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Abstract

Clinical machine learning algorithms have
shown promising results and could potentially
be implemented in clinical practice to provide
diagnosis support and improve patient treat-
ment. Barriers for realisation of the algorithms’
full potential include bias which is systematic
and unfair discrimination against certain indi-
viduals in favor of others.

The objective of this work is to measure
anatomical bias in clinical text algorithms. We
define anatomical bias as unfair algorithmic out-
comes against patients with medical conditions
in specific anatomical locations. We measure
the degree of anatomical bias across two ma-
chine learning models and two Danish clinical
text classification tasks, and find that clinical
text algorithms are highly prone to anatomical
bias. We argue that datasets for creating clini-
cal text algorithms should be curated carefully
to isolate the effect of anatomical location in
order to avoid bias against patient subgroups.

1 Introduction

Research in clinical machine learning algo-
rithms have shown promising results for automat-
ing clinical tasks. The algorithms could potentially
be implemented in clinical practice to provide diag-
nosis support, improve patient treatment and pro-
vide time-savings for medical doctors (Topol, 2019;
Matheny et al., 2020).

However, despite appealing research results,
there are currently limited examples of algorithms
being successfully deployed into clinical practice
(Kelly et al., 2019). Barriers for realisation of the
algorithms’ full potential include bias and generali-
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sation issues (Char et al., 2018; Hovy and Prabhu-
moye, 2021; Carrell et al., 2017).

Algorithmic bias can be defined as systematic
and unfair discrimination against certain individu-
als or groups of individuals in favor of others (Fried-
man and Nissenbaum, 1996). Previous studies have
raised serious concerns of algorithms that contain
age, gender and racial bias (Sun et al., 2019; David-
son et al., 2019) — even for algorithms that have
been taken into use (Obermeyer et al., 2019). Al-
though machine learning algorithms are trained to
be able to generalise to previously unseen data, they
tend to overfit to the data they have been trained on.
As a consequence of this, bias can unintendedly
arise if some subgroups of the target population
are not represented in the data used to train the
algorithm. Moreover, if the training data itself in-
clude biases against some populations, e.g. data
reflecting a negative attitude against people with
disabilities (Hutchinson et al., 2020), these biases
might be encoded and reinforced.

If biased algorithms are adopted, healthcare sys-
tems risk doing injustice to certain patient groups
and harming patient safety (Obermeyer et al., 2019).
Therefore, identifying and mitigating bias is impor-
tant for successful implementation of novel clinical
machine learning algorithms.

This paper investigates anatomical bias in clin-
ical machine learning algorithms developed to
classify and extract specific medical conditions
from the narrative text of electronic health records
(EHR). We define anatomical bias as unfair algo-
rithmic outcomes against a subgroup of patients
with the same medical condition, where the al-
gorithm performs differently depending on the
anatomical location of the condition. If the per-
formance of clinical algorithms varies depending
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on the anatomical location, it is reflected in some
patient subgroups receiving worse treatment than
others.

We hypothesised that careful dataset curation is
needed to measure and mitigate anatomical bias be-
cause the text description of medical conditions in
EHRs varies depending on the location, e.g. ‘epis-
taxis’ is a location-specific word describing nose
bleedings.

Specifically, this paper investigates anatomi-
cal bias for classification of bleeding and venous
thromboembolism (VTE) mentions in the narra-
tive text of Danish EHRs. Automatic extraction
of these conditions could be valuable for medical
doctors in clinical practice, e.g. to guide diagnostic
decision making and treatment options (Decousus
et al., 2011). Previous papers (Hinz et al., 2013;
Lee et al., 2017; Taggart et al., 2018; Li et al., 2019;
Mitra et al., 2020, 2021; Elkin et al., 2021; Ped-
ersen et al., 2021; Shi et al., 2021; Verma et al.,
2022) have shown promising results for automatic
extraction of these medical conditions but they did
not investigate the performance of the algorithms
across anatomical subgroups.

Our main contributions are:

• We find that clinical text algorithms are highly
prone to anatomical bias.

• The performance of state-of-the-art algo-
rithms developed to extract specific medical
conditions varies significantly across anatom-
ical locations with performance drops up to
89.1 percentage points (PP).

• We argue that datasets for creating clinical
text algorithms should be curated carefully
to isolate the effect of anatomical location in
order to avoid bias against patient subgroups.

2 Methods

To investigate if machine learning algorithms are
prone to anatomical bias, we performed two ex-
periments. We (1) investigated the performance
of a binary classifier on different anatomical sub-
groups of a medical condition when that subgroup
was left out of the training set, and (2) measured
how the performance on an anatomical subgroup
varied depending on the amount of samples from
that subgroup included in the training set.

Table 1: Distribution of the training, validation, and test
samples for the balanced bleeding detection dataset.

Label Location Train Validation Test

Positive for bleeding

Gastrointestinal 750 250 250
Urogenital 750 250 250
Internal 750 250 250
Otorhinolaryngeal 750 250 250
Dermatological 750 250 250
Gynecological 750 250 250
Cerebral 750 250 250
Ophthalmological 750 250 250

Negative for bleeding 6,000 2,000 2,000
Sum 12,000 4,000 4,000

Table 2: Distribution of the training, validation, and test
samples for the balanced VTE detection dataset.

Label Location Train Validation Test

Positive for VTE

Lower extremity 1,600 200 200
Lung 1,600 200 200
Liver 0 0 239
Cerebral 0 0 218
Upper extremity 0 0 176

Negative for VTE 3,200 400 1,033
Sum 6,400 800 2,066

2.1 Datasets

We used the binary bleeding classification dataset
from Pedersen et al. (2022) and present a new
binary VTE classification dataset. The bleeding
dataset consists of 20,000 sentences from Danish
EHRs labeled as either positive or negative for
bleeding mentions. The VTE classification dataset
consists of 9,266 sentences from Danish EHRs la-
beled as either positive or negative for VTE men-
tions. Both datasets were constructed from Danish
EHRs from Odense University Hospital and were
labeled with a consensus label from three medical
doctors.

In addition to the main labels of each dataset
(positive and negative for bleeding or VTE), we
created a subgroup label for the positive samples
describing the anatomical location of either the
bleeding or VTE mention. Samples that did not
describe the anatomical location or described mul-
tiple locations were omitted.

