
Findings of the Association for Computational Linguistics: EACL 2023, pages 1–34
May 2-6, 2023 ©2023 Association for Computational Linguistics

Using Punctuation as an Adversarial Attack on Deep Learning Based NLP
Systems: An Empirical Study

Brian Formento1,2, Chuan Sheng Foo2,3, Luu Anh Tuan4 and See Kiong Ng1

1Institute of Data Science, National University of Singapore
2Institute for Infocomm Research, A*STAR
3Centre for Frontier AI Research, A*STAR

4Nanyang Technological University
brian.formento@u.nus.edu, foo_chuan_sheng@i2r.astar.edu.sg

Abstract

This work empirically investigates punctuation
insertions as adversarial attacks on NLP sys-
tems. Data from experiments on three tasks,
five datasets, and six models with four attacks
show that punctuation insertions, when limited
to a few symbols (apostrophes and hyphens),
are a superior attack vector compared to char-
acter insertions due to 1) a lower after-attack
accuracy (Aaft−atk) than alphabetical charac-
ter insertions; 2) higher semantic similarity be-
tween the resulting and original texts; and 3)
a resulting text that is easier and faster to read
as assessed with the Test of Word Reading Effi-
ciency (TOWRE)). The tests also indicate that
4) grammar checking does not mitigate punc-
tuation insertions and 5) punctuation insertions
outperform word-level attacks in settings with a
limited number of word synonyms and queries
to the victim’s model. Our findings indicate
that inserting a few punctuation types that re-
sult in easy-to-read samples is a general attack
mechanism. In light of this threat, we assess the
impact of punctuation insertions, potential mit-
igations, the mitigation’s tradeoffs, punctuation
insertion’s worst-case scenarios and summa-
rize our findings in a qualitative casual map, so
that developers can design safer, more secure
systems.

1 Introduction

The goal of an attack is to disrupt a natural language
processing (NLP) model’s classification accuracy.
The motivation behind researching these adversar-
ial attacks is to create a toolbox of methods to attack
systems while also pointing out flaws to improve
the models’ robustness. Previous work on adver-
sarial research showed that deep learning-based
NLP models are sensitive to slight changes in the
input (Ebrahimi et al., 2018) such as character per-
turbations or word substitutions. However, these
attack vectors have three major flaws: 1) letter per-
turbations can be detected by grammar checkers;
2) these attacks may change the meaning or, worse,

the human label of the sentence (e.g., ‘she’ to ‘he’
with a character deletion for a gender classification
system (Zang et al., 2020)); 3) they can make a
sample unreadable. Although word-level attacks
that change words to a perturbing synonym make
these perturbations almost invisible to humans, the
cumulative effect of multiple synonym substitu-
tions in a sentence can make the sample harder to
understand. Furthermore, the attack must find per-
turbing word synonyms when attacking samples in
a specific domain, such as biology or law, which
may be challenging if the algorithm uses general
word embeddings with no domain knowledge.

Punctuation insertions, on the other hand, may
be a feasible attack vector that is unaffected by
the limitations of character perturbations/word sub-
stitutions, since it is hard for grammar checkers
to detect punctuation (Section 5.5) while also not
drastically changing the meaning of the sentence
(Sections 5.7, 5.8). Removing punctuation causes
deep learning models to perform worse (Ek et al.,
2020), as punctuation contains critical information
that models require to function correctly (Jones,
1994). Furthermore, punctuation can hold adversar-
ial downstream information (Formento et al., 2021)
that may be exploited by malicious users. Punctua-
tion attacks remain an understudied area: Previous
works on the topic (Hosseini et al., 2017; Eger and
Benz, 2020; Formento et al., 2021) only casually
explored punctuation and ignored whether it can
generalize or show which punctuation symbols are
best suited for intrusion attacks.

Contributions: Through extensive empirical
studies, we have determined that punctuation inser-
tions can outperform, in terms of Aaft−atk, alpha-
betical character insertions (as shown in Section
5.1) and, under certain conditions, word substitu-
tion (5.2), allowing for a user-controllable tradeoff
between after-attack accuracy (Aaft−atk), sample
quality, and attack time efficiency when used to-
gether in a multi-level attack (5.3). Specifically,

1

hyphen (Hy) and apostrophe (Ap) insertions are the
most effective at avoiding straightforward defense
mechanisms (as shown in Sections 5.4, 5.5) while
preserving the original meaning, as evidenced by
achieving 100% semantic similarity in our tests (as
shown in Section 5.7). Additionally, by using the
TOWRE test, we have demonstrated that inserting
only one punctuation type significantly increases
attack readability by increasing reading speeds by
800% compared to character insertions, and 96.8%
compared to using multiple types of punctuation
(as shown in Section 5.8) without compromising
the attack performance (Section 5.9). To aid in
the understanding of our findings, we have also
introduced a casual map in Figure 5.

2 Related Work

Adversarial attacks on NLP systems can be cate-
gorized in terms of the level of granularity of the
perturbation. Character-level attacks (Ebrahimi
et al., 2018; Eger and Benz, 2020; Eger et al., 2019;
Belinkov and Bisk, 2018; Sun et al., 2020; Boucher
et al., 2021) modify individual characters in words
to force the tokenizer to process multiple unrelated
embeddings instead of the original, resulting in de-
creased performance. Word-level attacks (Jin et al.,
2020; Li et al., 2020; Maheshwary et al., 2020) em-
ploy a search algorithm to locate useful perturbing
embeddings (Jin et al., 2020; Li et al., 2020; Ma-
heshwary et al., 2020) or operations (Tan et al.,
2020; Li et al., 2021) that are clustered close to the
candidate attack word’s embedding given a simi-
larity constraint (such as the Universal Sentence
Encoder (Cer et al., 2018)). Multi-level attacks
combine multiple types of perturbations, making
the attack cumulative. Textbugger (Li et al., 2019),
which uses both character-level and word-level at-
tacks, is an example of a multi-level attack.

Although previous research has investigated
character and word-level attacks, few have studied
the use of punctuation attacks. To the best of our
knowledge, only Zéroe (Eger and Benz, 2020), Pre-
spective Atk (Hosseini et al., 2017) and SSTA (For-
mento et al., 2021) have researched punctuation as
an attack vector. While the former two randomly
insert symbols within a word, the third revealed
that symbols contain adversarial information and
can be inserted as padding with little further opti-
mization. Zéroe, in particular, is a benchmark of
ten different character attacks. Out of these ten,
Zéroe Intrude is the only one focusing on punctua-

tion and is thus used as one of the gold standards
in this paper.

Our work builds on these previous works by
further exploring Zéroe Intrude and the concept,
introduced initially in SSTA, that model-specific
symbols can attack binary classifiers when used as
padding. Our work contributes to the discussion on
punctuation symbols being a general mechanism to
attack deep learning models while also improving
readability through the novel use of the TOWRE
metric, which tracks how quickly someone can read
the adversarial text.

3 Methodology

3.1 Overview

Suppose we have a sequence classifier f : X 7→
Y , that takes an input sequence of words x =
(τ1, . . . , τn) ∈ X with ground truth label y and
outputs a prediction ŷ = f(x). An adversarial at-
tack on input x and classifier f would perturb τ ,
for example, using character manipulations or word
substitutions, to produce a new adversarial sample
x̂ that is misclassified by f such that f(x̂) ̸= y.

We investigate punctuation and multi-level at-
tacks in gray-box and black-box settings. Specif-
ically, we explore the effects of inserting punctu-
ation when the victim’s model classification logit
is leaked (gray-box) and when it is not (black-
box). We use a variation of DeepWordBug (DWB)
and the original Zéroe Intrude (ZI) attack in these
settings. In addition, we combine punctuation to-
gether with word substitutions in a gray-box set-
ting (multi-level) to evaluate if punctuation can
augment word-level attacks. We provide a more
detailed description of the respective attacks used
in the following sections.

3.2 Attack foundations and baselines

We build upon and compare our results to the fol-
lowing four attack baselines: 1) Zéroe Intrude (ZI),
a simple black-box attack (see Section 3.5 (Eger
and Benz, 2020)); 2) DeepWordBug (DWB), which
uses four-character level perturbations including
delete, swap, insert, and nearby character swap
(Gao et al., 2018); 3) TextFooler, a popular base-
line that uses word synonyms from counterfeited
embeddings to perturb the sample perturbation (Jin
et al., 2020); and 4) SememePSO, a recent method
that uses a seme (e.g., a morpheme) to create a
word substitution together with PSO (Zang et al.,
2020).

2

3.3 Gray-box punctuation attack
As a representative gray-box punctuation attack,
we implement a variant of DWB through the Tex-
tAttack framework that performs only punctuation
insertions instead of alphabetical insertions, swaps,
deletions, and substitutions. We denote this punc-
tuation variant as DeepWordBugPunc (DWBP).
DWBP has three main steps:

• Step 1: Determine the essential words with set
τR = {τ1...τk} for an NLP model f using a
word delete schema, ranking them from high-
est to lowest in terms of output logit change. A
delete schema, popularized by BERT-Attack
(Li et al., 2020), analyzes the logit change
when a word is removed from a sample.

• Step 2: Use user-defined set γ (e.g. γ = {-’})
and the RPos (Random Position) and RPunc
(Random Punctuation) flags to return a set
of transformations {τk} from highest-ranking
word τk from Step 1.

• Step 3: Search over the attack space by query-
ing the victim’s model with samples modified
with the transformations from Step 2. Keep
the best transformation with regard to the logit
and semantic similarity score. The next word
from τR is then perturbed. This is repeated
until either f(x) ̸= f(x̂) or the algorithm iter-
ates through τR. This process is called Greedy
Search with Word Replacement (GSWR).

In summary, for a sample x, the algorithm identi-
fies the top words in τR. It gradually modifies them
by inserting one punctuation symbol and making
calls to the victim’s model through the GSWR Al-
gorithm 1. Optimizing over τR results in GSWR be-
ing a time-efficient query alternative to the greedy
search algorithm. It gradually replaces τR in x with
transformations from Step 2 by calling Algorithm
2.

Algorithm 2 takes a word and decides the loca-
tion and punctuation type to insert with the RPos
and RPunc flags. These two flags, when set to
false, allow the algorithm to explore the entire at-
tack space. This in turn creates many transforma-
tion variations with γ, therefore allowing GSWR to
check the adversarial performance of each symbol
in γ at each position within the word τk. GSWR
keeps the transformation if the change creates a
successful reduction in logit score. After an adver-
sarial candidate x̂ is found, the semantic similarity

between x and x̂ with S
′
= Sim(x, x̂) is calcu-

lated with a deep learning model (Cer et al., 2018).
GSWR will reject all perturbations that miss a se-
mantic similarity threshold, set at 0.8, which en-
sures a good tradeoff between sample quality and
adversarial strength (Li et al., 2019). The algorithm
repeats this procedure until the end condition.

The difference between DWBP and DWB is that
DWB transforms a word with a composition of
transformations (letter substitution, deletion, swap,
or insertion), and all the transformed words are
added to {τ̂k}. Appendix D.1 gives an extended de-
scription for the three steps. We tested all variants
of RPos and RPunc when applicable.

