 pθ (yi |
y<i,x). The model is trained to maximize the target
sequence’s conditional log-likelihood with teacher
forcing, using the cross-entropy loss L (θ) =
−∑(x,y)∈D log pθ (y | x), where D is the training
corpus (Sutskever et al., 2011, 2014).

Once an LM is trained, it provides a next-token
probability distribution across the output vocabu-
lary. Decoding algorithms define how tokens are
chosen during generation.

3 Proposed MMS Taxonomy

In this section, we propose a taxonomy of misalign-
ment mitigation strategies (MMSs). This work
focuses on decoding-based MMSs that mitigate the
misalignment without modifying the model. As
a primary signal, they rely on the model’s likeli-
hood. However, additional components (e.g., value
model, knowledge base, etc.) can be leveraged.
Decoding algorithms, which we define as proce-
dures that take in an input — and potentially some
context (e.g., a prompt with a task description or
examples) — and return a sequence from the out-
put space, can be seen as specific implementations
of an MMS. Apart from fixing the misalignment
problem at inference time, it is also possible to re-
train or finetune the model with newly collected
data that better reflect the intended utility and target
testing distribution. We leave the detailed treatment
of this part of the taxonomy for future work. See
the Limitations section at the end of the writing for
further discussion of these alternatives.

3.1 Greedy Likelihood-Based Strategy

Given the LM’s probabilistic formulation, one
could strive to select the most likely sequence un-
der the model: argmaxy∈Y pθ (y | x). However, due
to the exponentially large state space, this optimiza-
tion problem is intractable.

The class of algorithms following the greedy
likelihood-based MMS approximate the intractable
argmax by following the greedy heuristic of mak-
ing locally optimal choices at each decoding step
w.r.t. the likelihood under the language model.
However, reaching a globally optimal solution may
require locally sub-optimal steps. When this hap-
pens, we say that the likelihood landscape is greedy
adversarial (Meister et al., 2020). For a likelihood
model that is not greedy adversarial, greedy heuris-
tics will retrieve the highest-likelihood solution.

Therefore, the algorithms’ effectiveness depends
on the likelihood–utility alignment.

Contrarily, greedy decoding algorithms may fall
arbitrarily short of the global maximum for likeli-
hood models that are greedy adversarial. Indeed,
greedy decoding algorithms implicitly optimize
a different objective function — a tampered ver-
sion of the likelihood objective in which a term
that encourages locally optimal solutions is added
(Meister et al., 2020). Therefore, the ability of
greedy decoding algorithms to retrieve high-utility
sequences even from a likelihood model that is per-
fectly aligned with the utility is inversely propor-
tional to how greedy adversarial the likelihood land-
scape is. In some cases, the particular bias induced
by the greedy heuristic mitigates the likelihood–
utility misalignment, and makes the tampered like-
lihood objective better aligned with the utility than
the original (Meister et al., 2020, 2023; Su et al.,
2022).

The decoding algorithms in this category can be
further divided into two subgroups: (i) determin-
istic ones, such as greedy search (GS) and beam
search (BS); and (ii) stochastic ones, such as top-k
sampling (Fan et al., 2018), top-p sampling (Holtz-
man et al., 2020), and stochastic beams (SB) (Kool
et al., 2019). For more details, see Appendix A.1.

3.2 Greedy Likelihood-Based Strategy with
Pruning

An understated fact in the literature is that even
for tasks for which the canonical decoding algo-
rithms (e.g., BS) perform well, a non-negligible
portion of the performance relies on some bespoke,
ad-hoc tweaks on the likelihood scores (Stahlberg
and Byrne, 2019). These tweaks are usually based
on either: (i) post-hoc observations that likelihood-
based decoded sequences often contain specific un-
desirable patterns (e.g., empty or short sequences,
repetitive patterns, etc.); or (ii) problem-specific
knowledge about the utility landscape suggests
that high-utility sequences have a specific prop-
erty, which can be explicitly enforced by the decod-
ing strategy (e.g., sequences should correspond to
triplets of elements from a predefined set). Concep-
tually, all these tweaks employ mechanisms that
discourage the generation of high-likelihood pat-
terns that are known (or expected) to be associated
with low utility.

This category includes: (i) decoding algorithms
with ad-hoc heuristics such as the n-gram repetition

1457

penalty (Klein et al., 2017); (ii) constrained beam
search (CBS) (Scholak et al., 2021; De Cao et al.,
2022; Josifoski et al., 2022); (iii) NeuroLogic (Lu
et al., 2022). For more details, see Appendix A.2.

3.3 Greedy Likelihood- and Value-Based
Strategy

Heuristics such as the ones used in the previous
category can capture some properties associated
with high utility but are limited to properties that
can be easily expressed explicitly. While the util-
ity function is generally defined for complete se-
quences only, to guide decoding algorithms, one
can rely on the general concept of a value model.
A value model approximates, for partially decoded
sequences, the expected utility of the final sequence
if the decoding keeps following the same policy.
The most prominent algorithm in this category is
value-guided beam search (VGBS) (He et al., 2017;
Ren et al., 2017; Krishna et al., 2022). It uses a
greedy strategy similar to BS but selects the next
token using a linear combination of the LM’s like-
lihood and the value model’s scores. See Appendix
A.3 for details.

3.4 Simulation-Based Strategy
Even though VGBS considers both likelihood and
value, it remains greedy by only looking one step
ahead. Simulation-based decoding algorithms ex-
plore further into the future before making the next
decision. When the value landscape is complex
and constructing a good value model is hard, such
strategies with a look-ahead may become particu-
larly effective. By turning the knob controlling the
number of simulations, one can trade off compu-
tational efficiency for obtaining better value esti-
mates. Monte-Carlo Tree Search (MCTS) is the
canonical example of simulation-based tree explo-
ration informed by a value model. For details, see
Appendix A.4.