For the bleeding dataset, we used the following
eight anatomical locations: gastrointestinal, uro-
genital, internal, otorhinolaryngeal, dermatological,
gynecological, cerebral, and ophthalmological.

For the VTE dataset, we used the following five
anatomical locations: lower extremity, lung, liver,
cerebral, and upper extremity.

The locations included for each medical condi-
tion were selected by two medical doctors.

For each dataset, we created a balanced training,
validation, and test set containing an equal amount
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of positive and negative samples. Moreover, for
the bleeding dataset, the positive samples of the
training, validation, and test sets were distributed
equally between anatomical locations. For the VTE
dataset, only samples from the lower extremity and
lung locations were distributed equally between the
train, validation, and test sets. The liver, cerebral,
and upper extremity locations were only used for
the test set because of a limited number of samples.

All samples were preprocessed by removing spe-
cial characters, superfluous spaces, and duplicate
samples. After preprocessing the samples, the
bleeding and VTE datasets had an average token
length of 13.3 and 13.6, respectively. The dataset
distributions can be seen in Table 1 and Table 2.

2.2 Training set distributions
To measure performance differences for specific
anatomical locations, we systematically removed
all samples from a specific location, x, from the
training set, creating the training set T ̸⊂x, trained
a deep learning model on T ̸⊂x, and evaluated it
on the test set. For example, for the bleeding
dataset, we created 8 different training sets, one
for each anatomical location being removed, con-
taining 10,500 samples.

For comparison, we created a balanced training
set, T , which included the same amount of sam-
ples as T ̸⊂x, distributed equally between the posi-
tive and negative classes, and between anatomical
locations.

2.3 Deep learning models
The deep learning models were a transformer-based
ELECTRA model (Clark et al., 2020) and a Long
Short-Term Memory (LSTM) model (Hochreiter
and Schmidhuber, 1997).

The ELECTRA model was a Danish clinical
ELECTRA (Clin-ELECTRA) (Pedersen et al.,
2022) pretrained on the narrative text from 299,718
EHRs from Odense University Hospital. The
model had ∼13M parameters and consisted of 12
transformer layers with 4 attention heads. We ini-
tialised Clin-ELECTRA from its pretrained check-
point and followed the HuggingFace (Wolf et al.,
2019) implementations for binary text classifica-
tion.

The LSTM model had ∼4M parameters and con-
sisted of a bidirectional LSTM layer with a hidden
layer size of 512. The last hidden state of the LSTM
was followed by a dropout layer with probability
0.2, a dense layer of size 256, a ReLU activation

function, a dropout layer of probability 0.2, and a
dense classification layer. For word representation,
the LSTM model used 300-dimensional FastText
(Bojanowski et al., 2017) word embeddings pre-
trained on Danish EHRs consisting of 1.4B tokens.

2.4 Model evaluation
For each of the ELECTRA and LSTM deep learn-
ing models and training sets T and T̸⊂x, we:

1. Trained the deep learning model with five
different learning rates and random initiali-
sations.

2. Computed the test set accuracy of the best
performing model based on the loss on the
validation set.

3. Repeated step 1 and 2 five times.

We used the five accuracies to perform bootstrap-
ping with 9,999 replicates and calculated mean ac-
curacy, standard error (SE), and 95% confidence in-
terval (CI) for T and T̸⊂x. Moreover, we computed
the bootstrapped difference of means between T
and T̸⊂x to evaluate statistically significant differ-
ences in performance.

For both deep learning models, we used the
Adam optimizer (Kingma and Ba, 2015) and
searched for the best model using learning rates 7e-
5, 8e-5, 9e-5, and 1e-4. Clin-ELECTRA was fine-
tuned for a maximum of 10 epochs and the LSTM
for a maximum of 30 epochs. One epoch was
trained in <1 and ∼5 seconds for the LSTM and
ELECTRA model, respectively, using an NVIDIA
v100 GPU.

We measured anatomical bias as the difference
in sensitivity on a specific location, x, between two
deep learning models trained on T and T̸⊂x.

3 Results

3.1 Bleeding classification
Table 3 shows the binary accuracy of the bleeding
classifiers on the test set for each of the training
sets T and T ̸⊂x. Appendix A shows additional
metrics. With the exception of T̸⊂Otorhinolaryngeal

for the ELECTRA model, all training sets with an
anatomical location removed resulted in models
with significantly worse performance than when
trained on T .

The decreases in accuracy were caused by a sig-
nificant drop in sensitivity for the anatomical loca-
tions which had been removed from the training
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Figure 1: Sensitivity of models trained on T ̸⊂x and T for each anatomical location, x.

Table 3: Accuracy (%), standard error (SE), and 95%
confidence interval (CI) for the bleeding classification
dataset. T ̸⊂x denotes the training set from which an
anatomical location, x, has been removed. * denotes a
significant difference at the 0.05 level between models
trained on T and T ̸⊂x.

ELECTRA LSTM
Accuracy±SE CI Accuracy±SE CI

T 95.6 ± 0.1 95.4 - 95.8 90.6 ± 0.1 90.4 - 90.7
T ̸⊂Gastrointestinal 94.4 ± 0.2* 94.0 - 94.7 88.8 ± 0.1* 88.6 - 88.9
T ̸⊂Urogenital 93.9 ± 0.1* 93.7 - 94.2 88.5 ± 0.1* 88.3 - 88.6
T ̸⊂Internal 95.0 ± 0.1* 94.8 - 95.2 88.8 ± 0.1* 88.5 - 89.0
T ̸⊂Otorhinolaryngeal 95.6 ± 0.1 95.4 - 95.8 90.0 ± 0.2* 89.8 - 90.4
T ̸⊂Dermatological 94.3 ± 0.1* 94.0 - 94.5 88.2 ± 0.1* 88.1 - 88.3
T ̸⊂Gynecological 93.8 ± 0.1* 93.6 - 94.0 89.1 ± 0.1* 88.9 - 89.4
T ̸⊂Cerebral 94.6 ± 0.2* 94.3 - 94.9 89.0 ± 0.1 * 88.8 - 89.2
T ̸⊂Ophthalmological 95.3 ± 0.1* 95.1 - 95.4 88.2 ± 0.2 * 87.8 - 88.5

data. Figure 1 shows the test set sensitivity for each
anatomical location, x, for each training set T and
T ̸⊂x. The sensitivity for all anatomical locations
was significantly worse when not present in the
training set with performance drops up to 28.8 PP
for ELECTRA and 36.3 PP for the LSTM model.
On average, the sensitivity on the anatomies de-
creased with 17.8 PP (standard deviation ± 8.8 PP)
for ELECTRA and 24.5 PP (standard deviation ±
9.4 PP) for the LSTM model.