Algorithm 1 τk Transform Function with GSWR
Input: Word ranking τR, Sample x, Symbols γ
Output: Adversarial sentence x̂

1: Initialize x̂ = x
2: for each τk in τR do
3: if len(τk) < 2 or τk = Stop-Word then
4: skip
5: else
6: Transformations Set {τ̂k} = TFγ(x(τk), γ)
7: for τ̂k in Transformations Set {τ̂k} do
8: x̂← τ̂k
9: x̂Adv , x̂Adv

Score = f(x̂)
10: if Perturbation successful then
11: Keep best τ̂k
12: else
13: Don’t keep change→ next word
14: return x̂

Algorithm 2 Step2: τk Transform Function TF
Input: Word τk, Symbols γ, Bool: RPos/RPunc
Output: Adversarial word τ̂k

1: Transformations = ∅
2: if RPos then
3: if RPunc then
4: i = RandInt(StartIdx, EndIdx)
5: Transformations←τ̂k= τk[: i] + γrandom + τk[i :]
6: else
7: i = RandInt(StartIdx, EndIdx)
8: for j in γ do
9: Transformations←τ̂k = τk[: i] + γj + τk[i :]

10: else
11: if RPunc then
12: for i in |StartIdx − EndIdx| do
13: Transformations ←τ̂k = τk[: i] + γrandom +

τk[i :]
14: else
15: for i in |StartIdx − EndIdx| do
16: for j in γ do
17: Transformations←τ̂k = τk[: i] + γj + τk[i :]
18: Return Transformations

3

3.4 Gray-box multi-level attack
We also evaluated the performance of punctuation
insertions when used in conjunction with word-
level attacks. To conduct this assessment, we em-
ployed two baselines TextFooler and SememePSO.

• TextFooler/DWBP: This variant uses the same
word scoring function and the GSWR search
algorithm. However, τ̂k will be a mix of word
synonym and punctuation insertion transfor-
mations of τk.

• SememePSO/DWBP: This variant uses the
same word scoring function but with particle
swarm optimization (PSO) as a search tech-
nique. PSO uses a population-based evolu-
tionary algorithm that exploits the interactions
between individuals in a population to find a
solution in a search space. τ̂k will be a mix
of sememes (a type of word substitution) and
punctuation insertion transformations of τk.

See Section D.5 in the Appendix for details on
TextFooler/DWBP and SememePSO/DWBP.

3.5 Black-box punctuation attack
As a representative black-box attack, we imple-
ment a variant of the ZI algorithm instead of DWB,
as the latter requires access to logits that are ab-
sent in this setting. ZI is a simple black-box at-
tack that randomly perturbs a word in a sample
with probability p. It then adds a random symbol
from this list—!”#$%&’()∗+,-./:;<=>?@[\]^‘{|}—
between two letters with the same probability p,
which we define as baseline ZI. In our variant, ZI
perturbs a word with probability p (defined as ZIP)
but uses the same predefined symbol.

4 Experimental Setup

4.1 Backbone models and tasks
We evaluated the BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), DistilBERT (Sanh et al., 2020) models on
classification (MR), entailment (MNLI, SNLI), and
question answering (QNLI, QQP) tasks. We also
used a CNN and LSTM for MR (details are provided
in Appendix C).

4.2 Evaluation metrics
We use the evaluation framework previously pro-
posed in (Morris et al., 2020), where an evalu-
ation set is perturbed and out of the Total At-

tacked Samples (TAS) set the Number of Suc-
cessful Attacks (Nsucc−atk), Number of Failed At-
tacks (Nfail−atk) and Number of Skipped Attacks
(Nskp−atk) are recorded. After attack accuracy
(Aaft−atk =

Nfail−atk

TAS), the most important met-
ric, represents how well the attacker can fool the
model across a dataset. Lower values of Aaft−atk

indicate that the attacker can fool the model better.
After success rate (Asucc−rte =

Nsucc−atk

TAS−Nskp−atk
),

is similar to Aaft−atk but ignores previously mis-
classified samples. Percentage of perturbed words
refers to the percentage of words the algorithm
perturbs out of the number of words in the sample.
This metric should be as low as possible, as perturb-
ing more words makes the sample’s perturbation
more detectable. Semantic similarity (Jin et al.,
2020; Maheshwary et al., 2020) is an automatic
similarity index that describes the visual difference
between two samples using a deep learning model.
In this case, the Universal Sentence Encoder (Cer
et al., 2018) is used, along with a cosine similarity
measure between the output embeddings. A value
of 1 indicates that the two inputs are semantically
equivalent, while 0 represents no similarity. Aver-
age number of queries represents the number of
times the algorithm must invoke the model to per-
form inference. This metric should be kept low to
avoid detection.

4.3 Human evaluation

To evaluate the quality of adversarial samples, we
conducted four human studies. The first three are
the same tests used in TextFooler (Jin et al., 2020),
and Hard-Label (Maheshwary et al., 2020). These
tests analyzed the adversarial sample for 1) gram-
matical correctness, where reviewers rate the gram-
matical correctness of the original and adversarial
samples on a scale from 1–5, where 1: many gram-
matical mistakes and 5: no grammatical mistakes;
2) reviewer classification accuracy, where review-
ers predict the label of each sample; and 3) simi-
larity, where reviewers rate if the two samples are
similar (1), dissimilar (0), or ambiguous (0.5); 4)
readability, where the novel application of TOWRE
(Tarar et al., 2015) was used to analyze the quality
of adversarial words in character-level black-box at-
tacks. TOWRE is a widely used test that measures
an individual’s reading accuracy and speed. We
adapted TOWRE to record the quality of adversar-
ial examples. Specifically, the reviewer pronounces
a list of words, where each word was modified with

4

one out of four different perturbation types intro-
duced with the ZI algorithm. We record the words
per minute (WPM) and error rates. All tests had
two reviewers who reviewed 100 samples in the
first three tests and 36 in the fourth. Agreement
between the reviewers was assessed with Krippen-
dorff’s alpha, where a score of 1 indicates complete
agreement and -1 indicates complete disagreement.
Further implementation details on the human test-
ing method and details on Krippendorff’s alpha are
in Appendix F.

4.4 Defense Baselines

We evaluate fine-tuning and adversarial training
as baseline defenses. In detail, it is possible to
remove all punctuation during training, fine-tune
the model for further epochs on this new punctua-
tionless dataset, and at inference, always strip all
punctuation (Table 18). We also experimented with
adversarial training (Table 15 in Section 5.6) by us-
ing a standard technique (Morris et al., 2020) that
is further described in Appendix E.3.

5 Experiments

We use the methodology in Section 3 and experi-
mental setup to explore how punctuation insertions
compare to character manipulations (Section 5.1).
In Section 5.4, 5.5 and 5.6 we demonstrate how
straightforward defence techniques fail and suc-
ceed and Sections 5.7, 5.8, and 5.9 highlight the
advantages of punctuation insertions where no de-
fence technique is present. The γ choices for each
test are summarized and justified in Appendix E.2.

5.1 Punctuation vs character manipulations

How does an attack change when using punctuation
insertions instead of letter manipulations? Punc-
tuation insertions can degrade NLP model perfor-
mance while preserving semantic similarity. The
system’s Aaft−atk is overall reduced (see Figure
1) while semantic similarity remains at 0.96–1.00
when using punctuation insertions (DWBP) com-
pared to 0.87–0.90 when using DWB. Each DWBP
box represents the Aaft−atk for a dataset across all
models with RPos = False. The lower the Aaft−atk

the more perturbing the attack.
Hyphen, apostrophe, full stop, or comma inser-

tions lower Aaft−atk more than any other letter
in the alphabet (Figure 2). Values in Figure 2 re-
flect the after-attack difference [%] between using
a letter or punctuation type in an intrusion attack.

MR MNLI SNLI QNLI QQP
Attack/Dataset

10

20

30

40

50

Af
te
r A

tk
 A
cc
 [%

]

DWB
DWBP

Figure 1: Gray box attack performance

Green/positive values represent an improvement
and purple/negative values a decrease between the
punctuation symbol on the x-axis and the letters
on the y-axis when using DWBP. Each attack in
Figure 2 has a constant number of queries, [%] of
perturbed words, and query time. The extended
results are in Appendix L.

Observation This experiment clarifies that if
any internal punctuation is present, the system
is vulnerable and that it is more susceptible to
such insertions than other character manipulations
and alphabet insertions. We limit our reporting to
BERT on MR because other model results are con-
sistent. Full tabular results for other Models and
datasets for Figure 1 are in Appendix I in Tables 6
and 7 (“Without Grammar”). While Figure 2 has
the other model’s results in Appendix L.

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m

5.2 3.2 7.4 8.2
1.8 -0.2 4 4.8
4 2 6.2 7
3.2 1.2 5.4 6.2
3 1 5.2 6
4.4 2.4 6.6 7.4
2.6 0.6 4.8 5.6
2.8 0.8 5 5.8
2.8 0.8 5 5.8
4 2 6.2 7
2 0 4.2 5
1.6 -0.4 3.8 4.6
3.2 1.2 5.4 6.2

MR:BERT-BASE-UNCASED

−4.5

−3.0

−1.5

0.0
1.0

2.5

4.0

Figure 2: Punctuation vs character insertions. Green in-
dicates positive values; purple indicates negative values

5.2 Punctuation vs word-level attacks
Are there advantages in using punctuation inser-
tions instead of word substitutions? DWBP can
also be compared to TextFooler since, with DWBP,
a punctuation symbol is mapped to an embedding
when using a word piece tokenizer. Figures 3
and 4 each show increasing numbers of unique
punctuation symbols from γ (DWBP) or synonyms
per word (TextFooler), ranging from 1 to 10. For

5

DWBP, γ is set to . for N = 1, .’ for N = 2, up
to .’-”[,](:) for N = 10. In TextFooler, N repre-
sents the number of synonyms per word. Figure 3
displays the relationship between N (represented
by the points and the x-axis) and improvement in
Asucc−rte (y-axis). Figure 4 displays the relation-
ship between N (represented by the points), num-
ber of queries (x-axis), and the effect on Aaft−atk

(y-axis). Both experiments used all variations of
RPunc/RPos on BERT–MR.

Observation The effectiveness of punctuation
insertions is demonstrated DWBP when con-
strained on N and queries, as seen by the higher
Asucc−rte with low N in Figure 3 and the low
Aaft−atk with few queries in Figure 4. Similar
results for MNLI can be found in Appendix H.

0 1 2 3 4 5 6 7 8 9 10
N Embeddings/Characters

10

30

50

70

90

At
k
Su

cc
 R
at
e
[%

]

TextFooler
DWBP RPos=T/RPunc=F
DWBP RPos=F/RPunc=F
DWBP RPos=T/RPunc=T
DWBP RPos=F/RPunc=T

Figure 3: Punctuation embedding efficiency.

20 30 40 50 60 70 80 90
Queries

10
20
30
40
50
60
70

Af
te
r A

tk
 A
cc
 [%

] TextFooler
DWBP RPos=T/RPunc=F
DWBP RPos=F/RPunc=F
DWBP RPos=T/RPunc=T
DWBP RPos=F/RPunc=T

Figure 4: Punctuation query efficiency.

5.3 Punctuation as a multi-level attack

We investigate a composite experiment where τk
is composed of word substitutions and punctuation
insertions. The methodology is introduced in Sec-
tion 3.4 and the details are given in Appendix D.5.
We set RPunc = False, RPos = False, and γ = -’.

Observation: The results in Table 1 indicate
that incorporating punctuation insertions into the
optimization process enhances TextFooler and Se-
memePSO on BERT trained on MR. The additional
findings in Section G.1 of the appendix present re-

sults for all tasks and models, and provide further
observations.

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Perturbed
Words [%]

Semantic
Sim

Avg Time
Taken [s]

Avg Number
Queries

MR
BERT
(83.8)

DWBP 17.4 18.32 1 0.721 74.7
TextFooler 9.4 17.54 0.82 1.3072 118.5
TextFooler/DWBP 7.6 18.31 0.89 1.122 105.35
SememePSO 7 16.52 0.81 16.1811 4950.71
SememePSO/DWBP 6 9.99 0.89 7.3252 988.44

Table 1: Multi-level DWBP. Full results in Appendix J

5.4 Removing punctuation as a defense
How does removing punctuation perform as a de-
fense? In this section, we sought to evaluate the ef-
fectiveness of simple defenses in countering punc-
tuation attacks by examining the impact of vari-
ous forms of punctuation removal on attack perfor-
mance. To aid in this assessment, we employed the
use of a casual map in Figure 5, which allows for
tracking of the defender’s behavior in response to
the attacker’s changing strategy.