3.5 Prompting-Based Strategy
The decoding algorithms described in the last two
sections address the likelihood–utility misalign-
ment post-hoc. An alternative is to change the
conditioning of the model’s probability distribution
such that the misalignment never happens. The ef-
fort now goes into choosing a context that aligns the
likelihood landscape with the task-specific utility.
The strength of this class of decoding algorithms
lies in the fact that they can readily be applied to
a new task without requiring any modifications to

the model or increasing the computation cost of
inference (beyond the processing of the prompts’
tokens). However, they only work for large gen-
eralist LMs (Chowdhery et al., 2022). The most
prominent members are the few-shot (FS) and the
chain-of-thought (CoT) prompting methods, de-
scribed in Appendix A.5.

4 Experimental Setup

4.1 Research Questions

In contrast to previous works that have studied the
misalignment problem in constrained settings, we
propose quantifying it in a unified and large-scale
analysis across tasks (RQ1). We investigate the
benefits of a diverse set of previously proposed so-
lutions to the misalignment problem. Our study in-
cludes value-guided approaches (RQ2) and prompt-
ing (RQ3), covering each class of the MMS taxon-
omy with at least one representative. Specifically,
we ask the following research questions.

RQ1: How correlated are the utility and the
likelihood across tasks? As argued in Sec. 3,
greedy likelihood-based strategies only require the
likelihood to be a strong predictor of utility. We
investigate whether this holds across tasks. Specif-
ically, we measure two important aspects of the
likelihood–utility alignment: (a) Post-decoding
alignment. For each data point, the decoding al-
gorithm chooses one output; we measure the likeli-
hood and utility of the prediction and analyze their
relation. Is high likelihood associated with high
utility in the same way across tasks? (b) During-
decoding alignment. Decoding algorithms typi-
cally explore a set of high-scoring candidates (e.g.,
BS returns one candidate per beam). We mea-
sure the correlation between likelihood and util-
ity among these candidate outputs to analyze the
likelihood landscape of the model.

RQ2: How effective are value-guided MMSs?
In particular, we investigate the benefit of value-
guided decoding algorithms as a function of the
value model’s quality.

RQ3: Is prompting an MMS? We investigate
the efficacy of prompting as a likelihood–utility
alignment tool for generalist LMs (LLMs).

4.2 Tasks and Datasets

To organize the discussion, we propose a simple
classification of the sources of misalignment: (a)
Training imperfections (TI), when the model is
trained on a different objective than the true util-

1458

Tasks Utilities Misalignment Types Model Dataset

Closed Information Extraction (cIE) F1 score [M] TI GenIE (BART) REBEL
Machine Translation (MT) BLEU [M] TI, DS mBART50 WMT14
Non-Toxic Text Generation (NTTG) Non-Toxicity [T] TI, DS, UD GPT2 RTP
Non-Soluble Protein Generation (NSPG) Non-Solubility [T] TI, DS, UD ProtoGPT2 SwissProt
Sports Understanding Solve Rate [M] TI, DS, UD MT-NLG 530B Sports

Table 1: Overview of the tasks. Utility functions are categorized into: (a) [M]: Metric-based and (b) [T]: Trained
model-based. The three misalignment types are TI: Training imperfection, DS: Distribution shift, UD: Utility drift.

ity, because of the finite size of the dataset and the
approximation error in training (e.g., via stochas-
tic gradient descent); (b) Distribution shift (DS),
when the training and testing data distributions dif-
fer; (c) Utility drift (UD), when the utility used in
development differs from the utility at test time.

While we can expect TI to affect all machine
learning tasks (due to the finiteness of datasets and
approximations resulting from gradient-based train-
ing), DS and UD are task-specific. DS typically
occurs when the distribution of the data changes
between the training and testing scenarios. UD
occurs when the notion of utility changes, i.e., the
labels for the same data points are changing.

We carefully selected a variety of generation
tasks covering (a) different notions of utility, and
(b) different expected types of (mis)alignment be-
tween utility and likelihood. Table 1 gives a high-
level overview of these tasks, their utility functions,
and associated datasets.1 In closed information ex-
traction, the training and testing data come from the
same distribution, and we expect only TI-type of
misalignment. In machine translation, the mBART
model is pretrained on a different dataset, inducing
some DS as the texts used for training may come
from different domains. For non-toxic text and
non-soluble protein generation, the task definition
changed from generating low perplexity sequences
to generating non-toxic sequences. Therefore, UD
is expected to be the main driver of misalignment.
Similarly, for the sports understanding task, since
MT-NLG was not trained for this specific task, we
also expect UD to be the main source of misalign-
ment, but here VGBS and MCTS are too expensive
due to the size of the LM. Instead, we use this
setting to investigate prompting-based MMSs.

4.3 Decoding Algorithms

To cover the full space of MMSs, we experi-
ment with at least one representative from each
class from the taxonomy defined in Sec. 3. From

1For more details about the models, data, and utility func-
tions, see Appendix B.1.

the Greedy Likelihood-based category, we in-
clude the canonical GS and BS, as well as the
sampling-based SB. From the Greedy Likelihood-
based Strategies with pruning, we use CBS. VGBS
and MCTS are representatives of the Greedy
Likelihood- and Value-based, and Simulation-
based decoding classes, respectively. For prompt-
ing, we consider the FS and CoT methods. The
hyper-parameters for each algorithm are given in
Appendix B.2. Appendix B.3, provides a complex-
ity analysis in terms of LM and value model calls.

4.4 Value Models

The quality of a value model reflects its ability to
approximate the expected utility. To determine the
relationship between the value model’s quality and
the benefit of leveraging it in decoding, we craft
models that allow us to instantiate versions with
varying levels of quality, ranging from a random
predictor to an oracle.

Non-Toxic Text Generation. The state-of-the-art
method for detecting toxicity is via classification
(Hanu and Unitary team, 2020). Such a classifier
can readily be used as a value model in decod-
ing. We reproduce the training procedure from
Hanu and Unitary team (2020) and save check-
points at regular intervals until the training is com-
plete. Due to the gradually decreasing under-fitting,
these checkpoints give us a sequence of classifiers
that systematically improve in terms of quality.