Moreover, it is seen that even though models
trained on T ̸⊂x achieved high accuracies on the test
set overall, the sensitivity on the anatomical loca-
tion not present in the training set was low. E.g., for
ELECTRA, T ̸⊂Gynecological had a 93.8% accuracy
on the test set, but the sensitivity for gynecological
bleedings was only 64.8%. Appendix A shows the
sensitivity, SE, and the differences of means for all
anatomical locations and training sets.

Figure 2 shows the sensitivity on each anatom-
ical location by the percentage of total subgroup
samples in the training set. It is seen that the accu-
racy increased as more samples were present in the
training set. For the LSTM model, the sensitivity
on gastrointestinal, urogenital, cerebral, and oph-
thalmological bleedings was significantly worse -
even when 80% of samples were present in the

Table 4: Accuracy (%), standard error (SE), and 95%
confidence interval (CI) for the VTE classification
dataset. T ̸⊂x denotes the training set from which an
anatomical location, x, has been removed. * denotes a
significant difference at the 0.05 level between models
trained on T and T ̸⊂x.

ELECTRA LSTM
Accuracy±SE CI Accuracy±SE CI

T 84.8 ± 0.3 84.2 - 85.4 75.9 ± 0.3 75.4 - 76.4
T̸⊂Lower extremity 67.6 ± 0.6* 66.5 - 68.7 71.6 ± 0.4* 70.8 - 72.6
T̸⊂Lung 74.0 ± 1.1* 71.9 - 76.1 69.9 ± 0.1* 69.7 - 70.2

training set. For ELECTRA, the sensitivity on
urogenital and internal bleedings was significantly
worse when 80% of samples were present in the
training set. Appendix A shows the accuracies and
differences of means.

3.2 Venous thromboembolism classification

Table 4 shows the binary accuracy of the VTE clas-
sifiers on the test set for each of the training sets
T and T̸⊂x. Appendix B shows additional metrics.
Models trained on T̸⊂Lower extremity and T ̸⊂Lung

performed significantly worse than those trained
on T .

Similar to the bleeding classifier results, the de-
crease in the overall accuracy was caused by a
significant drop in sensitivity on the anatomical
locations which had been removed from the train-
ing data. Figure 3 shows the sensitivity for each
anatomical location, x, for each training set T and
T̸⊂x. The sensitivity on liver, cerebral, and lower
extremity VTEs is only reported when not being
present in the training set because of limited sam-
ples.

The sensitivity on lower extremity and lung
VTEs was significantly worse when not present in
the training set, e.g. the performance for the ELEC-
TRA classifier decreased by 89.1 PP for lower ex-
tremity VTEs and 81.0 PP for lung VTEs. Ap-
pendix B shows the sensitivity, SE, and the differ-
ences of means for all anatomical locations and
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Figure 2: Test set sensitivity on the anatomical locations when removing a fraction of samples from that anatomy
from the training set.

0

10

20

30

40

50

60

70

80

90

100

Lower
extrimity

Lung Liver Cerebral Upper
extrimity

Se
n

si
ti

vi
ty

, %

ELECTRA 𝒯

ELECTRA 𝒯⊄𝑥

LSTM 𝒯

LSTM 𝒯⊄𝑥

Figure 3: Sensitivity of models trained on T ̸⊂x and T
for each anatomical location, x. The sensitivity on liver,
cerebral, and lower extremity VTEs is only reported
when not being present in the training set because of
limited samples.

training sets.

Figure 4 shows the sensitivity for lower extrem-
ity and lung VTEs by the percentage of total sub-
group samples in the training set. Both locations
performed significantly worse when 15% and 30%
of samples from that location were present in the
training set for the ELECTRA and LSTM classifier,
respectively. Appendix B shows the accuracies and
differences of means.

4 Analysis of word distributions

Medical conditions are often described using dif-
ferent words depending on the anatomical location
for which the condition occurs. Table 5 shows the
top-3 most frequent words used to describe VTE
events for each anatomical location. The column
Location uniqueness shows the fraction of times a
word appears in samples from a specific anatomical

Table 5: Most frequent words used to describe VTE
events for each anatomical location of the VTE classi-
fication dataset. Words are translated from Danish to
English and, therefore, some cells include two words.
PE = pulmonary embolism.

Word Frequency Location uniqueness
Location: Lower extremity

dvt 1384 0.92
thrombus 135 0.70
blood clot 108 0.47

Location: Lung
pulmonary embolism 1058 0.98
le (PE) 483 0.99
pulmonary embolisms 242 0.99

Location: Liver
porta thrombosis 71 1.00
thrombosis 70 0.36
thrombus 22 0.11

Location: Cerebral
infarct 93 0.97
sinus thrombosis 32 0.97
blood clot 26 0.11

Location: Upper extremity
dvt 99 0.07
thrombus 28 0.14
thrombosis 14 0.07

location compared to the complete dataset:

Location uniqueness =
fx
fD

(1)

where fx is the frequency of the word in samples
from anatomical location x and fD is the total fre-
quency of the word in the dataset, i.e. a value of
1 means that the word is unique for an anatomical
location.

The top-3 words for upper extremity had a low
uniqueness score (<0.15). This indicates that the
vocabulary used to describe VTEs in the upper ex-
tremity was also used for other locations — e.g.
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Figure 4: Test set sensitivity on the anatomical locations when removing a fraction of samples from that anatomy
from the training set.

‘dvt’ (deep vein thrombosis) was the most frequent
word but the uniqueness score was only 0.07. This
might explain why the sensitivity for upper extrem-
ity was relatively high, as seen in Figure 3, even
when samples from that location were not present
in the training set. On the contrary, some of the
frequent words from the lower extremity, lung, and
cerebral locations were close to unique which could
explain why the sensitivity of those locations were
low. Appendix C shows word frequency and lo-
cation uniqueness for the bleeding classification
dataset which shows similar results.