The casual map, presented in the blue quadrant,
begins with the "Base Model" on the right-hand
side, representing the unchanged finetuned model
from Hugging Face, in this instance, specifically
BERT finetuned on MR. Adjacent to this model is
a large red table, which represents the significant
performance drop when utilizing punctuation in-
sertions. For the sake of simplicity, in this map,
we limited ourselves to the use of full stops (FS),
commas (Co), which are common external punc-
tuation types, and apostrophes (Ap) and hyphens
(Hy), which are common internal punctuation types.
Given this threat, we identified and explored three
options for the defender to take. Beneath the "Base
Model," the first option is to remove all punctua-
tion ("All"), which secures the system but leads
to an original performance drop of -2.6%. The
second option, just beneath "All" is to remove all
punctuation found inside of words. While this ap-
proach solves the problem, it becomes challenging
to identify if a punctuation was inserted by mistake
by a user or to prevent the attacker from insert-
ing a whitespace before or after the punctuation
insertion. If the attacker adds a whitespace, the
attack defaults to the large red table. Furthermore,
removing all internal punctuation has a noticeable
original performance drop of -1.2%. An alterna-
tive to this is to remove all internal punctuation
but make an exception for Hy and Ap, reducing
the original performance drop to 0%, however, the
system remains vulnerable to Ap and Hy. Given
the persistent vulnerability to Ap and Hy, the de-
fender may employ a grammar checker to reject all

6

samples that do not meet a certain grammatical cor-
rectness level. When implemented, the robustness
of the model increases dramatically, resulting in a
semi-secure model.

The blue quadrant also shows "Finetune with
punctuation." This base model was further trained
and then compared to further training the model
when all the punctuation is removed (See "All +
Finetune"). As previously highlighted, removing
all punctuation can secure the system, the reduced
performance drop of -0.6% now indicates that this
approach has less of a trade-off between securing
the system and original accuracy drop.

In addition, we also explored adversarial training.
We discuss the findings of this quadrant in Section
5.6 and it’s experimental setup in Section E.3 in
the Appendix.

Observation Using a grammar checker in-
creases the robustness of this task. However, as
pointed out in the next section in Figure 6, the red
candlesticks representing DWBP have a large at-
tack variance depending on the dataset, symbol
used, and model. Hence, for a task that results in
a semi-secure model, another task may result in a
semi-broken model. This reasoning also applies to
black box punctuation attacks with ZIP, as pointed
out by the large variance in the red candlesticks in
Figure 7. Another aspect to consider is the original
accuracy drop in performance experienced in the
yellow boxes. Depending on the application, this
may be acceptable/negligible or unacceptable/too
high.

5.5 Grammar checkers as a defense

If a grammar checker preprocesses an input, how
does the attack performance change? Another com-
mon idea is that character-level attacks are easy
to defend against using a grammar checker (Zang
et al., 2020). Although adding a grammar checker
before processing the input lowers the effectiveness
of the attack, punctuation is nonetheless a success-
ful insertion technique with RPos = False, partic-
ularly when compared to DWB (Figure 6). Punc-
tuation insertions are also effective in black-box
settings (ZIP) and are as competitive as alphabet-
ical character manipulations in gray-box settings
(DWB) (Figure 7). The high variance of ZIP means
that inserting some symbols can lower performance
comparably, if not more than any character manipu-
lation technique introduced in DWB. For example,
ZIP Ap achieves a 7.8% lower Aaft−atk than DWB.

The full results can be found in Appendix I (col-
umn "With Grammar" in Tables 6 and 7, and the
performance of ZIP in Table 10).

Observation DWBP is more successful with the
attack, except on the [%] of perturbed words. These
results show a curious property of punctuation at-
tacks by highlighting that the [%] of perturbed
words is not necessarily aligned with semantic sim-
ilarity. Therefore, it is possible to have a highly
perturbed sample (in terms of [%] of perturbed
words) that is nonetheless readable and potentially
preserves the original information.

5.6 Adversarial training as a defense

How does adversarial training benefit learning?
In this section, we aimed to robustify the model
by experimenting with adversarial training on the
MR dataset. To test this, we employed the use of
the DWBP with hyphens and apostrophes (Hy and
Ap). Our findings suggest that adversarial training
for language models improves Aaft−atk. Specif-
ically, Aaft−atk increased by 7.4% with Hy and
6.4% with Ap on BERT, as shown in Figure 5.
This is demonstrated in the "Adv Training" quad-
rant, where this model was further finetuned for 4
epochs on the base dataset, while the models be-
neath it were trained for 4 epochs where the base
dataset was extended by 20% with adversarial sam-
ples containing either apostrophes or hyphens. The
effects of adversarial training were minimal, but did
result in an improvement to the model not undergo-
ing any adversarial training. This can be observed
by comparing the values in the Broken model to
the left of "Adv Training" and to the Broken mod-
els that have been adversarially trained beneath
"Adv Training". On LSTM, Aaft−atk increased by
2.4% with Hy and 1.6% with Ap, with negligible
drops/increases in original accuracy, as shown in
Table 15 in the appendix.

Observation Our findings are in agreement with
previous works, which highlight that adversarial
training on large language models, such as BERT
or LSTMs, can improve both original and adversar-
ial accuracy (Zhu et al., 2020; Miyato et al., 2017;
Cheng et al., 2019; Yoo and Qi, 2021). However,
other studies suggest that robustness and general-
ization may be at odds with one another (Li et al.,
2021; Eger and Benz, 2020; Meng and Wattenhofer,
2020). Our experiments also indicate that although
adversarial training improves the Aaft−atk, there
is still a large drop in performance.

7

Starting Models
Attacker uses
FS/Co/Ap/Hy

Remove "All"
Punctuation and
finetune for more
epochs

Secured

Semi-Secure

Attacker uses whitespace after
FS/Co/Ap/Hy
insertion

Grammar
checker

puntuation
inserted by

mistake

Semi-Secure

Lower, but noticeable drop in performance.
There is still a large drop for some
tasks/datasets/models.

Attacker uses
Ap/Hy

Attacker
uses Hy

Attacker
uses Ap

Legend
Blue Red Green Yellow

Starting
Model

Broken
Model

Secured
Model

Defender
Action

Internal Punctuation Insertions

Broken Model RPos=F RPos=T
FS 18.4% 36.2%
Co 18.4% 35.8%
Ap 19.6% 39.0%
Hy 33.4% 47.2%Model still

vulnerable to
Ap/Hy

Internal Punctuation Insertions

Semi-Secure Model RPos=F Rpos=T
FS 71.2% 78.2%
Co 80% 81.6%
Ap 65.6% 77.0%
Hy 66.8% 74.2%

Model still
vulnerable to
Ap/Hy

Base "All" Model

Drop -2.6%
Orig Acc 81.2%

Base "Internal"
 Model

Drop -1.2%
Orig Acc 82.6%

Base Model
"Internal with Exception"

Drop 0%
Orig Acc 83.8%

Base Model
"All + Finetune"

Drop -0.6%
Orig Acc 84.7%

Broken Model
RPos=False

Ap 17%
Hy 29.4%

Broken Model
RPos=False

Hy 36.8%

Broken Model
RPos=False

Ap 23.4%

Base Model
"Adv Training With Ap"

Drop -0.2%
Orig Acc 84%

Base Model
"Adv Training With Hy"

Drop +0.2%
Orig Acc 84.4%

Base Model
"Finetune With Punctuation"

Drop 0%
Orig Acc 85.3%

Base Model
"Adv Training"

Drop 0%
Orig Acc 84.2%

Base Model

Drop 0%
Orig Acc 83.8%

Figure 5: Qualitative casual map for defender/attacker strategy (Section 5.4), values represent BERT–MR.

MR MNLI SNLI QNLI QQP
Attack/Dataset

40

50

60

70

80

90

Af
te
r A

tk
 A
cc
 [%

]

DWB
DWBP

Figure 6: Gray-box attacks against grammar checker

MR MNLI SNLI QNLI QQP
Attack/Dataset

55
60
65
70
75
80
85
90

Af
te
r A

tk
 A
cc
 [%

]

Zéroe Intrude (ZI)
DWB
ZIP

Figure 7: Black-box attacks against grammar checker

5.7 Semantic similarity of punctuation attacks

How similar are samples that have been perturbed
with punctuation to the originals? Earlier tests con-
cluded that removing punctuation is an impractical
defense technique. We now evaluate the pertur-
bation quality. Apostrophe and hyphen insertions
attained a perfect score of 1 for similarity across all
samples (in both human and automatic evaluations),
a 98% on reviewer classification accuracy (nomi-
nal Krippendorff’s alpha = 0.960), and a grammat-
ical correctness score difference of 1.29 between
the original samples (3.14/5) and adversarial sam-

ples (4.43/5), with ordinal Krippendorff’s alphas
of 0.459 and -0.004 for the original and adversar-
ial samples, respectively. We provide qualitative
examples in Table 2 to highlight how the sample
changes with punctuation insertions.

MR
(Negative
Sentiment)

A dark comedy that goes for sick and demented
humor simply to do so . the movie is without
intent .

TextFooler
(Positive
Sentiment)

A dark comedy that goes for psychopathic
and coot humor honestly to do so . the
film is without object .

DWBP
(Positive
Sentiment)

A dark comedy that goes for sick and
demented humor simply to do so . the movie
is withou’t intent .

Table 2: Qualitative examples of DWBP and TextFooler.
Bold words represent a perturbed word

Observation The grammar test is widely used
(Jin et al., 2020; Maheshwary et al., 2020). How-
ever, the low Krippendorff’s alphas for grammat-
ical correctness suggest the low reliability of the
test in indicating grammatical correctness. Analyz-
ing the visual effect of inserting punctuation makes
it possible to observe that the semantics remained
unchanged. However, such changes are very no-
ticeable to a human (Table 2).

5.8 Limiting punctuation and readability

Does limiting the punctuation types improve read-
ability? Our tests suggest that focusing on a few
types of punctuation facilitate meaning preserva-
tion (Section 5.7). Another reason to limit punctu-
ation insertions is to improve readability. To test
readability, we used TOWRE, where a reviewer
pronounces a list of words with four different per-
turbations in the test using the Zéroe algorithm with
p = 0.8 (high perturbation strength). The four types

8

are: 1) no perturbation (original); 2) ZIP with apos-
trophe (ZIP Ap), 3) ZI; and 4) character insertions.
ZI uses all punctuation symbols from Section 3.5
and character insertions uses all alphabetic charac-
ters. Our ZIP Ap method has the fastest reading
speeds. Specifically, Table 4 shows an improve-
ment in WPM from 7 WPM (chracter insertion) to
32 WPM (ZI) to 63 WPM (ZIP Ap), with a ratio
Krippendorff’s alpha of 0.977 and a consistent er-
ror rate reduction from character insertions (71.43)
to ZI (6.17) to ZIP Ap insertions (1.43). In terms
of reading speeds, ZIP Ap is an improvement over
character insertions by 800% and by 96% over ZI.

Observation Compared to character insertions
and ZI, apostrophe insertions by ZIP Ap are easier
and faster to read, as seen with the perfect semantic
similarity, WPM improvement, and error reduction.
We also show, for the first time, that an attacker
cannot use alphabetical character insertions in a
high perturbation black-box setting as the samples
become too scrambled (Table 3).

MNLI

Original
Premise

Not only that but they don’t
pay the money either

Hypothesis
They also do not contribute
financially.

Character
Insertions

Hypothesis
Thzezy also do not contribute
fdiunlavnyckiwaulvlwyv.

Zéroe
Intrude

Hypothesis
Th]e|y also do not contribute
f)i^n>a]n{c-i{a}l∗l{y’.