Machine Translation. To achieve a similar effect
for MT, we start by assigning to each data point
in the dataset another randomly chosen data point
which will serve as a false target. This assignment
is fixed across all runs. During inference, the value
model calculates the BLEU score for both correct
and incorrect targets and returns a linear combina-
tion between the points. By gradually increasing
the weight assigned to the false target from zero
to one, the perfect value model (oracle) slowly de-
grades to a random predictor.

1459

https://github.com/epfl-dlab/genie
https://huggingface.co/datasets/Babelscape/rebel-dataset
https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt
https://huggingface.co/datasets/wmt14
https://huggingface.co/gpt2
https://allenai.org/data/real-toxicity-prompts
https://huggingface.co/nferruz/ProtGPT2
https://huggingface.co/datasets/lightonai/SwissProt-EC-leaf
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/sports_understanding

G
re

ed
y

Se
ar

ch

4 2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(F

1)
0

5000

02500

0 2000 4000
Count

2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(B

LE
U)

0

1000

0 500

0 200 400
Count

4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(1

To
xi

cit
y)

0
2500

01000

0 500 1000
Count

6 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(1

So
lu

bi
lit

y)

0
2500

0 5000

0 2000
Count

B
ea

m
Se

ar
ch

2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(F

1)

0

10000

0 2500 2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Ut

ilit
y

(B
LE

U)

0

1000

0 500 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(1

To
xi

cit
y)

0
2500

0 1000 6 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(1

So
lu

bi
lit

y)

0
2500

0 5000

St
oc

ha
st

ic
B

ea
m

s

2.5 0.0 2.5
log p(y) log p(y *)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(F

1)

0

10000

0 2500

(a) cIE (REBEL)

2.5 0.0 2.5
log p(y) log p(y *)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(B

LE
U)

0

500

0 500

(b) MT (WMT14)

4 2 0
log p(y)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(1

To
xi

cit
y)

0

2000

0 1000

(c) NTTG (RTP)

6 4 2 0
log p(y)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(1

So
lu

bi
lit

y)

0

1000

0 5000

(d) NSPG (SwissProt)

Figure 2: RQ1 (post-decoding alignment): Each decoding algorithm is applied to each dataset-model pair. For each
subplot, the x-axis represents the outputs’ log-likelihood under the model, and the y-axis the output’s task-specific
utility score. The plots are frequency heatmaps counting the number of decoded outputs pertaining to a given
hexagon. For MT and cIE, the x-axis is normalized such that 0 is the log-likelihood of the target answers2. These
plots show where the outputs are located in the likelihood-utility landscape across tasks and decoding algorithms.

5 Experiments and Results

5.1 RQ1: The Likelihood–Utility Relationship
We present two analyses, one measuring the
likelihood–utility misalignment after decoding and
one measuring it during decoding.

Post-decoding alignment. In this experiment, we
first run each likelihood-based decoding algorithm
(GS, BS, and SB) for each dataset–model pair.
Then, for each output, we compute both the model
likelihood and the task-specific utility.3 We report
the results in Fig. 2.

For cIE (first column), most outputs have a likeli-
hood close to the targets’ likelihood. The majority
of the outputs have perfect utility — the decoded
output is exactly the target, and the model is well-
calibrated. This confirms the intuition that when
the UD and DS are small, greedy likelihood-based
MMS are very effective and can cope with the TI.

2See Fig. 6 for a plot without the target normalization.
3We also ran experiments with top-p and top-k but did not

observe a behavior different from BS.

However, in tasks with larger DS and UD, the
story is different. In MT (second column), the com-
bined effect of TI and DS gives rise to a negative
global correlation (−.56 for BS and −.52 for GS in
terms of Pearson’s correlation; p < 10−3) between
the predictions’ utility and likelihood after decod-
ing. This is an instance of Goodhart’s law, where
a surrogate metric (likelihood), when being opti-
mized heavily, becomes a poor approximation of
the original property it is supposed to track (utility).

In tasks with large UD, NTTG (third column),
and NSPG (fourth column), decoding according
to likelihood does not guarantee utility. For exam-
ple, in NTTG, the likelihood–utility correlation is
−.10 for GS, .10 for SB, and .03 for GS in terms
of Pearson’s correlation; p < 10−3. These scenar-
ios require external information that can guide the
decoding towards high-utility outputs.

During-decoding alignment. Now, we investigate
the likelihood–utility alignment where it matters:
for outputs close to being extracted by the decoding

1460

2.5 0.0 2.5
log p(y) log p(y *)

0.00

0.25

0.50

0.75

1.00

Ut
ilit

y
(F

1)

0
10000

02500

1 0 1
Correlation

(a) cIE (REBEL)

2.5 0.0 2.5
log p(y) log p(y *)

0.00

0.25

0.50

0.75

1.00

Ut
ilit

y
(B

LE
U)

0
1000

0 500

1 0 1
Correlation

(b) MT (WMT14)

4 2 0
log p(y)

0.00

0.25

0.50

0.75

1.00

Ut
ilit

y
(1

To
xi

cit
y)

0
2500

01000

1 0 1
Correlation

(c) NTTG (RTP)

5.0 2.5 0.0
log p(y)

0.00

0.25

0.50

0.75

1.00

Ut
ilit

y
(1

So
lu

bi
lit

y)

0
2500

0 5000

1 0 1
Correlation

(d) NSPG (SwissProt)

Figure 3: RQ1 (during-decoding alignment): For each
dataset-model pair, we run BS and analyze the correla-
tion between likelihood and utility of the top-5 candidate
hypotheses. The y-axis represents the task-specific util-
ity score, and the x-axis the log-likelihood under the
model. The plots are generated as follows: (i) take the
BS outputs from Fig. 2 with their log-likelihood and util-
ity scores, which indicate the x and y coordinate of each
data point; (ii) for each data point measure the Kendall’s
τ correlation between likelihood and utility of the top-5
candidate hypotheses; and (iii) average the correlation
across the points belonging to the same hexagon.

algorithms. BS maintains k candidate hypotheses,
one per beam, before returning the top-scoring one
as the final output. In this experiment, we analyze
the correlation between the likelihood and utility
of the top-5 candidates. The results are reported in
Fig. 3. There are three dimensions to this problem:
(i) the likelihood (x-axis); (ii) the utility (y-axis);
(iii) the correlation (color). Ideally, we would like
to see red everywhere, indicating that failure to
retrieve a high-utility output is due to the decoding
algorithm, but the likelihood of the model is still a
good predictor of utility. However, this is not what
we observe.