5 Discussion

This paper has presented evidence that clinical nat-
ural language processing (NLP) classification algo-
rithms are prone to anatomical bias, which is unfair
algorithmic outcomes against patients with medi-
cal conditions in specific anatomical locations. We
found that the performance of algorithms for both
bleeding and VTE classification can vary signifi-
cantly depending on the anatomical location with
differences up to 36.3 PP and 89.1 PP, respectively.

Moreover, we found that small fluctuations in the
training set distribution of anatomical locations can
lead to significant performance drops for the under-
represented anatomical locations. For the datasets
presented in this study, we showed that the words
used to describe medical conditions vary depend-
ing on the anatomical location. If classifiers do
not learn to properly represent the full vocabulary
for describing a medical condition, its performance
will decrease for some anatomical locations.

We argue that datasets for clinical NLP algo-

rithms should be created to be able to carefully
measure anatomical bias, e.g. by subdividing each
sample into an anatomical location. This is essen-
tial to avoid implementing clinical algorithms that
might discriminate against specific subgroups of
patients. For example, one of the developed VTE
classifiers in this study performed with sensitivities
of >96% for VTEs in the lungs and lower extrem-
ity while it performed with a sensitivity of only
11.5% for cerebral VTEs. Applying such a model
in clinical practice or research would provide unfair
algorithmic outcomes against patients with cerebral
VTEs. We also showed that an algorithm not ex-
posed to gynecological bleedings would perform
worse on this anatomical location. This would
lead to unfair algorithmic outcomes against woman
with gynecological bleedings. Similarly, because
alcoholics have an increased prevalence of gastroin-
testinal bleedings (Singal et al., 2018), this group
of people would have a higher risk of unfair al-
gorithmic outcomes if the algorithm has not been
trained on such bleeding locations.

To the best of our knowledge, anatomical bias
has not been investigated in previous research.
However, some studies tried to automatically cre-
ate datasets distributed between different patient
groups by extracting data based on International
Classification of Diseases 10 (ICD) codes — e.g.
Pedersen et al. (2021) extract data based on dif-
ferent bleeding disorders. While this approach
could, to some degree, mitigate the problem, stud-
ies (Valkhoff et al., 2014; Øie et al., 2018) found
that ICD codes have low accuracy and, therefore,
this does not ensure an evenly distributed dataset.
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Moreover, in order to isolate and measure the per-
formance on different anatomical locations, the
dataset should be constructed with a known distri-
bution of these anatomies.

Our work is closely related to the field of domain
adaption. For example, MacAvaney et al. (2017)
find that an algorithm trained to extract temporal
information from a specific patient population per-
forms worse on another related patient population.
Their results highlight that it is a challenging task to
develop algorithms that can generalise well across
domains. The main difference between our study
and theirs is that the algorithms described in this pa-
per are not developed to work on different domains.
Rather, the algorithms are specifically developed to
work on a specialised domain in the clinical field,
e.g. bleeding detection. As our results have shown,
the algorithms perform worse on some subpopula-
tions of the population it is supposed to work on,
and therefore, we describe this as a bias issue.

6 Conclusion

This paper presented evidence that clinical NLP
algorithms are prone to anatomical bias. We found
that the performance of clinical classification al-
gorithms for both bleeding and VTE classification
can vary significantly depending on the anatomi-
cal location of the medical condition. We argue
that anatomical bias should be carefully examined
when developing clinical text algorithms in order to
avoid unfair algorithm performance against patient
subgroups.

7 Limitations

Future work should investigate the degree of
anatomical bias in other clinical areas and tasks, e.g.
named entity recognition, to be able to compare the
severity of the bias problem between algorithms
and other clinical areas. Moreover, as the datasets
used in this study are only from a single institu-
tion, the findings of the paper might not be widely
representative.

The objective of this work was to stress the need
for measuring anatomical bias. We leave it to future
work to investigate algorithmic solutions other than
dataset balancing for mitigating the problem, e.g.
using techniques such as oversampling and data
augmentation. Such techniques could also help
mitigating anatomical bias in algorithms for which
training set balancing is not sufficient.

The classification datasets and machine learning

models presented in this paper cannot be shared
publicly due to privacy concerns but we advise
interested researchers to contact us for sharing pos-
sibilities.

Ethics Statement

Machine learning researchers must be proactive
in recognising and counteracting biases such as
the one described in this paper. We hope that the
findings and focus of this paper will lead other
researchers to test and mitigate other kinds of algo-
rithmic biases.

All datasets used in this research were obtained
according to each dataset’s respective data usage
policy. The datasets were stored and processed on
a secure platform1 in compliance with GDPR regu-
lations. According to section 14(2) of the Danish
Act on Research Ethics Review of Health Research
Projects2, studies using retrospective data that do
not involve human biological material do not re-
quire ethical approval.
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Table 6: Precision, recall, and F1 performance for the bleeding classification dataset. T ̸⊂x denotes the training set
from which an anatomical location, x, has been removed. SE = Standard error. CI = 95% confidence interval.

ELECTRA LSTM
Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI) Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI)