Insertions
(Full Stop)

Hypothesis
Th.e.y also do not contribute
f.i.n.a.n.c.i.a.l.l.y..

Table 3: Qualitative examples of FS Insertions vs ZI vs
Ch. Bold words represent a perturbed word

TOWRE Method

Original ZIP
Ap

Zéroe
Intrude

Character
Insertions

Time [s] 24.54 33.60 60.00 60.00
WPM 86.64±9.6 63.35±7.3 32.50±1.5 7.00±0
Errors 0.00±0 0.50±0.5 2.00±0 5.00±1
Error Rate [%] 0.00±0 1.43±1.4 6.17±0.2 71.43±14.3
Self-Corrections 1.00±0 0.50±0 1.50±0 0.50±0.5
Self-Correction Rate [%] 2.86±0 1.43±1.4 4.55±1.3 7.14±7.1

Table 4: Reading efficiency for the four perturbations

5.9 Limiting punctuation types
Is the attack still effective when using a limited
punctuation set? Despite limiting the types of punc-
tuation, ZIP performs similarly to ZI and better
than character insertions (Figure 8). The test in Fig-
ure 8 explores the ability of ZIP with Ap (apostro-
phe), Hy (hyphen), Co (comma), and FS (full stop)
insertions to generalize to black-box attacks. We
compare these ZIP intrusions to ZI with all punctu-
ation types and character insertions (Ch) with all al-
phabet letters using the ZI algorithm on MR-BERT.

Figure 8 shows the delta change in Aaft−atk for
each attack technique against the others for p = 0.8.
Each square represents the Aaft−atk from the x-
axis attack method minus the Aaft−atk from the
y-axis attack method. Table 14 in the Appendix
displays the Aaft−atk [%] and semantic similarity
(S) values for Figure 8. Limiting punctuation with
ZIP also avoids grammar checking better than us-
ing all punctuation types with ZI (Figure 7) as ZIP
can focus on one highly perturbing symbol.

Observation ZIP Ap achieved comparable re-
sults to that of Ch and ZI (Figure 8) where the dif-
ference is even smaller when comparing with other
models. Using character insertions can thus be
deemed counterproductive and should be avoided.
Attacks should instead focus on only one punctua-
tion type, such as Ap, since, compared to Ch and ZI
as Section 5.8 highlighted, readability is preserved.

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-27 -10 -2.2 3.8 -2.6

17 25 31 25

8 14 7.6

6 -0.4

-6.4

−18.0
−13.5
−9.0
−4.5

0.0
4.0
8.5
13.0
17.5

Figure 8: X-Axis Aaft−atk minus Y-Axis Aaft−atk.
ZIP (Ap, Hy, Co, Fs) vs ZI, Ch

6 Conclusion

Researching adversarial attacks aims to create a
toolbox to identify flaws and improve model ro-
bustness. Results show that punctuation insertions
as an attack are more effective than character ma-
nipulations (Figure 1) and alphabetical character
insertions (Figure 2) and better evade grammar
checkers (Figures 6, 7). Punctuation insertions
preserve more information and are faster to read
(Section 5.7, 5.9). Simple defenses and adversarial
training are not necessarily effective (Section 5.4,
5.6). The information-preserving characteristic of
this attack could potentially evade censorship. Con-
versely, this highlights that a system deployed to
combat fake news and offensive language propaga-
tion can potentially be compromised by this use of
punctuation. Our defense findings are summarized
in Figure 5. We hope this inspires further research
in the under-explored area of punctuation and how
to process it. The code is available1.

1Provided at EmpiricalPunctuationInsertionAttacks

9

https://github.com/Aniloid2/EmpiricalPunctuationInsertionAttacks

7 Limitations

This work considers only classification tasks,
which raises questions on whether such punctu-
ation types can generalize to research tasks such
as fake news, offensive content detection, and seq-
to-seq tasks such as translation. From our experi-
ments, we can conclude that punctuation insertion
attacks (DWBP) with one symbol (apostrophe or
hyphen), given our evaluation metrics work bet-
ter in terms of after-attack accuracy, readability,
and defense avoidance than alphabetical character
insertions. However, We’ve found some limita-
tions and cases where punctuation insertions with
apostrophes or hyphens don’t work better than the
alternative. For example, ZI with all punctuation
symbols can achieve on some datasets and models
a lower after-attack accuracy, therefore, a better
attack success rate Figure8 than using ZIP with an
apostrophe of 3.8%. This increase in performance,
however, has a cost since the sample will be harder
to read. We only tested on English language, punc-
tuation insertions on other languages are mostly
unexplored.

References
Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic

and natural noise both break neural machine transla-
tion. In Sixth International Conference on Learning
Representations.

Nicholas P. Boucher, Ilia Shumailov, Ross Anderson,
and Nicolas Papernot. 2021. Bad characters: Im-
perceptible nlp attacks. 2022 IEEE Symposium on
Security and Privacy (SP), pages 1987–2004.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4324–4333, Florence, Italy. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31–36,
Melbourne, Australia. Association for Computational
Linguistics.

Steffen Eger and Yannik Benz. 2020. From hero to
z’eroe: A benchmark of low-level adversarial attacks.
In Proceedings of the 1st Conference of the Asia-
Pacific Chapter of the Association for Computational
Linguistics and the 10th International Joint Confer-
ence on Natural Language Processing, pages 786–
803, Suzhou, China. Association for Computational
Linguistics.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1634–1647, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Adam Ek, Jean-Philippe Bernardy, and Stergios
Chatzikyriakidis. 2020. How does punctuation af-
fect neural models in natural language inference. In
Proceedings of the Probability and Meaning Con-
ference (PaM 2020), Gothenburg. Association for
Computational Linguistics.

Brian Formento, See-Kiong Ng, and Chuan Sheng Foo.
2021. Special symbol attacks on nlp. International
(Joint) Conference on Neural Networks.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective api built for detecting toxic com-
ments. corr abs/1702.08138 (2017). arXiv preprint
arxiv:1702.08138.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):8018–8025.

Bernard E. M. Jones. 1994. Exploring the role of punc-
tuation in parsing natural text. In COLING 1994

10

http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1711.02173
https://doi.org/10.48550/ARXIV.2106.09898
https://doi.org/10.48550/ARXIV.2106.09898
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://aclanthology.org/2020.aacl-main.79
https://aclanthology.org/2020.aacl-main.79
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://aclanthology.org/2020.pam-1.15
https://aclanthology.org/2020.pam-1.15
https://doi.org/10.1109/IJCNN52387.2021.9534254
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://aclanthology.org/C94-1069
https://aclanthology.org/C94-1069

Volume 1: The 15th International Conference on
Computational Linguistics, Kyoto, Japan.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021. Con-
textualized perturbation for textual adversarial attack.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5053–5069, Online. Association for Computa-
tional Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial text
against real-world applications. Proceedings 2019
Network and Distributed System Security Symposium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Rishabh Maheshwary, Saket Maheshwary, and Vikram
Pudi. 2020. Generating natural language attacks in a
hard label black box setting. In AAAI Conference on
Artificial Intelligence.

Zhao Meng and Roger Wattenhofer. 2020. A geometry-
inspired attack for generating natural language ad-
versarial examples. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6679–6689, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Takeru Miyato, Andrew M. Dai, and Ian Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification. In International Con-
ference on Learning Representations.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari
Asai, Jia Li, Philip Yu, and Caiming Xiong. 2020.
Adv-bert: Bert is not robust on misspellings! gener-
ating nature adversarial samples on bert.

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020. It’s morphin’ time! combating lin-
guistic discrimination with inflectional perturbations.
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Jessica M. Tarar, Elizabeth B. Meisinger, and Rachel H.
Dickens. 2015. Test review: Test of word reading
efficiency–second edition (towre-2) by torgesen, j. k.,
wagner, r. k., & rashotte, c. a. Canadian Journal of
School Psychology, 30(4):320–326.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Neural Information Process-
ing Systems.

Jin Yong Yoo and Yanjun Qi. 2021. Towards improv-
ing adversarial training of NLP models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 945–956, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combi-
natorial optimization. Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In International Conference on Learning Representa-
tions.

11

https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.48550/ARXIV.2012.14956
https://doi.org/10.48550/ARXIV.2012.14956
https://doi.org/10.18653/v1/2020.coling-main.585
https://doi.org/10.18653/v1/2020.coling-main.585
https://doi.org/10.18653/v1/2020.coling-main.585
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2003.04985
http://arxiv.org/abs/2003.04985
https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/10.1177/0829573515594334
https://doi.org/10.1177/0829573515594334
https://doi.org/10.1177/0829573515594334
https://doi.org/10.18653/v1/2021.findings-emnlp.81
https://doi.org/10.18653/v1/2021.findings-emnlp.81
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB

A Future Work

How punctuation attacks can augment an effective
adversarial learning schema is still an open ques-
tion. Our punctuation insertion serve as a founda-
tion for future punctuation manipulation. Hyphens,
for example, can be used to s-p-e-l-l out words,
syl-la-bi-fi-ca-tion, or to indicate s-stammering or
so-so-sobbing in a sentence. There is no research
exploring whether stammering or sobbing punctu-
ation perturbations could generate a high-quality
adversarial attack on NLP without compromising
the meaning.

Exploring whether the identified punctuation
types and attacks generalize to more complex pre-
diction tasks like fake news, offensive content de-
tection, and seq-to-seq tasks such as translation is
an interesting topic for future work.

B Appendix: Ethics Statement

This research was conducted in accordance with
the ACM Code of Ethics.

C Appendix: Task and Datasets

MR: The Rotten Tomatoes movie review dataset
holds a sentiment classification task with pos-
itive/negative reviews. QNLI: Is a question-
answering dataset where an annotator extracts the
answer from a reference text. The task is to allow
the model to predict whether the context sentence
holds the answer to the question. QQP: Is a du-
plicate question detection task, where the model is
required to detect if the two questions are asking the
same thing. SNLI: Is composed of human-written
sentence pairs where each annotator generates an
entailing for each given premise. MNLI: It is simi-
lar to SNLI but covers multiple genres.

Task Dataset Train Test Avg Len
(Test) Classes

Sentiment
Classification

MR 8.5k 1k 18.7 2

Entailment
MNLI 392k 9.8k 29.2 3
SNLI 550k 10k 21.4 3

Question
Answering

QNLI 105k 5.4k 37.6 2

Duplicate
Question

QQP 363k 40k 22.2 2

Table 5: Overview of datasets used in experiments

D Appendix: Methodology Details

Each attack composition has three components, a
word scoring function, a set of transformation func-

tions, and a search algorithm.

D.1 Gray-box
D.2 Step 1: Word scoring function
The original DeepWordBug paper introduces four
word scoring functions: Replace-1 Score, Tempo-
ral Head Score, Temporal Tail Score, and Com-
bination Score. All of which are now outdated.
Therefore, for the Gray-Box tests, we use the same
schema as that of TextFooler, popularized by BERT-
Attack (Li et al., 2020). BERT-Attack records
the original sentence’s inference logit. Then for
each word in the input, the word is deleted. BERT-
Attack then extracts a new logit with the remainder
of the sample, tracking the difference in value be-
tween the original logit and the new logit for each
word. It then regards the words with the most sig-
nificant output change as the most important to
f . The original input sentence x with τn words is
turned to zL tokens through a tokenizer function
Ft in z ∈ (z1...zL) tokens. To find the set of most
important words, which we call τR = {τ1...τk},
that need to be perturbed to attack f , the delete
schema associates a rank value Rk for each xτk , or
sample x without top word τk. Rk. Calculate τk
with:

Ri = f(Ft(x))xScore −f(Ft(xx∩x\τk
))xScore (1)

where x\τk = (τ1, ..., τk−1, τk+1, ..., τk). There-
after ∀Rk ∈ R each word τi are ranked highest to
lowest, resulting in τR, xScore represents the output
logit from model f .