For MT and cIE, we see a clear picture, red color
(high likelihood–utility correlation) occurs at the
top of the plot (high-utility): high likelihood-utility
correlation among candidate outputs is enough to
yield close to perfect-utility outputs.

For the NTTG (Fig. 3c), the correlation between
utility and likelihood among the beams increases as
the likelihood increases. When the model generates
high-likelihood outputs, there is a positive corre-
lation between being more likely and being less

0.0 0.2 0.4 0.6 0.8 1.0
Noise

0.00
0.25
0.50
0.75
1.00

Ut
ilit

y
(B

LE
U)

(a) MT (WMT14)

200 steps
RMSE:0.2242

400 steps
RMSE:0.2165

1200 steps
RMSE:0.1976

Oracle
RMSE:0.1868

Noise

0.0

0.5

1.0

Ut
ilit

y
(1

To
xi

cit
y)

VGBS
MCTS
BS

(b) NTTG (RTP)

Figure 4: RQ2: For MT and NTTG, we ran VGBS and
MCTS with value models displaying various levels of
noise. We report the average utility of outputs on the
y-axis (with 95% confidence interval). The noisy value
models are described in Sec. 4.4.

toxic. However, the likelihood mass is assigned
to low-utility regions of the output space, which
cannot be resolved with decoding based only on
the likelihood. For NSPG (Fig. 3d), the correla-
tion across all bins is negative, indicating that high
likelihood is a very bad predictor of high utility.

Takeaways. When TI is the only cause of mis-
alignment, the likelihood is a strong predictor of
utility; then, likelihood-based decoding algorithms
are expected to retrieve high-utility outputs. When
UD and/or DS are present, the correlation between
likelihood and utility post-decoding plummets, in-
dicating that likelihood-based decoding algorithms
are ill-suited. When UD is present (bottom row of
Fig. 4), good correlation among the beams does not
necessarily mean good utility. However, without
UD (top row of Fig. 4), higher correlation among
the beams is associated with high utility.

5.2 RQ2: The Benefits of Value Models

We now analyze the benefits of value-guided decod-
ing algorithms (VGBS and MCTS) as a function
of the value model’s quality (see Sec. 4.4). Due
to the high computational cost of running the ex-
periments with both VGBS and MCTS, we focus
on two tasks: MT and NTTG. For each version of
the value model, we first perform a hyperparame-
ter search on a small subset of the data and use the
best hyperparameters on the test set. The results are
reported in Fig. 4. VGBS and MCTS are always
at least as good as BS, even with random value
models, as the small-scale hyperparameter search
selects parameters that ignore the values when they
are not useful. However, when there is some signal
in the value model, both VGBS and MCTS effec-
tively leverage it and quickly start outperforming
BS. When the value model is accurate, very high-
utility outputs are discovered. Interestingly, VGBS
mostly outperforms MCTS, and can extract almost

1461

20 40 60 80 100
Percentile

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(S

ol
ve

 R
at

e)

Zero-Shot
Few-Shot
Chain-of-Thought

Figure 5: RQ3: ZS, FS, and CoT prompting, on the
Sports understanding dataset. We report the utility (y-
axis) of outputs binned according to the empirical per-
centiles of their likelihood (x-axis). The lineplot is the
average utility per bin with 95% confidence intervals.

perfect outputs, whereas MCTS plateaus. This is
significant because VGBS has a substantially lower
complexity than MCTS (see Appendix B.3).

Takeaways. Value-guided decoding algorithms
can overcome the likelihood–utility misalignment
and significantly outperform likelihood-based de-
coding algorithms even with noisy value models,
as long as a small-scale hyperparameter search is
done. VGBS offers a better trade-off between per-
formance and computation cost than MCTS.

5.3 RQ3: Prompting as an MMS
Recently, Wei et al. (2022) showed how the sim-
ple and broadly applicable idea of including in the
prompt a few examples where the targets contain
a sequence of steps that lead to the answer can
greatly enhance the reasoning capabilities of LMs.
We mimic the Sports Understanding task in their
work by taking the same in-context examples and
evaluating the same two prompting methods: CoT
and standard FS prompting. Additionally, we evalu-
ate the model in the standard zero-shot (ZS) setting,
without any examples in the context, as a baseline.
This results in unstructured answers that need to be
labeled manually, see Appendix C.2.

To test our hypothesis that prompting is a means
of addressing misalignment, we measure the util-
ity and the likelihood under the model for all the
testing data points. The results, summarized in
Fig. 5, provide three insights. First, similarly to
Wei et al. (2022), CoT outperforms FS and ZS with
an accuracy of 83%, versus 57.3% and 38.9% for
FS and ZS, respectively. Second, (and comple-
mentary to the information visualized on the plot)
the average log-likelihood of the outputs generated

by CoT is significantly higher than the FS and ZS
generated outputs, −0.067 as opposed to −0.17
and −2.472. Third, the correlation between the
likelihood and the utility when decoding with CoT
is higher: 0.11 Pearson’s correlation compared to
0.07 and 0.09 for FS and ZS, respectively.4 Re-
ferring back to the observation made in RQ1b on
Fig. 3, the value-guided MMSs studied in Sec. 5.2
address the misalignment post-hoc. However, the
hidden representations building up to that misalign-
ment are not modified, and the undesired informa-
tion will still be attended to in predicting the next
token probability distribution. In contrast, an effec-
tive prompting strategy addresses the misalignment
before it affects the hidden representations, thereby
(i) forcing the model to assign high likelihood to
high-utility regions of the output space and (ii) im-
proving the likelihood–utility alignment, making
it easier to find high-utility outputs with greedy
likelihood-based decoding algorithms.

Takeaways. Effective prompting methods put the
model in a state where the generated outputs’ like-
lihood is well-aligned with the desired utility.