T ̸⊂Gastrointestinal 94.7 ± 0.2 (94.2 - 95.0) 94.2 ± 0.4 (93.4 - 95.0) 94.4 ± 0.2 (94.0 - 94.8) 89.1 ± 0.7 (8.77 - 90.5) 88.5 ± 0.7 (87.2 - 89.8) 88.8 ± 0.1 (88.6 - 88.9)
T ̸⊂Urogenital 94.3 ± 0.3 (93.6 - 94.8) 93.5 ± 0.4 (92.6 - 94.3) 93.9 ± 0.1 (93.6 - 94.2) 89.5 ± 0.1 (89.3 - 89.8) 87.3 ± 0.2 (87.0 - 87.7) 88.5 ± 0.1 (88.3 - 88.6)
T ̸⊂Internal 95.0 ± 0.4 (94.2 - 95.0) 95.1 ± 0.6 (93.8 - 96.1) 95.0 ± 0.1 (94.8 - 95.2) 89.9 ± 0.4 (89.3 - 90.7) 87.6 ± 0.5 (86.6 - 88.6) 88.8 ± 0.1 (88.5 - 89.0)
T ̸⊂Otorhinolaryngeal 95.2 ± 0.2 (94.8 - 95.6) 96.2 ± 0.1 (96.0 - 96.3) 95.7 ± 0.1 (95.5 - 95.8) 89.7 ± 0.3 (89.1 - 90.3) 90.7 ± 0.6 (89.6 - 91.7) 90.1 ± 0.2 (89.8 - 90.5)
T ̸⊂Dermatological 94.7 ± 0.5 (93.6 - 95.5) 93.7 ± 0.4 (93.1 - 94.5) 94.2 ± 0.1 (94.0 - 94.4) 89.5 ± 0.3 (89.0 - 90.2) 87.0 ± 0.3 (86.5 - 87.6) 88.2 ± 0.1 (88.1 - 88.3)
T ̸⊂Gynecological 94.2 ± 0.2 (93.7 - 94.6) 93.5 ± 0.2 (93.1 - 93.8) 93.8 ± 0.1 (93.6 - 94.0) 89.6 ± 0.1 (89.4 - 89.8) 88.7 ± 0.2 (88.3 - 89.0) 89.1 ± 0.1 (88.9 - 89.4)
T ̸⊂Cerebral 95.2 ± 0.2 (94.7 - 95.6) 94.0 ± 0.2 (93.5 - 94.5) 94.6 ± 0.1 (94.3 - 94.8) 89.1 ± 0.2 (88.7 - 89.5) 88.9 ± 0.2 (88.6 - 89.4) 89.0 ± 0.1 (88.8 - 89.2)
T ̸⊂Ophthalmological 95.0 ± 0.1 (94.7 - 95.3) 95.6 ± 0.2 (95.2 - 96.0) 95.3 ± 0.1 (95.1 - 95.5) 88.8 ± 0.4 (88.0 - 89.6) 87.7 ± 0.5 (87.0 - 88.8) 88.2 ± 0.2 (87.8 - 88.5)
T 95.9 ± 0.2 (95.5 - 96.2) 95.4 ± 0.3 (94.7 - 96.0) 95.6 ± 0.1 (95.4 - 95.8) 90.5 ± 0.5 (89.6 - 91.4) 90.4 ± 0.6 (89.3 - 91.7) 90.5 ± 0.1 (90.3 - 90.6)

Table 7: Sensitivity (%) and standard error for all anatomical locations of the bleeding classification dataset. *
denotes a significant difference at the 0.05 level between models trained on T ̸⊂x and T .

Gastrointestinal Urogenital Internal Otorhinolaryngeal Dermatological Gynecological Cerebral Ophthalmological
ELECTRA

T ̸⊂Gastrointestinal 75.7± 2.4* 98.6± 0.3* 96.2± 0.3 96.2± 0.4* 94.3± 0.4* 95.9± 0.4* 97.3± 0.3* 99.1± 0.1*
T ̸⊂Urogenital 97.1±0.3* 68.5± 2.2* 97.4± 0.1* 96.6± 0.2* 95.8± 0.6* 95.8± 0.5* 98.1± 0.1* 98.7± 0.3
T ̸⊂Internal 96.6±0.2* 98.8± 0.2* 82.3± 2.0* 96.2± 0.3* 94.6± 0.6* 95.6± 1.0* 97.3± 0.3* 99.0± 0.2*
T ̸⊂Otorhinolaryngeal 96.2±0.4 98.2± 0.2* 96.2± 0.3 92.6± 0.4* 94.6± 0.2* 95.1± 0.5* 97.4± 0.1* 99.1± 0.2*
T ̸⊂Dermatological 96.6±0.4 98.2± 0.3* 96.2± 0.4* 95.8± 0.5 70.6± 1.4* 96.0± 0.7* 97.6± 0.2* 98.7± 0.2
T ̸⊂Gynecological 97.0±0.2* 98.6± 0.3* 97.2± 0.3* 97.2± 0.2* 95.5± 0.4* 64.8± 0.8* 97.9± 0.4* 99.4± 0.1*
T ̸⊂Cerebral 96.2±0.3 98.3± 0.3* 96.6± 0.4 99.1± 0.1* 94.4± 0.5* 95.8± 0.4* 75.4± 0.7* 99.1± 0.1*
T ̸⊂Ophthalmological 96.6±0.2* 98.5± 0.2* 96.5± 0.2* 95.2± 0.3 93.8± 0.6 95.4± 0.6* 97.4± 0.3* 90.7± 0.5*
T 95.4± 0.4 97.3± 0.4 95.6± 0.5 95.2± 0.2 92.4± 0.8 93.4± 0.2 95.3± 0.4 98.4± 0.3

LSTM
T ̸⊂Gastrointestinal 63.6 ± 3.0* 94.6 ± 0.7* 85.8 ± 1.0* 96.1 ± 0.5* 88.2 ± 0.9 92.2 ± 0.8 90.6 ± 0.7* 96.6 ± 0.6*
T ̸⊂Urogenital 90.2 ± 0.4 56.7 ± 1.6* 86.0 ± 0.5 97.4 ± 0.2* 89.8 ± 0.3* 91.6 ± 0.4 90.9 ± 0.3* 96.2 ± 0.1
T ̸⊂Internal 86.9 ± 0.6 93.0 ± 0.7 62.6 ± 1.2* 95.1 ± 0.5 86.9 ± 0.5 89.7 ± 0.4 90.6 ± 0.5 96.1 ± 0.4
T ̸⊂Otorhinolaryngeal 88.5 ± 0.6 93.8 ± 0.6 85.2 ± 1.0 89.8 ± 0.5* 89.4 ± 0.8 92.4 ± 0.7 90.2 ± 0.5* 96.1 ± 0.4*
T ̸⊂Dermatological 90.6 ± 0.3 93.4 ± 0.5 85.4 ± 0.4* 96.0 ± 0.1* 53.4 ± 0.5* 91.8 ± 0.5 90.4 ± 0.6* 95.2 ± 0.2
T ̸⊂Gynecological 89.3 ± 0.5 92.4 ± 0.3 86.4 ± 0.2* 96.1 ± 0.3 89.2 ± 0.4 69.1 ± 1.2* 90.8 ± 0.4* 96.2 ± 0.2
T ̸⊂Cerebral 87.8 ± 0.6 93.7 ± 0.2 85.6 ± 0.6 96.8 ± 0.3* 89.0 ± 0.4 93.0 ± 0.2* 68.8 ± 0.5* 96.7 ± 0.2*
T ̸⊂Ophthalmological 89.5 ± 1.0 93.1 ± 0.7 86.6 ± 0.9* 96.9 ± 0.4* 89.4 ± 1.0 93.6 ± 0.3* 90.9 ± 0.3* 61.5 ± 2.1*
T 88.9 ± 1.1 93.0 ± 0.8 85.2 ± 0.8 95.4 ± 0.2 87.8 ± 0.8 90.9 ± 0.6 88.7 ± 0.3 94.6 ± 0.7

Table 8: Bootstrapped 95% confidence intervals for difference of means between models trained on T ̸⊂x and T of
the bleeding classification dataset. Means are computed as performance of models trained on T ̸⊂x minus T . Total =
difference of means on the full test set.