D.3 Step 2: Transformation
For every top word in step 1, the second step finds
‘transformation’ candidates.

DeepWordBug returns four total candidates.
The first candidate has a random letter character
inserted in a random position. The second has a
random letter deleted. The third has a random letter
substituted with another, and the fourth changes the
position of two adjacent letters.

DeepWordBugPunc adds punctuation symbols
in the sentence to create candidates. The number
of candidates depends on γ, RPos, and RPunc. γ is
user-specific and is the punctuation types that can
be inserted. An example is γ = { - ’ }. With RPos
and RPunc It is possible to choose whether to insert
a γrandom punctuation symbol at a random location,
or return candidates for all possible punctuation
insertions and position of such insertions.

12

D.4 Step 3: Optimization

For every word, Algorithm 2 returns a set of trans-
formations. To choose which transformation is best
and whether to keep it, we explore Greedy Search
with Word Replacement (GSWR). GSWR is a time-
efficient query modification applied to the greedy
search algorithm. It replaces with a transformation
only words strongly correlated with a change in the
output when removed from the input. GSWR keeps
the transformation if the change creates a success-
ful perturbation. After an adversarial candidate is
found the semantic similarity is calculated, with a
deep learning model (Cer et al., 2018), between x
and x̂ with S

′
= Sim(x, x̂). GSWR will reject all

perturbations that do not meet a semantic similarity
threshold (set at 0.8).

If |τk| = 1 or the word is part of a predefined
set of stop words, the algorithm does not do the
operation. As the algorithm perturbs top words τk,
it checks for: if the i perturbation was successful at
reducing the logit score, if so, the algorithm keeps
the perturbation with γi, we define this new sample
as x̂. This is repeated until either f(x) ̸= f(x̂) or
the algorithm runs out of τk.

D.5 Multi-level extension

We also evaluated the performance of punctuation
insertions when used in conjunction with word-
level attacks. To conduct this assessment, we em-
ployed two baselines: 1) TextFooler, a popular
method that utilizes word synonyms from counter-
feited embeddings to perturb the sample (Jin et al.,
2020); and 2) SememePSO, a recent approach that
employs a sememe (e.g., a morpheme) to create a
word substitution, in conjunction with the use of
PSO (Zang et al., 2020).

D.5.1 Gray-box multi-level attack
We explored two multi-level attacks based on
TextFooler and SememePSO respectively:

• TextFooler/DWBP: This variant uses the same
word scoring function and the GSWR search
algorithm. However, τ̂k will be a mix of word
synonym and punctuation insertion transfor-
mations of τk.

• SememePSO/DWBP: This variant uses the
same word scoring function but with particle
swarm optimization (PSO) as a search tech-
nique. PSO uses a population-based evolu-
tionary algorithm that exploits the interactions

between individuals in a population to find a
solution in a search space. τ̂k will be a mix
of sememes (a type of word substitution) and
punctuation insertion transformations of τk.

We performed multi-level attacks to explore
their effect on deep learning models. The
TextFooler/DWBP and SememePSO/DWBP meth-
ods result in {τ̂k} having both word substitu-
tions and punctuation insertion candidates. For
TextFooler/DWBP, TextFooler returns 20-word sub-
stitutions, and since RPunc and RPos are both false,
DWBP returns K transformations. K is propor-
tionate to the number of letters in the word and the
length of γ. In our tests, γ = {-’}. Appendix D.5
gives an extended description for the two multi-
level attacks and the TextFooler/SememePSO base-
lines.

To be clear, although we change SememePSO
in the SememePSO/DWBP test and TextFooler
in the TextFooler/DWBP, we compare Se-
memePSO/DWBP and TextFooler/DWBP to their
unaltered baselines.

D.5.2 TextFooler
Where Line 6 returns only TextFooler’s word syn-
onym substitutions. For τk, the algorithm will
return 50-word substitutions. This baseline uses
GSWR.

D.5.3 TextFooler/DWBP
Line 6 in Algorithm 2 is changed to both call
TextFooler’s word substitution and DeepWordBug-
Punc’s punctuation insertion functionality and con-
catenating the resulting transformations in Transfor-
mation Set τ̂k. For TextFooler/DWBP, TextFooler
returns 20-word substitutions, and since RPunc
and RPos are both False, DWBP returns N num-
ber of transformations. N is proportionate to
the number of letters in the word and the length
of γ. In our Tests γ = { ’ - }. This base-
line uses GSWR. Hyperparameter-wise, we reduce
TextFooler/DeepWordBugPunc word embeddings
for TextFooler from 50 to 20 on all tasks.

D.5.4 SememePSO
uses word substitutions based on sememes together
with a different search algorithm based on particle
swarm optimization (PSO). We use an existing im-
plementation of SememePSO from the TextAttack
library. PSO exploits a swarm composed of indi-
vidual samples called particles that interact within
a space to find a solution iteratively. Every particle,

13

which in the case of SememePSO is a sample with
a sememe word substitution, has a position in the
search space and a velocity. Multiple samples with
a sememe word substitution form a swarm. Each
particle in the swarm is initialized with a random
velocity and position. PSO, after that, records for
each particle its own best position in the search
space and a global best position. This best position
is calculated using an optimization score, which
is the victim’s output logit for a classification task.
If one of the samples achieves the desired opti-
mization score, the algorithm is terminated since
this sample can attack the model. Otherwise, each
particle has its position and velocity updated with
values from the individual best position, global best
position, the inertia weight, two acceleration coeffi-
cients, and two random coefficients. The PSO com-
ponents would replace lines 10-13 in Algorithm
2.

D.5.5 SememePSO/DWBP
uses both sememe word substitutions and punc-
tuation insertions to construct {τk} and uses
PSO to find the best substitution out of this set.
Hyperparameter-wise for SememePSO/DWBP, the
attack is changed by reducing the SememePSO
population size from 60 to 5 (MR, QNLI) to 2
(MNLI, SNLI, and QQP) and reducing the number
of iterations from 20 to 2 for all tasks.

E Appendix: Implementation Details

E.1 Attack detail

All tests were carried out with the TextAttack (Mor-
ris et al., 2020) framework to ensure repeatability,
standardization, and ease of future integration. The
DeepWordBug baseline, for fairness comparison,
has a cosine semantic similarity constraint set to
0.8 with (Cer et al., 2018) to ensure the perturbed
sample does not differ too much from the origi-
nal sample and is comparable to other baselines.
For TextFooler, SememePSO we keep the default
implementation from TextAttack when comparing
them with DWBP in Table 1, Tables in Appendix J
and Figure 4,3.

For each sample, we keep the After attack ac-
curacy, the number of queries, semantic similarity,
and [%] of perturbed words. These metrics are
then averaged across 500 samples to complete each
test. All data was sourced from the test set of
their respective dataset and sampled under a com-
mon/standard seed ∈ 755, which is the standard

seed used in the TextAttack framework. For Deep-
WordBugPunc the tests in Section 5.2 have been
conducted on one punctuation symbol and with
RPos = False while γ = {’ -}, RPos = True and
RPunc = True for tests in section 5.3.

We used BERT, XLNET, and RoBERTa with
110 million parameters and DistilBERT with 66
million parameters. Every test has been run on a
32GB NVIDIA Tesla V100. The TextFooler and
DeepWordBugPunc tests took approximately be-
tween 30 min and 1 hour to run, while PSO took
between 5 and 10 hours. Regarding the human
studies, the participants were not paid and were
sourced from a lab at a university. All the partic-
ipants were made aware verbally of how the data
would be used. All scientific artifacts from this
paper will be made available on GitHub under an
MIT license.

It is possible to keep the perturbed words %,
semantic similarity, the average time taken, and
the average number of queries to concentrate on
changes in Aaft−atk by adding a word limit con-
straint on the % of words perturbed in the input.
We use this strategy to construct Figure 2.

E.2 Choice of symbols
The experiments in 5 narrow down a choice for γ.
We focus on the most frequent punctuation for each
dataset (Table 16 in the Appendix) and find that
the distribution of common punctuation is similar
across datasets. We therefore use all punctuation
for Section 5.1 and 5.5 and the ten most popular
symbols for Section 5.2, while the other tests focus
on apostrophes, hyphens, commas, and full stops
(the two most common internal and non-internal
symbols; Figure 2, Section 5.9; Figure 8). We
use the results from Sections 5.1 and 5.2 to justify
multi-level attacks with apostrophes and hyphens.
γ = {-’} is a good choice since they are internal
punctuation and create added problems to the de-
fender (see Sections 5.4 and 5.5). The human stud-
ies in Sections 5.7 and 5.8 tested γ = {-’} and γ =
{’}; we did not do human tests on other punctuation
insertions as they are visually similar. Nonetheless,
we believe the results will be similar regardless of
the punctuation type inserted (full stop, comma,
apostrophe, or hyphen).

E.3 Adversarial training details
The standard adversarial technique in (Morris et al.,
2020; Yoo and Qi, 2021) works by, at each epoch,
finding the adversarial sample for each datapoint

14

(if it exists). It then extends the base dataset by
20% using the adversarial data. For MR, we do
fine-tuning and adversarial training for 4 epochs
with a batch size of 16 and a learning rate of 2e−5.
We compare this by fine-tuning the same model
using the same hyperparameters but on the base
dataset.

F Appendix: Human Evaluation Details

F.1 Appendix: Gray-box and multi-level
human evaluation

We follow the evaluation strategy used in
TextFooler (Jin et al., 2020) and Hard-Label (Ma-
heshwary et al., 2020). Therefore evaluate the qual-
ity of the generated samples across three metrics;
Grammatical Correctness: Measures in the Likert
scale, between 1 and 5. The reviewer compares the
adversarial sentence to the grammar of the original
as a reference. Classification: Asks the reviewer
to classify the sample. We then check if the hu-
man classification matches the true label, Similar-
ity: The user inputs a number representing one of
three choices where dissimilar is 0, ambiguous 0.5,
and 1 similar. The three tests were conducted with
two native English-speaking students from India
and the UK who have a tertiary university educa-
tion. They were trained using 3 test samples. We
sampled 100 samples at random from MR targeting
BERT for this test.

F.2 Appendix: Black-box human evaluation

Finally, we introduce a novel application of
TOWRE (Tarar et al., 2015). To generate the word
list, we extract all words from the NLTK python
package and pick six words randomly for each
word length between 4 and 9. The reviewer pro-
nounces 36 words as accurately and fast as possible.
The test reports the number of words correctly pro-
nounced, the number of errors, self-corrections,
and the time to pronounce the 36 words or the num-
ber correctly pronounced in 1 minute. The WPM
(Words Per Minute) metric extrapolates from the
time or the correct number of words. The reviewers
conducting TOWRE are from Singapore and Brazil.
Both hold tertiary education. All the tests were con-
ducted in one sitting and took 15 minutes each. To
ensure no duplicates existed in the word list, we
manually checked the 145 words across the 4 tests
and found no duplicates. TOWRE was initially
introduced to measure sight word reading fluency.
It is widely used in clinical practices to diagnose

dyslexia or reading difficulties in children.

F.3 Krippendorff’s alpha

We use the Krippendorff’s Alpha reliability metric
to detect whether a test has statistical significance.
Krippendorff’s Alpha extracts a value between -
1 and 1 after highlighting the agreement between
multiple reviewers in a trial. This metric can calcu-
late statistical reliability for nominal (classification,
semantic similarity), ordinal (grammar test), and
ratio (WPM) data types. A value close to -1 rep-
resents complete disagreement between reviewers
normalizing by chance, 0 represents neither statis-
tical agreement nor disagreement, and 1 is perfect
agreement.