6 Discussion

RQ1 reveals that decoding based solely on the like-
lihood gives poor expected utility whenever DS
or UD occurs. DS and UD make the likelihood a
poor predictor of utility. When only TI is present,
these decoding algorithms perform well because
the likelihood is a strong predictor of utility.

Then, in RQ2 and RQ3, we saw that methods
bringing in external information at decoding time
manage to effectively solve the likelihood–utility
misalignment problem. While finetuning (or re-
training) would be an obvious and apparently ideal
MMS, this is often neither possible nor necessary.
Indeed, our experiments show that if a value model
can be crafted and we can afford the extra compute
for the value model calls, then VGBS becomes a
strong decoding algorithm capable of fixing mis-
alignment problems at inference time. It is more
efficient than MCTS and performs better than BS,
even if the value model is only a poor approximator
of the utility. When crafting a useful value model
is difficult (e.g., protein function depends on the
3D structure, which cannot be easily approximated
from partial amino-acid sequences), MCTS with a
large number of simulations with roll-outs can be

4The differences are statistically significant (p < 10−3).

1462

used to “estimate” one. However, the price to pay
is a higher computational cost at inference time.
Finally, for large, generalist LMs, decoding algo-
rithms such as MCTS or VGBS are prohibitively
expensive due to the high computational cost of
each call to the LM. Prompting methods combined
with greedy or top-p decoding can be considered
as a way to leverage external information in the
form of few-shots prompts to set the model in a
state where the likelihood is better aligned with the
utility. Our experiments support this explanation of
the success of prompting large LMs. For a similar
perspective, comparing prompting methods with
training-based MMSs see He et al. (2021).

Limitations

Non-exhaustive empirical analysis. This work
studies a fundamental problem that involves a com-
plex interaction between tasks, models, and data;
and sequence-to-sequence models have been ap-
plied to a very broad set of tasks. Covering all
possible combinations is impossible, and for our
empirical analysis, we chose a subset to evaluate.
Our choice is guided by the classification of mis-
alignment sources proposed in Sec. 4.2 and aims
to cover different areas of the misalignment space.
A seemingly small difference between two choices
(e.g., a difference in the loss function used in train-
ing the model) can give rise to a considerably differ-
ent misalignment and, consequently, performance.
This is why the goal of the proposed conceptual
framework is to make a step toward enabling a
more systematic study of decoding. To further help
the community investigate the broader space of
tasks, models, and datasets through this lens, we
open-source the implementation of our analysis.

Alternative ways of fixing misalignment. Apart
from value-based decoding, other techniques could
be considered to fix the misalignment problem: (a)
Retrain or finetune the model with data that better
reflects the task’s utility. For instance, to generate
non-toxic text, one could retrain or finetune GPT2
on curated datasets that contain toxic prompts and
non-toxic sentence continuations. (b) Optimize
more directly the utility function instead of surro-
gate differentiable objectives. This could be done
via reinforcement learning (see Wang et al. (2018);
Wu et al. (2018) for BLEU).

In this work, we focused on decoding algorithms
and ways of fixing the likelihood–utility misalign-
ment problem at inference time. Future research

could further investigate the trade-offs involved
in finetuning and retraining. Is it better to invest
resources in acquiring new data that fits the task
for finetuning? Or is it better to fix DS and UD
at inference time with VGBS, MCTS or prompt
engineering? Where do the inflection points lie?

Acknowledgments

This work was conducted in the context of the
Microsoft Turing Academic Program (MS-TAP).
West’s lab is partly supported by grants from
Swiss National Science Foundation (200021_-
185043), Swiss Data Science Center (P22_08),
H2020 (952215), Microsoft Swiss Joint Research
Center, and Google, and by generous gifts from
Facebook, Google, and Microsoft.

References
Amos Bairoch and Rolf Apweiler. 2000. The SWISS-

PROT protein sequence database and its supplement
TrEMBL in 2000. Nucleic Acids Research, 28(1):45–
48.

BIG-bench collaboration. 2021. Beyond the imitation
game: Measuring and extrapolating the capabilities
of language models. In preparation.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ales Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. 2022.
PPL-MCTS: Constrained textual generation through
discriminator-guided MCTS decoding. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages

1463

https://doi.org/10.1093/nar/28.1.45
https://doi.org/10.1093/nar/28.1.45
https://doi.org/10.1093/nar/28.1.45
https://github.com/google/BIG-bench/
https://github.com/google/BIG-bench/
https://github.com/google/BIG-bench/
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.naacl-main.215
https://aclanthology.org/2022.naacl-main.215

2953–2967, Seattle, United States. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel
Artetxe, Naman Goyal, Mikhail Plekhanov, Luke
Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and
Fabio Petroni. 2022. Multilingual autoregressive en-
tity linking. Transactions of the Association for Com-
putational Linguistics, 10:274–290.

Ahmed Elnaggar, Michael Heinzinger, Christian Dal-
lago, Ghalia Rehawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin
Steinegger, Debsindhu Bhowmik, and Burkhard Rost.
2021. Prottrans: Towards cracking the language of
lifes code through self-supervised deep learning and
high performance computing. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages
1–1.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Noelia Ferruz, Steffen Schmidt, and Birte Höcker. 2022.
Protgpt2 is a deep unsupervised language model for
protein design. Nature Communications, 13.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Laura Hanu and Unitary team. 2020. Detoxify. Github.
https://github.com/unitaryai/detoxify.

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2017. Decoding with value net-
works for neural machine translation. In Advances in
Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
CoRR, abs/2110.04366.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Martin Josifoski, Nicola De Cao, Maxime Peyrard,
Fabio Petroni, and Robert West. 2022. GenIE: Gen-
erative information extraction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4626–4643,
Seattle, United States. Association for Computational
Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
67–72, Vancouver, Canada. Association for Compu-
tational Linguistics.