Total Gastrointestinal Urogenital Internal Otorhinolaryngeal Dermatological Gynecological Cerebral Ophthalmological
ELECTRA

T ̸⊂Gastrointestinal -1.5 , -0.9 -23.6 , -15.0 0.2 , 2.3 -0.6 , 2.0 0.5 , 1.5 0.6 , 3.3 1.6 , 3.3 1.4 , 2.6 0.5 , 1.1
T ̸⊂Urogenital -2.0 , -1.4 0.6 , 2.8 -33.2 , -24.7 1.0 , 2.7 0.9 , 2.1 1.8 , 5.0 1.2 , 3.6 1.8 , 3.8 -0.6 , 1.3
T ̸⊂Internal -0.8 , -0.4 0.2 , 2.4 0.7 , 2.4 -18.5 , -9.1 0.1 , 2.2 0.1 , 4.6 0.4 , 3.9 1.2 , 3.0 0.1 , 1.2
T ̸⊂Otorhinolaryngeal -0.3 , 0.4 -0.2 , 1.6 0.2 , 1.7 -0.5 , 1.9 -2.9 , -2.1 0.7 , 4.0 0.7 , 2.5 1.5 , 2.6 0.2 , 1.4
T ̸⊂Dermatological -1.8 , -1.1 0.0 , 2.4 0.4 , 1.7 0.1 , 1.3 -0.2 , 1.6 -23.5 , -19.8 1.8 , 3.6 1.9 , 2.9 -0.1 , 1.2
T ̸⊂Gynecological -2.2 , -1.5 1.1 , 2.3 0.7 , 2.1 0.8 , 2.2 1.3 , 2.7 1.6 , 4.9 -29.5 , -27.3 2.1 , 3.4 0.6 , 1.4
T ̸⊂Cerebral -1.5 , -0.5 -0.1 , 1.6 0.2 , 1.9 -0.2 , 2.3 0.5 , 1.6 0.4 , 3.5 1.7 , 3.3 -21.3 , -18.7 0.3 , 1.3
T ̸⊂Ophthalmological -0.6 , -0.1 0.5 , 2.3 0.5 , 2.1 0.1 , 1.7 -0.7 , 0.7 -0.1 , 3.7 1.0 , 3.4 1.5 , 2.9 -8.6 , -6.5

LSTM
T ̸⊂Gastrointestinal -1.9 , -1.4 -30.3 , -18.6 1.0 , 2.1 1.0 , 2.2 0.1 , 1.4 -0.6 , 1.4 -0.2 , 2.6 0.8 , 2.9 1.2 , 3.0
T ̸⊂Urogenital -2.1 , -1.8 -1.7 , 4.0 -38.6 , -34.0 -0.5 , 3.6 1.4 , 2.8 0.1 , 4.1 -1.3 , 2.6 1.2 , 3.1 -0.1 , 3.0
T ̸⊂Internal -1.8 , -1.4 -4.6 , 0.7 -1.4 , 1.7 -23.0 , -20.3 -1.4 , 1.1 -2.1 , 1.0 -2.6 , 0.2 -2.6 , 0.2 0.0 , 3.0
T ̸⊂Otorhinolaryngeal -0.7 , -0.1 -2.7 , 1.8 -0.8 , 2.1 -1.2 , 3.4 -6.9 , -4.5 -1.3 , 4.1 -0.6 , 3.0 0.1 , 2.6 0.2 , 2.7
T ̸⊂Dermatological -2.2 , -2.0 -1.1 , 4.2 -2.2 , 2.5 -1.3 , 3.0 0.2 , 1.0 -36.3 , -32.1 -0.2 , 2.0 0.4 , 3.4 -1.0 , 2.2
T ̸⊂Gynecological -1.5 , -1.1 -1.9 , 2.7 -2.0 , 0.4 0.3 , 3.8 -0.1 , 1.6 -0.4 , 3.7 -24.3 , -19.0 1.4 , 2.8 0.0 , 2.8
T ̸⊂Cerebral -1.7 , -1.2 -3.4 , 0.4 -1.0 , 1.7 -0.3 , 3.0 1.0 , 1.8 -0.6 , 3.4 1.4 , 2.7 -21.0 , -19.0 0.6 , 3.4
T ̸⊂Ophthalmological -2.6 , -1.8 -2.9 , 3.8 -1.1 , 1.4 0.1 , 4.8 0.7 , 2.4 -0.2 , 3.4 1.4 , 3.9 1.3 , 3.0 -38.5 , -28.5
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Table 9: Bleeding test set sensitivity (%) and standard error on an anatomical location by percentage of subgroup
samples in the modified training set. * denotes a significant difference at the 0.05 level between models trained on
the modified training set and the full training set, T .

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80 1.0

ELECTRA
Gastrointestinal 75.7±2.4* 76.6± 0.6* 90.4± 1.1* 93.2± 0.3* 94.5± 0.5* 96.6± 0.5 95.8± 0.4
Urogenital 68.5±2.2* 72.4± 1.1* 91.0± 1.3* 96.6± 0.3* 97.1± 0.1* 97.0± 0.1* 98.4± 0.4
Internal 82.3±2.0* 84.3± 1.8* 91.8± 0.6* 93.6± 0.2* 94.8± 0.5* 95.9± 0.4* 96.4± 0.4
Otorhinolaryngeal 92.6±0.4* 92.2± 0.7* 92.9± 0.3* 94.8± 0.2* 95.4± 0.6 95.8± 0.2 95.6± 0.3
Dermatological 70.6±1.4* 74.6± 1.3* 87.9± 0.7* 88.7± 0.9* 93.3± 0.7 93.4± 0.3 94.5± 0.6
Gynecological 64.8±0.8* 63.4± 1.3* 87.3± 0.6* 89.2±0.3* 92.0± 0.7* 93.7± 0.2 93.9± 0.4
Cerebral 75.4±0.7* 80.0± 1.5* 89.4± 0.4* 91.5± 0.7* 95.6± 0.5* 96.6± 0.6 97.2± 0.3
Ophthalmological 90.70±0.5* 93.6± 0.3* 96.7± 0.4* 97.8± 0.3* 98.8± 0.1 98.7± 0.1 98.9± 0.2