G Extra Findings

G.1 Punctuation as a multi-level attack

Extra Observation We find an interesting trade-
off between Aaft−atk, sample quality, and attack
time efficiency depending on the influence of
punctuation insertions over the word-level attacks.
Hyperparameter-wise, the changes in Section D.5.1
increase the attack effectiveness of punctuation in-
sertions by decreasing classification accuracy after
the attack (Aaft−atk) while increasing the qual-
ity/meaning/readability of the text. These changes
are also more efficient compared to other hyperpa-
rameters because the number of queries and amount
of time taken to optimize the sample are decreased.

Other hyperparameters can achieve lower
Aaft−atk but at the cost of time, queries, and sam-
ple quality. We hypothesize that this interesting
behavior derives from punctuation insertions being
unconstrained by a similarity constraint. These at-
tacks can inject information from different parts of
the embedding space by inserting punctuation and
avoiding word substitutions. Analyzing the visual
effect of inserting punctuation makes it possible
to observe that the semantics remained unchanged.
However, such changes are more noticeable than
word substitutions (Table 2).

H Appendix: Extended Budget Study

Figure 9 illustrates how the Asucc−rte improves as
each word in the sample can be either replaced with
N synonyms (TextFooler) or have one of N punc-
tuation characters inserted in the word (DWBP)
in four different ways according to how the flags
RPos/RPunc are set. The behavieour of RPos and

15

RPunc changes DWBP, as previously explained in
Section 3.3.

Increasing the number of word synonyms in
TextFooler or potential punctuation symbols in
DWBP results in more transformations (τ̂k) that the
GSWR algorithm needs to evaluate by performing
queries to the victim model, therefore seaching for
the optimal transformation. The query response is
shown in Figure 10. Both tests suggest that DWBP
performs better with limited word synonyms and
limited queries from the attacker. On the other
hand, TextFooler performs better when the algo-
rithm has many synonym candidates to chose from
for each word.

0 1 2 3 4 5 6 7 8 9 10
N Embeddings/Characters

10

30

50

70

90

At
k
Su

cc
 R
at
e
[%

]

TextFooler
DWBP RPos=T/RPunc=F
DWBP RPos=F/RPunc=F
DWBP RPos=T/RPunc=T
DWBP RPos=F/RPunc=T

Figure 9: After Success Rate (higher is better) as the
number of characters in γ is increased for DWBP vs the
number N of synonyms is increased for TextFooler

20 30 40 50 60 70 80 90
Queries

10
20
30
40
50
60

Af
te
r A

tk
 A
cc
 [%

] TextFooler
DWBP RPos=T/RPunc=F
DWBP RPos=F/RPunc=F
DWBP RPos=T/RPunc=T
DWBP RPos=F/RPunc=T

Figure 10: After Attack Accuracy (Lower is better) vs
the number of queries required to find an adversarial
solution. Each point represents the number of unique
punctuation symbols (for DWBP) or synonyms (for
TextFooler) from 1 to 10

I Appendix: Extended
Non-Grammar/Grammar Checker
Attack Results

The extended results of DWBP when a model em-
ploys a grammar checker (Language Tool) as a

defense technique are in Table 6. The table is with
RPos = False. With RPos = True (Table 8), al-
though it requires less queries the attack is not
as effective, especially when there is a grammar
checker (Figure 11 and 12). We also report the re-
sults for the most frequent non internal punctuation
with RPos = False (Table 7) and with RPos = True
(Table 9). Limiting punctuation is also effective
against a grammar checker. The findings in fact
generalize to a black box attack (Table 10). This
table shows that Zeroe with all characters is ineffec-
tive and limiting punctuation is competitive with a
gray-box character attack technique.

MR MNLI SNLI QNLI QQP
Attack/Dataset

60

65

70

75

80

85

90

Af
te
r A

tk
 A
cc
 [%

]

DWB
DWBP

Figure 11: Summary of ’With Grammar Checker’ (Ta-
ble 8 and 9) Aaft−atk across datasets with RPos = True

MR MNLI SNLI QNLI QQP
Attack/Dataset

20

30

40

50

60

Af
te
r A

tk
 A
cc
 [%

]

DWB
DWBP

Figure 12: Summary of ’Without Grammar Checker’
(Table 8 and 9) Aaft−atk across datasets with RPos =
True

J Appendix: Extended Multi-level Attack
Results

The results for multi-level DWBP and DWBP on
MR, MNLI, SNLI, QQP and QNLI across all mod-
els is shown in Table 11,12,13

16

Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWB 34.2 9.86 0.87 32.3 66.4 7.41 0.88 26.23
DWBP - 26.6 14.24 1 44.09 54.6 9.61 1 29.9
DWBP ’ 14.8 16.86 1 43.23 53.8 10.3 1 28.22

LSTM
(77)

DWB 29.2 10.16 0.87 32.05 66 7.5 0.88 26.32
DWBP - 26.4 13.71 1 43.1 53.8 10.8 1 30.02
DWBP ’ 19.2 14.91 1 42.2 55.6 10.33 1 28.44

BERT
(83.8)

DWB 43.2 10.79 0.87 35.5 77.8 8.4 0.89 26.95
DWBP - 33.4 14.59 1 46.51 66.8 11.75 1 31.58
DWBP ’ 19.6 17.89 1 47.02 65.6 12.54 1 29.52

RoBERTa
(88)

DWB 50 11.58 0.87 35.17 80.8 8.64 0.87 26.73
DWBP - 36.2 16.44 1 45.88 71.2 12.66 1 31.25
DWBP ’ 18.8 19.64 1 47.53 72.6 13.14 1 30.02

XLNet
(87)

DWB 43.4 11.06 0.86 34.92 78.2 7.77 0.88 26.89
DWBP - 35.8 15.77 1 46.29 70 12.69 1 31.58
DWBP ’ 20.2 19.63 1 47.86 71 12.02 1 30.11

MNLI

BERT
(82.8)

DWB 15.6 7.67 0.9 38.98 62.2 5.94 0.91 31.89
DWBP - 18.4 7.61 1 39.07 46 7.42 1 33.82
DWBP ’ 12.2 8.62 1 40.36 42.6 8.62 1 33.85

DistilBERT
(80.6)

DWB 17.8 7.24 0.9 38.84 60.4 6.15 0.9 31.82
DWBP - 18.6 7.54 1 38.93 42.4 7.25 1 33.68
DWBP ’ 12 8.22 1 40.19 42 8.39 1 33.7

SNLI

BERT
(91.2)

DWB 13.4 8.45 0.88 29.58 69.4 6.28 0.89 23.83
DWBP - 18.8 7.44 1 29.71 51.2 7.41 1 25.41
DWBP ’ 10.2 8.28 1 30.23 52.4 7.7 1 25.12

DistilBERT
(86.6)

DWB 12.8 8.51 0.89 29.92 72 6.13 0.89 24.25
DWBP - 19.4 7.48 1 29.73 52.6 7.14 1 25.65
DWBP ’ 7.4 8.79 1 30.56 48.8 8.4 1 25.45

QNLI

BERT
(91.2)

DWB 30.8 8.98 0.9 65.04 74 6.37 0.92 47.69
DWBP - 38 7.7 1 70.61 59.8 7.4 1 51.46
DWBP ’ 27.6 9.54 1 75.12 55.4 8.56 1 51.86

RoBERTa
(92)

DWB 36.4 9.79 0.9 65.86 80.6 5.99 0.93 47.94
DWBP - 44.8 9.39 1 76.46 71.6 7.08 1 52.79
DWBP ’ 32 11.36 1 80.47 66.6 8.86 1 53.72

DistilBERT
(86.2)

DWB 28.4 9.23 0.91 63.68 73.4 6.23 0.92 47.96
DWBP - 35.4 7.87 1 71.42 58.6 6.55 1 51.5
DWBP ’ 26.2 9.41 1 74.53 55.4 7.56 1 51.94

QQP

BERT
(90.4)

DWB 46.8 8.42 0.9 39.42 79.6 7.48 0.9 25.79
DWBP - 50.6 7.4 1 39.24 61.2 8.07 1 28.58
DWBP ’ 47 8.44 1 41.98 62.8 8.95 1 28.68

DistilBERT
(90.8)

DWB 41 9.77 0.89 37.87 79.4 7.01 0.91 25.97
DWBP - 53.2 7.35 1 38.67 62.8 8.11 1 28.53
DWBP ’ 45 9.16 1 41.62 61.4 9.37 1 28.7

XLNet
(91.2)

DWB 44.6 9.58 0.89 38.93 79.6 7.44 0.9 25.95
DWBP - 53.2 8.85 1 38.91 68.8 9.65 1 28.6
DWBP ’ 47.6 10.18 1 42.8 70.2 10.46 1 29.05

Table 6: Results without (Original) and when using the LanguageTool grammar checker with RPos=False and
internal punctuation

K Appendix: Black-Box Heatmaps

The extended results for the performance differ-
ence between ZIP (apostrophe (Ap), hyphen (Hy),
comma (Co), full stop (FS) and for QQP question
mark (Qu)), character insertions, Zéroe on MR,
MNLI, SNLI, QQP and QNLI are in Figure14 for
LSTM on MR, Figure 13 for BERT on MR, Figure
16 for DistilBERT on MNLI, Figure 15 for BERT
on MNLI,18 for DistilBERT on SNLI, Figure 17
for BERT on SNLI, 20 for DistilBERT on QNLI,
Figure 19 for BERT on QNLI, 22 for DistilBERT
on QQP, Figure 21 for BERT on QQP. For BERT
on MR we present the values to construct figure 13
in Table 14 as an example.

L Appendix: Punctuation vs Characters

The extended results for the performance increase
in terms of after attack accuracy between insert-
ing letters and punctuation (apostrophe, hyphen,
comma, full stop), character insertions, Zéroe on
MR, MNLI, SNLI, QQP and QNLI are in Figure
23 for LSTM on MR, Figure 24 for BERT on MR,
Figure 25 for DistilBERT on MNLI, Figure 26 for
BERT on MNLI,27 for DistilBERT on SNLI, Fig-
ure 28 for BERT on SNLI, 29 for DistilBERT on
QNLI, Figure 30 for BERT on QNLI, 31 for Distil-
BERT on QQP, Figure 32 for BERT on QQP.