Wouter Kool, Herke Van Hoof, and Max Welling. 2019.
Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without
replacement. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
3499–3508. PMLR.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo-
hit Iyyer. 2022. RankGen: Improving text gener-
ation with large ranking models. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 199–232, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre,
Miruna Pislar, Lespiau Jean-Baptiste, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals.
2021. Machine translation decoding beyond beam
search. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8410–8434, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

1464

https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.1162/tacl_a_00460
https://doi.org/10.1162/tacl_a_00460
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://proceedings.neurips.cc/paper/2017/file/2b24d495052a8ce66358eb576b8912c8-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2b24d495052a8ce66358eb576b8912c8-Paper.pdf
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://aclanthology.org/2022.naacl-main.342
https://aclanthology.org/2022.naacl-main.342
https://aclanthology.org/P17-4012
https://aclanthology.org/P17-4012
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://aclanthology.org/2022.emnlp-main.15
https://aclanthology.org/2022.emnlp-main.15
https://doi.org/10.18653/v1/2021.emnlp-main.662
https://doi.org/10.18653/v1/2021.emnlp-main.662

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022. NeuroLogic a*esque decoding:
Constrained text generation with lookahead heuris-
tics. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 780–799, Seattle, United States. Associa-
tion for Computational Linguistics.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If
beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2173–2185, Online. Association for Computa-
tional Linguistics.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2023. Locally Typical Sampling. Transac-
tions of the Association for Computational Linguis-
tics, 11:102–121.

Clara Meister, Gian Wiher, Tiago Pimentel, and Ryan
Cotterell. 2022. On the probability-quality paradox
in language generation. CoRR, abs/2203.17217.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
CoRR, abs/2009.03393.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and
Li-Jia Li. 2017. Deep reinforcement learning-based
image captioning with embedding reward. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 1151–1159. IEEE Computer So-
ciety.

Ananya B. Sai, Akash Kumar Mohankumar, and
Mitesh M. Khapra. 2022. A survey of evaluation
metrics used for nlg systems. 55(2).

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. In Advances
in Neural Information Processing Systems.

Ilya Sutskever, James Martens, and Geoffrey E. Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Wash-
ington, USA, June 28 - July 2, 2011, pages 1017–
1024. Omnipress.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104–3112.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3450–3466, Online. Association for Computa-
tional Linguistics.

William Yang Wang, Jiwei Li, and Xiaodong He. 2018.
Deep reinforcement learning for NLP. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics: Tutorial Abstracts,
pages 19–21, Melbourne, Australia. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Gian Wiher, Clara Meister, and Ryan Cotterell. 2022.
On decoding strategies for neural text generators.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3612–3621, Brussels,
Belgium. Association for Computational Linguistics.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and
Arvind Neelakantan. 2021. Trading off diversity and
quality in natural language generation. In Proceed-
ings of the Workshop on Human Evaluation of NLP
Systems (HumEval), pages 25–33, Online. Associa-
tion for Computational Linguistics.

1465

https://aclanthology.org/2022.naacl-main.57
https://aclanthology.org/2022.naacl-main.57
https://aclanthology.org/2022.naacl-main.57
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.1162/tacl_a_00536
https://doi.org/10.48550/arXiv.2203.17217
https://doi.org/10.48550/arXiv.2203.17217
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2009.03393
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1109/CVPR.2017.128
https://doi.org/10.1109/CVPR.2017.128
https://doi.org/10.1145/3485766
https://doi.org/10.1145/3485766
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://openreview.net/forum?id=V88BafmH9Pj
https://openreview.net/forum?id=V88BafmH9Pj
https://icml.cc/2011/papers/524_icmlpaper.pdf
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/P18-5007
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.48550/ARXIV.2203.15721
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://aclanthology.org/2021.humeval-1.3
https://aclanthology.org/2021.humeval-1.3

Daniel Zügner, Tobias Kirschstein, Michele Catasta,
Jure Leskovec, and Stephan Günnemann. 2021.
Language-agnostic representation learning of source
code from structure and context. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

1466

https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

A Proposed MMS Taxonomy

This section describes some of the most prominent
members in each class of the proposed taxonomy.

A.1 Greedy Likelihood-Based Strategy

Deterministic

Greedy Search (GS). The simplest among the de-
coding algorithms, at each step t, GS selects the
token with the highest likelihood under the model.

Beam Search (BS). An extension of GS, BS, main-
tains not one, but k ∈ N+ partially-decoded se-
quences, called beams, in parallel. At each step
t, BS: (i) pre-selects the most likely k tokens for
each beam; (ii) from the resulting k× k nodes, the
algorithm selects the k with the highest likelihood
and drops the rest.

Stochastic
An alternative that increases the diversity of output
sequences is to sample the tokens at each step from
the likelihood distribution ŷt ∼ p(yt |ŷ<t ,x). Instead
of sampling from the full distribution, these decod-
ing algorithms typically focus greedily on the to-
kens corresponding to the high-probability regions.

Top-k Sampling. Top-k samples the next tokens
from a truncated distribution where only the k most
probable tokens are considered (Fan et al., 2018).

Top-p Sampling. Top-p samples the next tokens
from a truncated distribution where only the small-
est set of tokens with a probability mass bigger
than (or equal to) p is considered (Holtzman et al.,
2020).

Stochastic Beams (SB). SB samples completed
outputs without replacements according to the
LM’s likelihood. The implementation relies on
applying BS on likelihood scores perturbated with
Gumbel noise (Kool et al., 2019).

A.2 Greedy Likelihood-Based Strategy with
Pruning

Ad-Hoc Heuristics. Currently, most tasks utilize
some ad-hoc heuristics. For instance, in MT, it
is often necessary to discourage empty (or short)
sequences by enforcing a minimal sequence length
(Stahlberg and Byrne, 2019). Similarly, state-of-
the-art language generation models often get stuck
in repetitive loops. Therefore, an n-gram repetition
penalty is now part of the standard toolkit (Klein
et al., 2017).

Constrained Beam Search (CBS). The idea of
constraining the likelihood during decoding can
be extended to include task-specific knowledge.
For example, in information extraction tasks, the
BS decoding strategy has been constrained to only
extract outputs satisfying the predefined schema
(Scholak et al., 2021; De Cao et al., 2022; Josifoski
et al., 2022). Then, BS only searches high-scoring
outputs among the smaller subset of valid ones.