LSTM
Gastrointestinal 63.6 ± 3.0* 60.0 ± 1.0* 71.9 ± 1.7* 79.2 ± 0.7* 86.6 ± 0.5* 88.0 ± 0.9* 89.1 ± 0.6
Urogenital 56.7 ± 1.6* 58.6 ± 0.9* 79.3 ± 0.7* 87.2 ± 0.6* 90.6 ± 0.2* 92.2 ± 0.3* 93.7 ± 0.1
Internal 62.6 ± 1.2* 65.6 ± 0.8* 72.6 ± 0.8* 77.2 ± 0.5* 80.2 ± 0.8* 83.9 ± 0.5 85.5 ± 0.5
Otorhinolaryngeal 89.8 ± 0.5* 88.5 ± 0.3* 91.8 ± 0.3* 93.6 ± 0.3* 93.8 ± 0.1* 95.2 ± 0.5 95.5 ± 0.3
Dermatological 53.4 ± 0.5* 56.5 ± 1.5* 73.5 ± 2.4* 77.4 ± 0.6* 84.5 ± 0.3* 86.8 ± 0.4 88.1 ± 0.5
Gynecological 69.1 ± 1.2* 69.3 ± 0.5* 80.1 ± 0.7* 86.6 ± 0.7* 89.3 ± 0.5* 90.7 ± 0.4* 91.6 ± 0.3
Cerebral 68.8 ± 0.5 * 72.2 ± 1.6* 79.7 ± 0.4* 83.1 ± 0.6* 86.4 ± 0.4* 88.4 ± 0.5* 90.5 ± 0.2
Ophthalmological 61.5 ± 2.1* 65.4 ± 1.4* 89.4 ± 0.4* 90.3 ± 0.5* 93.0 ± 0.7* 94.4 ± 0.4* 95.7 ± 0.4

Table 10: Bootstrapped 95% confidence intervals for difference of means between models trained on a modified
training set, including a percentage of subgroup samples, and models trained on the full training set, T , of the
bleeding classification dataset. Means are computed as performance of models trained on the modified training set
minus T .

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80

ELECTRA
Gastrointestinal -23.6 , -15.0 -20.2 , -18.2 -8.3 , -2.6 -4.2 , -1.2 -2.6 , -0.2 -0.2 , 1.8
Urogenital -33.2 , -24.7 -27.7 , -24.0 -10.0 , -4.8 -2.6 , -1.4 -2.2 , -0.4 -2.2 , -0.6
Internal -18.5 , -9.1 -15.2 , -9.0 -5.8 , -3.4 -3.8 , -1.8 -2.4 , -1.0 -3.0 , -0.1
Otorhinolaryngeal -2.9 , -2.1 -4.8 , -2.1 -3.5 , -1.8 -1.5 , -0.2 -0.7 , 0.3 -0.6 , 1.0
Dermatological -23.5 , -19.8 -22.6 , -16.5 -7.8 , -5.0 -7.8 , -3.4 -3.0 , 1.0 -2.4 , 0.1
Gynecological -29.5 , -27.3 -33.6 , -27.5 -8.1 , -5.3 -5.5 , -3.8 -3.6 , -0.8 -0.8 , 1.5
Cerebral -21.3 , -18.7 -20.1 , -13.8 -8.4 , -7.3 -7.0 , -4.4 -2.6 , -0.7 -1.3 , 0.0
Ophthalmological -8.6 , -6.5 -6.0 , -4.5 -2.7 , -1.8 -1.8 , -0.5 -0.6 , 0.6 -0.2 , 0.6

LSTM
Gastrointestinal -31.7 , -19.8 -31.0 , -27.2 -21.4 , -14.3 -12.3 , -7.6 -4.1 , -0.6 -1.9 , -0.1
Urogenital -39.8 , -33.8 -36.7 , -32.9 -15.8 , -13.0 -7.8 , -4.8 -3.5 , -2.5 -2.1 , -0.9
Internal -25.7 , -19.6 -22.3 , -17.4 -15.0 , -10.6 -9.5 , -7.1 -7.4 , -3.1 -3.4 , 0.4
Otorhinolaryngeal -7.0 , -4.5 -8.2 , -6.2 -4.5 , -3.0 -2.5 , -1.4 -2.3 , -1.1 -1.8 , 1.0
Dermatological -35.6 , -33.8 -35.5 , -28.6 -19.0 , -10.1 -12.8 , -9.0 -4.9 , -2.5 -3.1 , 0.0
Gynecological -25.4 , -19.5 -23.3 , -21.2 -13.4 , -10.3 -6.5 , -3.4 -3.9 , -0.9 -1.2 , -0.6
Cerebral -22.3 , -21.2 -21.1 , -15.1 -11.8 , -9.8 -8.7 , -5.8 -5.0 , -3.2 -3.4 , -0.8
Ophthalmological -38.4 , -30.5 -33.4 , -27.2 -7.4 , -5.1 -6.5 , -4.1 -3.9 , -1.1 -2.1 , -0.6

Table 11: Precision, recall, and F1 performance for the VTE classification dataset. T ̸⊂x denotes the training set
from which an anatomical location, x, has been removed. SE = Standard error. CI = 95% confidence interval.

ELECTRA LSTM
Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI) Precision ± SE (CI) Recall ± SE (CI) F1 ± SE (CI)

T ̸⊂Lower extremity 86.3 ± 0.7 (84.9 - 87.7) 41.8 ± 1.5 (39.1 - 44.7) 56.3 ± 1.3 (53.8 - 58.8) 77.2 ± 0.2 (76.9 - 77.6) 61.4 ± 1.5 (58.8 - 64.5) 68.3 ± 0.8 (66.8 - 70.1)
T ̸⊂Lung 86.1 ± 1.0 (84.1 - 87.9) 57.4 ± 3.2 (51.8 - 63.8) 68.6 ± 2.0 (64.9 - 72.7) 78.6 ± 0.5 (77.6 - 79.6) 54.8 ± 0.7 (53.5 - 56.1) 64.6 ± 0.3 (63.9 - 65.3)
T 96.4 ± 0.3 (95.9 - 97.0) 72.3 ± 0.7 (71.0 - 73.6) 82.7 ± 0.4 (81.9 - 83.5) 91.4 ± 0.1 (91.2 - 91.6) 57.2 ± 0.6 (56.0 - 58.4) 70.4 ± 0.4 (69.4 - 71.2)
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Table 12: Sensitivity (%) and standard error for all anatomical locations of the VTE classification dataset. * denotes
a significant difference at the 0.05 level between models trained on T ̸⊂x and T .