The results show a constant improvement across
all tasks except for QQP when inserting punctua-
tion. Interestingly the strongest punctuation inser-

17

Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWBP . 15.4 16.61 0.97 44.1 62.2 9.43 0.99 27.42
DWBP , 14.6 16.84 1 43.2 71 6.14 1 24.27
DWBP " 27.2 14.12 1 44.2 75.8 4.47 1 22.11

LSTM
(77)

DWBP . 19.4 14.86 0.97 42.93 63.4 8.73 0.99 27.31
DWBP , 19.2 14.91 1 42.2 72.6 5.76 1 24.28
DWBP " 26.6 13.62 1 43.16 76.2 4.7 1 22.01

BERT
(83.8)

DWBP . 18.4 16.72 0.97 45.57 71.2 10.1 0.98 27.81
DWBP , 18.4 16.64 1 45.78 80 9.1 1 24.57
DWBP " 29.4 14.43 1 44.94 83.2 6.15 1 22.32

RoBERTa
(88)

DWBP . 19.4 19.35 0.96 48.81 79.2 9.96 0.98 28.22
DWBP , 18.6 19.53 1 47.12 85 5.06 1 24.6
DWBP " 34.6 16.5 1 46.49 87.4 6.24 1 22.34

XLNet
(87)

DWBP . 17.8 19.85 0.97 48.34 75.6 10.44 0.99 28.31
DWBP , 18 19.68 1 47.46 84.4 5.85 1 24.7
DWBP " 34 15.89 1 45.69 87 0 0 22.41

MNLI

BERT
(82.8)

DWBP . 14 7.94 1 39.98 47.8 7.46 1 32.62
DWBP , 12.6 7.77 1 39.59 76 4.1 1 30.09
DWBP) 11.6 8.08 1 40.04 71.2 5.38 1 30.4

DistilBERT
(80.6)

DWBP . 12.8 7.36 1 39.47 45.4 7.28 1 32.37
DWBP , 13.2 7.41 1 39.28 74 5.28 1 30.07
DWBP) 10.4 7.95 1 39.49 70.4 6.22 1 30.4

SNLI

BERT
(91.2)

DWBP . 10 7.88 1 29.98 57 6.92 1 24.2
DWBP , 10.6 8.31 1 30.08 85.6 5.92 1 22.54
DWBP " 17 7.75 1 29.79 91.2 0 0 22.13

DistilBERT
(86.6)

DWBP . 9.6 8.14 1 30.26 54 7.55 1 24.6
DWBP , 4 8.84 1 30.19 80.6 5.91 1 23.01
DWBP " 16.8 7.36 1 29.58 85.8 5.81 1 22.58

QNLI

BERT
(91.2)

DWBP , 25 9.36 1 73.9 83.6 5.12 1 42.49
DWBP . 26.8 9 1 74.66 66.6 7.27 1 48.93
DWBP ? 25 9.92 1 74.08 58.2 8.33 1 50.53

RoBERTa
(92)

DWBP , 28.6 12.23 1 79.46 88.6 4.62 1 42.47
DWBP . 32.2 11.6 1 80.69 76.4 7.69 1 49.69
DWBP ? 31.4 11.84 1 81.15 71 8.39 1 52.09

DistilBERT
(86.2)

DWBP , 19 10.09 1 70.73 79.2 4.93 1 42.5
DWBP . 19.2 9.66 1 70.2 63 7.11 1 48.87
DWBP ? 23.2 7.66 1 71.08 46.4 7.78 1 49.13

QQP

BERT
(90.4)

DWBP ? 46.2 8.41 1 41.96 64.4 8.33 1 28.03
DWBP , 48.6 8.29 1 42.31 86.8 6.28 1 23.5
DWBP " 49.4 7.78 1 39.01 88.6 8.86 1 23.28

DistilBERT
(90.8)

DWBP ? 43.4 9.39 1 41.27 64.8 9.39 1 28.04
DWBP , 46.2 8.98 1 41.69 87.2 6.27 1 23.54
DWBP " 50.4 7.82 1 37.95 88.2 6.98 1 23.26

XLNet
(91.2)

DWBP ? 47.4 10.19 1 42.83 70.8 10.65 1 28.33
DWBP , 47.6 10.34 1 42.64 89.2 7.12 1 23.6
DWBP " 53.8 9.45 1 38.69 89.4 7.64 1 23.32

Table 7: Results without (Original) and when using the LanguageTool grammar checker with RPos=False and most
frequent non internal punctuation from Table 16

tion appears to vary between tasks. For example,
the comma is the strongest in MNLI for BERT,
while the full stop is strongest for SNLI on BERT.
Moreover, whether there are character insertions
or punctuation insertions in the QQP task seems
to have little to no difference; at times, character
insertions are better, for example, when inserting a
hyphen in QQP when trained on BERT. We spec-
ulate that QQP is hard to attack, whether using
character or punctuation insertions. It could be
hard to attack because a model is sensitive to sam-
ples with similar question pairs. Hence, it is easy
to perturb them to become unsimilar by adding
character or punctuation symbols. However, to per-
turb a nonsimilar question pair to become similar is
harder, and neither character nor punctuation sym-

bols can do this. Future research to prove this can
investigate this phenomenon by plotting the ROC
and Precision/Recall graphs. However, the high
Aaft−atk in 13 and Table 6 in the Appendix, espe-
cially compared to other tasks, is a good indication
of this theory being correct. Exploring the reasons
behind these phenomena, and introducing a novel
attack that can further decrease the Aaft−atk of
QQP, could be an interesting entry point for future
research.

M Appendix: Adversarial training results

See Table 15 for the results of adversarial training
using DWBP with hyphen insertions.

18

Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWB 34.2 9.86 0.87 32.3 66.4 7.41 0.88 26.23
DWBP - 26.8 14.18 1 26.54 67 9.42 1 24.39
DWBP ’ 14.8 16.85 1 26.37 68.4 7.11 1 23.99

LSTM
(77)

DWB 29.2 10.16 0.87 32.05 66 7.5 0.88 26.32
DWBP - 26.6 13.57 1 26.23 64.2 9.43 1 24.29
DWBP ’ 19.2 14.91 1 26.05 67.2 7.87 1 23.87

BERT
(83.8)

DWB 43.2 10.79 0.87 35.5 77.8 8.4 0.89 26.95
DWBP - 47.2 15.49 1 28.67 74.2 11.05 1 24.86
DWBP ’ 39 18.21 1 28.94 77.4 9.61 1 24.37

RoBERTa
(88)

DWB 50 11.58 0.87 35.17 80.8 8.64 0.87 26.73
DWBP - 55.2 16.24 1 28.58 81.2 11.28 1 24.85
DWBP ’ 43.6 19.12 1 29.43 83.8 9.48 1 24.45

XLNet
(87)

DWB 43.4 11.06 0.86 34.92 78.2 7.77 0.88 26.89
DWBP - 57.6 14.6 1 28.79 79.2 9.35 1 25.02
DWBP ’ 47.4 19.22 1 29.72 82.4 9.04 1 24.55

MNLI

BERT
(82.8)

DWB 15.6 7.67 0.9 38.98 62.2 5.94 0.91 31.89
DWBP - 33.8 7.99 1 32.58 63.4 6.84 1 31.42
DWBP ’ 26 9.54 1 33.04 68 6.56 1 31.21

DistilBERT
(80.6)

DWB 17.8 7.24 0.9 38.84 60.4 6.15 0.9 31.82
DWBP - 31.4 8.25 1 32.49 60 6.9 1 31.29
DWBP ’ 24.4 9.5 1 32.88 62.8 6.89 1 31.24

SNLI

BERT
(91.2)

DWB 13.4 8.45 0.88 29.58 69.4 6.28 0.89 23.83
DWBP - 39.8 8.43 1 24.63 72.6 7.02 1 23.43
DWBP ’ 33.8 10.12 1 24.98 76.4 6.9 1 23.14

DistilBERT
(86.6)

DWB 12.8 8.51 0.89 29.92 72 6.13 0.89 24.25
DWBP - 40.8 7.8 1 24.89 72.8 6.45 1 23.74
DWBP ’ 28.6 9.7 1 25.2 72 6.43 1 23.52

QNLI

BERT
(91.2)

DWB 30.8 8.98 0.9 65.04 74 6.37 0.92 47.69
DWBP - 48.4 7.95 1 47.62 76.4 6.07 1 43.75
DWBP ’ 39.6 9.55 1 48.67 77.8 6.34 1 43.71

RoBERTa
(92)

DWB 36.4 9.79 0.9 65.86 80.6 5.99 0.93 47.94
DWBP - 62.4 8.56 1 49.13 83.4 5.86 1 43.96
DWBP ’ 52.6 10.83 1 50.83 84.4 6.18 1 43.75

DistilBERT
(86.2)

DWB 28.4 9.23 0.91 63.68 73.4 6.23 0.92 47.96
DWBP - 48.6 7.85 1 47.87 75.2 6.15 1 43.89
DWBP ’ 39.8 9.57 1 48.88 75 6.43 1 43.88

QQP

BERT
(90.4)

DWB 46.8 8.42 0.9 39.42 79.6 7.48 0.9 25.79
DWBP - 54.2 8.53 1 27.46 73.4 7.95 1 25.1
DWBP ’ 52.4 9.22 1 28.01 77.6 7.72 1 25.05

DistilBERT
(90.8)

DWB 41 9.77 0.89 37.87 79.4 7.01 0.91 25.97
DWBP - 57.4 8.1 1 27.44 73.4 7.67 1 25.12
DWBP ’ 52.4 10.39 1 28.1 78.8 7.68 1 25.15

XLNet
(91.2)

DWB 44.6 9.58 0.89 38.93 79.6 7.44 0.9 25.95
DWBP - 59.8 9.91 1 27.53 81.4 8.07 1 25.26
DWBP ’ 60.2 11.18 1 28.46 84.4 8.75 1 25.32

Table 8: Results without (Original) and when using the LanguageTool grammar checker with RPos=True and
internal punctuation

N Appendix: Analysis

N.1 Empirical punctuation counts across
datasets

The variance of symbols within each dataset is high.
Table 16 shows the number of punctuation symbols
and their proportion as a percentage of other char-
acters for each dataset. The table is subdivided into
‘Total Punctuation’ and ‘Internal punctuation’ or
the punctuation only appearing within words, such
as apostrophes and hyphens. This distinction is
essential, as Section 5 empirically motivates why
punctuation can be used as an attack vector and
cannot be easily defended.

N.2 Removing Punctuation

Table 17 shows the impact on all models across all
datasets of removing either all punctuation, only in-
ternal punctuation, or just removing internal punc-
tuation except the apostrophe and hyphen, which
the two punctuation characters over-represented
within words, as seen from Table 16. On the other
hand, Table 18 shows how the original accuracy
changes if the models are finetuned on data with
no punctuation.

N.3 Most frequent punctuation in dataset
attack

Table 19 highlights the drop in performance by the
type of punctuation symbol used in the attack. The
attack uses the most frequent symbols in a sample

19

Dataset Model
(Orig Acc) Method Without Grammar Checker With Grammar Checker

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Avg Number
Queries

MR

CNN
(76.6)

DWBP . 16.2 16.41 0.97 26.34 70.2 7.21 0.99 23.51
DWBP , 14.6 16.83 1 26.35 74 4.55 1 22.47
DWBP " 27 14.15 1 26.56 76.2 5 1 21.89

LSTM
(77)

DWBP . 20 14.68 0.98 26.03 70.2 7.21 0.99 23.34
DWBP , 19.2 14.91 1 26.05 74.8 6.37 1 22.34
DWBP " 26.6 13.58 1 26.23 76.6 4.67 1 21.77

BERT
(83.8)

DWBP . 36.2 16.26 0.97 28.47 78 7.74 0.98 23.73
DWBP , 35.8 16.19 1 28.5 81.6 8.65 1 22.64
DWBP " 44.4 13.91 1 28.33 83.2 6.15 1 22.05

RoBERTa
(88)

DWBP . 46 18.44 0.98 29.42 86 8.91 1 23.85
DWBP , 42.8 18.9 1 29.25 87.4 5.94 1 22.66
DWBP " 55.2 14.86 1 28.55 88 0 0 22.09

XLNet
(87)

DWBP . 43.6 18.52 0.97 29.4 84.4 7.22 0.99 23.95
DWBP , 45.6 18.53 1 29.53 85.2 6.39 1 22.79
DWBP " 56.4 15.3 1 28.73 87 0 0 22.16

MNLI

BERT
(82.8)

DWBP . 22 9.63 1 32.86 63.8 5.92 1 30.76
DWBP , 23.2 8.76 1 32.79 79.8 3.76 1 29.71
DWBP) 22.8 9.64 1 32.9 77.2 5.11 1 29.95

DistilBERT
(80.6)

DWBP . 21.8 8.77 1 32.65 62 5.76 1 30.75
DWBP , 22.4 9.01 1 32.67 77.6 5.09 1 29.67
DWBP) 21.2 9.15 1 32.67 77.2 4.52 1 29.93

SNLI

BERT
(91.2)

DWBP . 33.4 9.17 1 24.87 76.4 6.76 1 22.85
DWBP , 31 9.68 1 24.85 89 6.53 1 22.21
DWBP " 39.8 9.23 1 24.69 91.2 0 0 22.09

DistilBERT
(86.6)

DWBP . 29.4 9.68 1 25.21 75.8 5.86 1 23.25
DWBP , 30.4 9.33 1 25.15 85.2 4.71 1 22.64
DWBP " 37.2 8.34 1 24.87 86.2 5.16 1 22.52