NeuroLogic. The NeuroLogic strategy enforces
the satisfaction of given lexical constraints by con-
trolling the decoding stage of sequence generation
(Lu et al., 2022). While BS aims to maximize the
likelihood of the generated sequence, NeuroLogic
searches for optimal output sequences among the
strings that also satisfy the given constraints. Hard
logic constraints are converted into a soft penalty
term in the decoding objective, and beam-based
search is used to find approximately optimal solu-
tions.

A.3 Greedy Likelihood- and Value–Based
Strategy

Value-Guided Beam Search (VGBS). It is the
most intuitive example of a greedy decoding algo-
rithm that leverages a value model (He et al., 2017;
Ren et al., 2017). It uses a greedy strategy simi-
lar to BS but selects the next token using a linear
combination of the LM’s likelihood and the scores
from the value model.

More specifically, instead of expanding each
beam by the m highest-scored tokens according
to the likelihood, the algorithm chooses the top m
tokens according to the following scoring function:

sy<i,x(yi) =
α
i

log(p(y<iyi|x))+(1−α)v(y<iyi,x),

where the factor α weights the contribution of the
the value model, y<i denotes the partially decoded
sequence, and yi corresponds to the next token un-
der consideration.

A.4 Simulation-Based Strategy

Monte-Carlo Tree Search (MCTS). MCTS is the
canonical example of simulation-based tree explo-
ration informed by value. In our setup, it differs
from all other decoding algorithms because, at step
i, it may explore sequences of length greater than
i. It is not tied to committing to local decisions
without exploring the tree. In each step, MCTS

1467

has a fixed computational budget that it uses to ex-
plore multiple paths before choosing the next token.
For more details, we refer to Chaffin et al. (2022),
whose implementation we adapt for this work.

A.5 Prompting-Based Strategy

Few-Shot (FS). At inference time, instead of only
passing the input x, a context comprised of k ex-
amples (xi,yi)

k
i=1 is added as a prefix. The main

idea is that the model will build on its semantic
understanding of the relation between xi and yi and
make the “guided” likelihood better aligned with
the utility (Brown et al., 2020).

Chain-of-Thought (CoT). The CoT decoding
method (Wei et al., 2022) is a conceptual exten-
sion of FS which presents the examples’ targets as
a sequence of steps that lead to the solution. This
format is particularly helpful for tasks that require
multi-step reasoning, with which transformers gen-
erally struggle.

B Experimental Setup

This section provides additional details about the
experimental setup.

B.1 Details about Data, Models, and Utility
Functions

In Table 1, we present a summary of the tasks,
utility functions, misalignment types, model, and
dataset. We now give a brief description of each
task:

Closed Information Extraction (cIE) with the
REBEL dataset (Huguet Cabot and Navigli, 2021)
and GenIE model (Josifoski et al., 2022) (an in-
stance of BART finetuned to extract the exhaustive
set of triples in a sentence following the Wikidata
schema). The utility is the F1 score between the
generated and the target set of triples.

Machine Translation (MT) with the WMT14
dataset (Bojar et al., 2014) and a pretrained
mBART50 model (Tang et al., 2021) to translate
English to French. The notion of utility is the match
between the generated and the target translation, as
measured by BLEU-4.

Non-Toxic Text Generation based on the Real
Toxicity Prompt (RTP) dataset (Gehman et al.,
2020) for prompting a GPT2 model. The notion
of utility is whether the generated output contains
toxic language or not. The utility function is an
ALBERT model (Hanu and Unitary team, 2020)

LM calls Value calls

Greedy Search N –
Beam Search N × B –

Stochastic Beams N × B –
VGBS N × B N × B × K
MCTS N × S N × S

Table 2: Coarse complexity analysis of the decoding
algorithms used, in terms of LM calls and Value calls.
N is the number of tokens to be generated, B the number
of beams, K the number of next tokens considered by
the value model per beam in VGBS, S the number of
simulations per generated token in MCTS. In all our
experiments, B=5, K=20, S=50.

trained on the Jigsaw dataset with an unintended
bias to measure the toxicity of a text.

Non-Soluble Protein Generation: We use the
SwissProt-EF dataset (Bairoch and Apweiler,
2000) for prompting a ProtoGPT2 model (Ferruz
et al., 2022), which is pretrained on sequences of
amino acids from protein prompts. The notion of
utility is whether the generated protein is soluble
or not. To measure non-solubility, we use Prot-
BERT (Elnaggar et al., 2021), which is a BERT-
based model trained on a large corpus of protein
sequences in a self-supervised fashion. Finally,

Sports Understanding with the Sports Under-
standing (SU) task, part of the BIG-bench effort
(BIG-bench collaboration, 2021), with a 530B pa-
rameter pre-trained language model: MT-NLG
(Smith et al., 2022). The primary purpose of this
task is to test the general understanding of sports by
asking the model to discriminate between plausible
and implausible statements relating to sports.

B.2 Hyperparameters of Decoding
Algorithms

The number of beams for BS, SB, VGBS is fixed
to 5 for all tasks, except for cIE where it is 10 —
the model’s default; and the number of simulations
in MCTS is fixed to 50. Due to the high computa-
tional cost, to decide the optimal value for MCTS’s
cpuct and VGBS’s α in RQ3, we run a hyperpa-
rameter search for each level of noise over a small
sample of 80 data points (see Appendix C.3 for the
ranges of the search). For both of the prompting-
based strategies, we use greedy decoding during
inference.