Lower extremity Lung Liver Cerebral Upper extremity
ELECTRA

T ̸⊂Lower extremity 9.3 ± 0.8* 98.6 ± 0.2* 50.1 ± 3.6* 23.8 ± 1.9* 25.3 ± 1.4*
T ̸⊂Lung 99.7 ± 0.2* 16.6 ± 3.5* 65.7 ± 7.7 13.6 ± 4.1 99.0 ± 0.3*
T 99.1 ± 0.2 97.6 ± 0.3 66.3 ± 1.6 11.5 ± 1.6 96.7 ± 0.3

LSTM
T ̸⊂Lower extremity 34.2 ± 1.5* 92.6 ± 0.5* 76.2 ± 2.2* 52.6 ± 2.2* 47.6 ± 2.8*
T ̸⊂Lung 95.3 ± 0.2* 15.7 ± 0.4* 54.2 ± 1.8* 24.7 ± 1.3* 91.4 ± 0.4*
T 93.8 ± 0.6 86.6 ± 0.6 29.8 ± 1.6 7.0 ± 0.5 81.8 ± 1.3

Table 13: Bootstrapped 95% confidence intervals for difference of means between models trained on T ̸⊂x and T of
the VTE classification dataset. Means are computed as performance of models trained on T ̸⊂x minus T . Total =
difference of means on the full test set.

Total Lower extremity Lung Liver Cerebral Upper extremity
ELECTRA

T ̸⊂Lower extremity -18.0 , -16.3 -91.3 , -88.3 0.2 , 1.6 -23.9 , -7.3 8.0 , 16.6 -74.0 , -68.7
T ̸⊂Lung -12.4, -9.2 0.3 , 0.9 -87.2 , -73.7 -12.6 , 11.6 -2.0 , 8.3 1.8 , 2.7

LSTM
T ̸⊂Lower extremity -5.1 , -3.5 -63.0 , -56.5 4.3 , 7.7 43.8 , 50.0 40.3 , 49.6 -41.9 , -28.2
T ̸⊂Lung -6.6 , -5.4 0.6 , 2.6 -72.5 , -69.5 18.9 , 28.8 14.9 , 19.7 7.5 , 11.9

Table 14: VTE test set sensitivity (%) and standard error on an anatomical location by percentage of subgroup
samples in the modified training set. * denotes a significant difference at the 0.05 level between models trained on
the modified training set and the full training set, T .

.

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80 1.0

ELECTRA
Lower extremity 9.3 ± 0.8* 77.6 ± 3.7* 97.2 ± 0.3* 97.7 ± 0.4 98.6 ± 0.3 98.8 ± 0.2 98.4 ± 0.2
Lung 16.6 ± 3.5* 57.1 ± 8.1* 94.6 ± 0.3* 96.6 ± 0.3 97.7 ± 0.2 98.2 ± 0.1 97.6 ± 0.3

LSTM
Lower extremity 34.2 ± 1.5 40.6 ± 0.7 83.7 ± 0.6 90.7 ± 0.5 94.4 ± 0.6 95.5 ± 0.6 94.9 ± 0.7
Lung 15.7 ± 0.4 16.0 ± 0.9 71.5 ± 1.1 81.6 ± 0.7 88.0 ± 0.9 88.3 ± 0.9 89.2 ± 0.8

Table 15: Bootstrapped 95% confidence intervals for difference of means between models trained on a modified
training set, including a percentage of subgroup samples, and models trained on the full training set, T , of the VTE
classification dataset. Means are computed as performance of models trained on the modified training set minus T .

Anatomical subgroup fraction
0.0 0.01 0.15 0.30 0.60 0.80

ELECTRA
Lower extremity -91.3 , -88.3 -28.8 , -15.0 -2.2 , -0.4 -1.9 , 0.4 -0.2 , 0.7 -0.4 , 1.1
Lung -87.2 , -73.7 -58.8 , -27.4 -3.6 , -2.2 -2.0 , 0.0 -0.7 , 0.8 -0.1 , 1.2

LSTM
Lower extremity -63.0 , -56.5 -56.2 , -52.2 -13.2 , -9.4 -5.6 , -2.9 -2.3 , 1.2 -1.3 , 2.2
Lung -72.5 , -69.5 -76.3 , -70.1 -20.6 , -14.4 -9.2 , -6.0 -3.5 , 0.8 -3.6 , 1.9
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Table 16: Most frequent words used to describe bleeding mentions for each anatomical location of the bleeding
classification dataset. Words are translated from Danish to English and, therefore, some cells include two words.

.

Word Frequency Location uniqueness Word Frequency Location uniqueness
Location: Otorhinolaryngeal Location: Gynecological

bleeding 324 0.13 bleeding 714 0.29
nose bleeding 273 1.0 uterus 108 0.97
epistaxis 254 0.99 allowable 78 0.94
nostril 148 1.0 vagina 69 1.0

Location: Dermatological Location: Cerebral
haematoma 354 0.56 sah 217 0.99
bleeding 170 0.07 bleeding 190 0.08
skin 122 0.73 ct 185 0.63
right 97 0.29 haematoma 161 0.25

Location: Urogenital Location: Internal
haematuria 536 0.99 bleeding 273 0.11
urine 311 0.98 haemothorax 249 1.0
blood 205 0.23 fluid 174 0.80
macroscopic 186 0.99 blood 140 0.16

Location: Gastrointestinal Location: Ophthalmological
bleeding 560 0.23 corpus hemorrhagicum 270 1.0
blood 247 0.28 corpus hem 205 1.0
fresh 180 0.48 bleeding 198 0.08
melaena 165 0.98 haemorrhage 180 0.70
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