1468

G
re

ed
y

Se
ar

ch

4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (F

1)
0

10000

0 2500

0 2000 4000
Count

2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y
(B

LE
U)

0

1000

0 500

0 200 400
Count

4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (1

To
xi

ci
ty

)

0
2500

0 1000

0 500 1000
Count

6 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (1

S
ol

ub
ili

ty
)

0

2500

0 5000

0 2000
Count

B
ea

m
Se

ar
ch

4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (F

1)

0

10000

0 2500 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0
U

til
ity

 (B
LE

U
)

0

1000

0 500 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (1

To
xi

ci
ty

)

0

2500

0 1000 6 4 2 0
0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (1

S
ol

ub
ili

ty
)

0

2500

0 5000

St
oc

ha
st

ic
B

ea
m

s

4 2 0
log p(y)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (F

1)

0

10000

0 2500

(a) cIE (REBEL)

4 2 0
log p(y)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (B

LE
U

)

0

250

0 500

(b) MT (WMT14)

4 2 0
log p(y)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (1

To
xi

ci
ty

)

0

2000

0 1000

(c) NTTG (RTP)

6 4 2 0
log p(y)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity
 (1

S
ol

ub
ili

ty
)

0

1000

0 5000

(d) NSPG (SwissProt)

Figure 6: RQ1 (post-decoding alignment) – without target normalization: A version of Fig. 2 without the target
answer log-likelihood normalization.

ID Input Prediction

1 Is the following sentence plausible? Leon Draisaitl grounded out to second base in the National League Championship Series. A: i’m pretty sure that’s not really a grammatical sentence, although one might...
2 Is the following sentence plausible? John Collins threw a touchdown in the NFC divisional round. A: the nor gates give you (not(a)) and (not(b))
3 Is the following sentence plausible? Jack Eichel dunked the ball. A: hmm? well, i’m not really sure. let me look it up in

Table 3: Examples of outputs that are not providing an answer. The first and the second row provide an example
where the model produces unrelated text, while the third row is an example of an indefinite answer.

B.3 Complexity Analysis of Decoding
Algorithms

Most of the compute during decoding is allocated
on querying the LM or the value model. Therefore,
to show how decoding strategies compare in terms
of the computation cost, in Table 2 we provide a
coarse complexity analysis in terms of the LM and
value model calls.

C Experiments and Results

C.1 RQ1: The Likelihood–Utility
Relationship

Fig. 6 is an alternative version Fig. 2 where the
x-axis (for cIE and MT) is not normalized using
the log-likelihood of the target answers.

C.2 RQ3: Prompting as an MMS

Extracting Labels from Zero-Shot Predictions

The outputs produced with zero-shot prompting do
not follow a particular structure that can be used
to extract the answer and therefore need to be pro-
cessed manually. In some cases, it was not possi-
ble for an answer to be extracted. The two most
common reasons for this were unrelated text as an
answer or an indefinite answer. We provide exam-
ples of such predictions in Table 3. Overall, 24.9%
of the answers could not be parsed. In such cases,
we favored putting an indefinite label instead of
"yes" or "no", and counting the answer as wrong
irrespective of the ground truth label. If the answer
and explanation were unrelated, but an answer was
given, we did consider the answer.

1469

Number of Beams Time (in GPU hours)

cIE + Greedy 1 1.5
cIE + BS 10 10.5
cIE + SB 10 10.5

MT + Greedy 1 0.5
MT + BS 5 1.0
MT + SB 5 1.5

NTTG + Greedy 1 2.0
NTTG + BS 5 3.5
NTTG + SB 5 4.5

NSPG + Greedy 1 3.5
NSPG + BS 5 5.5
NSPG + SB 5 7.0

Table 4: Parameters for the greedy likelihood-based
decoding algorithms. The default parameters for each
model were used, and no hyperparameter search was
conducted.

C.3 Computational Infrastructure and
Runtime

The evaluation for RQ1 as well as the hyperparam-
eter search for RQ2 were conducted on a single ma-
chine with 24 Intel(R) Xeon(R) CPU E5-2690 v4
@ 2.60GHz processor cores and 441 GB of RAM,
equipped with 4 NVIDIA V100-PCIE-16GB GPUs.
Table 4 provides the details for RQ1.

For VGBS, we performed a small hyperpa-
rameter search over different values for α =
0.01,0.25,0.5,0.75,0.99 on 80 datapoints for each
noise value of the value model. The same pro-
cedure was conducted for MCTS, over cpuct =
0.25,1.25,3. Each of these runs took 20 to 30 min-
utes of wall time, that is, slightly over 1 to 2 hours
of GPU time. Table 5 and Table 6 provide the final
parameters for VGBS and MCTS respectively.

The evaluation for RQ2 and RQ3, as well as the
hyperparameter search for RQ2, were conducted
on a single machine with 96 processor cores and
840 GB of RAM, equipped with 8 NVIDIA A100-
SXM4-80GB GPUs. Table 5 and Table 6 provide
the details for RQ2.

The evaluation for RQ3 was performed follow-
ing the Sports Understanding setup in Wei et al.
(2022), by taking the same in-context examples.
We used greedy decoding for all of the prompt-
ing methods. The running time for all prompting
experiments (ZS, FS, and CoT) was 6 GPU hours.

α Time (in GPU hours)

MT (λ = 0.99) 0.01 4
MT (λ = 0.5) 0.01 4
MT (λ = 0.35) 0.25 4
MT (λ = 0.25) 0.25 4
MT (λ = 0.15) 0.25 4
MT (λ = 0.01) 0.75 4

NTTG (oracle) 0.25 32
NTTG (1200 steps) 0.25 30
NTTG (400 steps) 0.25 30
NTTG (200 steps) 0.25 29

Table 5: Parameters for VGBS. For all the experi-
ments, the value models consider the top-10 tokens ac-
cording to the likelihood. The BLEU to the true target
is weighted by λ (i.e., high λ translates to high-quality
value model).

cpuct Time (in GPU hours)

MT (λ = 0.99) 1.25 41
MT (λ = 0.5) 0.5 41
MT (λ = 0.35) 0.5 40.5
MT (λ = 0.25) 0.25 40
MT (λ = 0.15) 0.25 40
MT (λ = 0.01) 1.25 40

NTTG (oracle) 1 125
NTTG (1200 steps) 1 96
NTTG (400 steps) 1 100
NTTG (200 steps) 1 98

Table 6: Parameters for MCTS. For all the experi-
ments, at each node, we consider the top-20 tokens
according to the likelihood and perform 50 simulations.
The BLEU to the true target is weighted by λ (i.e., high
λ translates to high-quality value model).

1470