QNLI

BERT
(91.2)

DWBP , 37.6 9.79 1 48.5 88.6 4.99 1 40.14
DWBP . 40.6 8.98 1 48.59 81.6 5.01 1 42.52
DWBP ? 36.2 9.99 1 48.36 81.4 5.05 1 43.1

RoBERTa
(92)

DWBP , 52.4 11.43 1 50.71 89.8 3.76 1 39.97
DWBP . 56.4 9.99 1 51 87 4.62 1 42.45
DWBP ? 54.8 10.6 1 51.06 85.8 5.22 1 43.05

DistilBERT
(86.2)

DWBP , 36.8 10.06 1 48.7 82.8 4.97 1 40.1
DWBP . 33.8 9.62 1 47.88 77 5.09 1 42.46
DWBP ? 35 8.13 1 47.85 69.2 5.27 1 42.67

QQP

BERT
(90.4)

DWBP ? 54.8 9.45 1 28.08 78.4 8.18 1 24.79
DWBP , 53.6 9 1 28.01 88.8 8.2 1 23.08
DWBP " 55.4 8.41 1 27.45 90.2 5 1 23

DistilBERT
(90.8)

DWBP ? 53.6 9.86 1 28.07 80.4 7.6 1 24.81
DWBP , 54.4 10.1 1 28.17 89 6.4 1 23.11
DWBP " 56.4 8.82 1 27.38 89.8 7.36 1 23.03

XLNet
(91.2)

DWBP ? 58.8 11.63 1 28.51 83.6 7.68 1 24.88
DWBP , 58.4 11.57 1 28.46 90.6 7.82 1 23.15
DWBP " 64.4 10.14 1 27.63 90.4 6.98 1 23.1

Table 9: Results without (Original) and when using the LanguageTool grammar checker with RPos=True and most
frequent non internal punctuation from Table 16

for each task in Table 16.

20

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

-1.4 0.8 -0.6 0.2 -0.8
2.2 0.8 1.6 0.6

-1.4 -0.6 -1.6
0.8 -0.2

-1

MR:BERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-7 0.2 1.4 6.6 0
7.2 8.4 14 7

1.2 6.4 -0.2
5.2 -1.4

-6.6

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-27 -10 -2.2 3.8 -2.6
17 25 31 25

8 14 7.6
6 -0.4

-6.4

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 13

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

0 0 0 0 -0.2
0 0 0 -0.2

0 0 -0.2
0 -0.2

-0.2

MR:LSTM

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-6.8 -0.2 -0.2 -0.2 0
6.6 6.6 6.6 6.8

0 0 0.2
0 0.2

0.2

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-18 0 0 0 0
18 18 18 18

0 0 0
0 0

0

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 14

21

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

-0.6 4.6 3.4 3.4 -1.6
5.2 4 4 -1

-1.2 -1.2 -6.2
0 -5

-5

MNLI:BERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-9.2 7 6.2 9 -2.2
16 15 18 7

-0.8 2 -9.2
2.8 -8.4

-11

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-19 2.8 2.4 3.2 -2.8
22 21 22 16

-0.4 0.4 -5.6
0.8 -5.2

-6

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 15

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

2.6 5.8 3.6 2.8 -1
3.2 1 0.2 -3.6

-2.2 -3 -6.8
-0.8 -4.6

-3.8

MNLI:DISTILBERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-8 8.4 7.2 8.2 -2.8
16 15 16 5.2

-1.2 -0.2 -11
1 -10

-11

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-28 -1.6 -0.4 2 -5.8
26 28 30 22

1.2 3.6 -4.2
2.4 -5.4

-7.8

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 16

22

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

0.4 -0.8 0.4 2 -1.8
-1.2 0 1.6 -2.2

1.2 2.8 -1
1.6 -2.2

-3.8

SNLI:BERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-0.8 1 7.4 7.2 -6.6
1.8 8.2 8 -5.8

6.4 6.2 -7.6
-0.2 -14

-14

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-9 2 6.2 6.2 -3.8
11 15 15 5.2

4.2 4.2 -5.8
0 -10

-10

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 17

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

-0.8 0 0.6 0.4 -0.8
0.8 1.4 1.2 0

0.6 0.4 -0.8
-0.2 -1.4

-1.2

SNLI:DISTILBERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-7 0.8 1.4 5.6 -1.6
7.8 8.4 13 5.4

0.6 4.8 -2.4
4.2 -3

-7.2

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-25 2 1 3.8 -3.2
27 26 29 22

-1 1.8 -5.2
2.8 -4.2

-7

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 18

23

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

0.6 0.4 -0.4 0.2 -1.4
-0.2 -1 -0.4 -2

-0.8 -0.2 -1.8
0.6 -1

-1.6

QNLI:BERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-5 -0.6 -0.6 -0.4 1.8
4.4 4.4 4.6 6.8

0 0.2 2.4
0.2 2.4

2.2

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-20 0.8 0.2 4.2 -0.8
21 20 24 19

-0.6 3.4 -1.6
4 -1

-5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 19

Ap Hy Co FS ZI Ch
P = 0.2

Ap

Hy

Co

FS

ZI

Ch

-1 0.4 0.4 0.4 -1.4
1.4 1.4 1.4 -0.4

0 0 -1.8
0 -1.8

-1.8

QNLI:DISTILBERT-BASE-UNCASED

Ap Hy Co FS ZI Ch
P = 0.5

Ap

Hy

Co

FS

ZI

Ch

-9.8 -4.4 -2.4 -1.8 -4.4
5.4 7.4 8 5.4

2 2.6 0
0.6 -2

-2.6

Ap Hy Co FS ZI Ch
P = 0.8

Ap

Hy

Co

FS

ZI

Ch

-23 -6 -2.2 -2.2 -5.6
17 20 20 17

3.8 3.8 0.4
0 -3.4

-3.4

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 20

24

Ap Hy Co FS Qu ZI Ch
P = 0.2

Ap
Hy
Co
FS
Qu
ZI
Ch

-0.6 -0.2 -0.4 -0.4 -0.6 -1
0.4 0.2 0.2 0 -0.4

-0.2 -0.2 -0.4 -0.8
0 -0.2 -0.6

0.4 0
-0.6

QQP:BERT-BASE-UNCASED

Ap Hy Co FS Qu ZI Ch
P = 0.5

Ap
Hy
Co
FS
Qu
ZI
Ch

-4.4 0.6 -1.4 1.8 -3.4 -2
5 3 6.2 1 2.4

-2 1.2 -4 -2.6
3.2 -2 -0.6

-1.4 0
-3.8

Ap Hy Co FS Qu ZI Ch
P = 0.8

Ap
Hy
Co
FS
Qu
ZI
Ch

-12 0.4 -1 0.8 -2.8 -0.8
13 11 13 9.6 12

-1.4 0.4 -3.2 -1.2
1.8 -1.8 0.2

-2 0
-1.6

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 21

Ap Hy Co FS Qu ZI Ch
P = 0.2

Ap
Hy
Co
FS
Qu
ZI
Ch

4 0.4 0.8 1 -0.6 0.2
-3.6 -3.2 -3 -4.6 -3.8

0.4 0.6 -1 -0.2
0.2 -1.4 -0.6

-0.8 0
-0.8

QQP:DISTILBERT-BASE-UNCASED

Ap Hy Co FS Qu ZI Ch
P = 0.5

Ap
Hy
Co
FS
Qu
ZI
Ch

-5.2 0 -3.4 2.8 -1.8 -5
5.2 1.8 8 3.4 0.2

-3.4 2.8 -1.8 -5
6.2 1.6 -1.6

3.2 0
-7.8

Ap Hy Co FS Qu ZI Ch
P = 0.8

Ap
Hy
Co
FS
Qu
ZI
Ch

-8.8 0.4 -2 2 -0.4 -3
9.2 6.8 11 8.4 5.8

-2.4 1.6 -0.8 -3.4
4 1.6 -1

2.6 0
-5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

−18.0
−13.5
−9.0
−4.5
0.0
4.0
8.5
13.0
17.5

Figure 22

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

1.8 2 1.8 1.4
1 1.2 1 0.6
0.8 1 0.8 0.4
1.2 1.4 1.2 0.8
0 0.2 0 -0.4
0.8 1 0.8 0.4
1 1.2 1 0.6
0.6 0.8 0.6 0.2
0.6 0.8 0.6 0.2
1 1.2 1 0.6
1.4 1.6 1.4 1
1 1.2 1 0.6
1.4 1.6 1.4 1
1 1.2 1 0.6
1.6 1.8 1.6 1.2
0.4 0.6 0.4 0
1.8 2 1.8 1.4
0 0.2 0 -0.4
1 1.2 1 0.6
0.8 1 0.8 0.4
0.6 0.8 0.6 0.2
1 1.2 1 0.6
0.8 1 0.8 0.4
1.4 1.6 1.4 1
1.2 1.4 1.2 0.8
1.2 1.4 1.2 0.8

MR:LSTM

−4.5

−3.0

−1.5

0.0

1.0

2.5

4.0

Figure 23

25

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

5.2 3.2 7.4 8.2
1.8 -0.2 4 4.8
4 2 6.2 7
3.2 1.2 5.4 6.2
3 1 5.2 6
4.4 2.4 6.6 7.4
2.6 0.6 4.8 5.6
2.8 0.8 5 5.8
2.8 0.8 5 5.8
4 2 6.2 7
2 0 4.2 5
1.6 -0.4 3.8 4.6
3.2 1.2 5.4 6.2
1.2 -0.8 3.4 4.2
2.2 0.2 4.4 5.2
3 1 5.2 6
4.4 2.4 6.6 7.4
3.6 1.6 5.8 6.6
3.8 1.8 6 6.8
3.4 1.4 5.6 6.4
2.4 0.4 4.6 5.4
3 1 5.2 6
2.8 0.8 5 5.8
1.8 -0.2 4 4.8
4 2 6.2 7
3.8 1.8 6 6.8

MR:BERT-BASE-UNCASED

−4.5

43.0

41.5

0.0

1.0

2.5

4.0

Figure 24

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

4.4 4.6 4.6 5.2
3 3.2 3.2 3.8
4.2 4.4 4.4 5
4.8 5 5 5.6
4.2 4.4 4.4 5
3 3.2 3.2 3.8
3.8 4 4 4.6
4.8 5 5 5.6
4 4.2 4.2 4.8
3.4 3.6 3.6 4.2
3 3.2 3.2 3.8
2 2.2 2.2 2.8
2.6 2.8 2.8 3.4
3 3.2 3.2 3.8
4.8 5 5 5.6
2.4 2.6 2.6 3.2
4.4 4.6 4.6 5.2
3.6 3.8 3.8 4.4
4.2 4.4 4.4 5
4.2 4.4 4.4 5
4 4.2 4.2 4.8
4.8 5 5 5.6
1.2 1.4 1.4 2
3 3.2 3.2 3.8
3.8 4 4 4.6
4.2 4.4 4.4 5

MNLI:DISTILBERT-BASE-UNCASED

−4.5

53.0

51.5

0.0

1.0

2.5

4.0

Figure 25

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

0 2.4 3.8 0.8
1.4 3.8 5.2 2.2
2.2 4.6 6 3
1.8 4.2 5.6 2.6
2.8 5.2 6.6 3.6
2.2 4.6 6 3
1.4 3.8 5.2 2.2
1.6 4 5.4 2.4
1.8 4.2 5.6 2.6
3 5.4 6.8 3.8
1.6 4 5.4 2.4
-0.2 2.2 3.6 0.6
2 4.4 5.8 2.8
1.8 4.2 5.6 2.6
0.4 2.8 4.2 1.2
1 3.4 4.8 1.8
0.8 3.2 4.6 1.6
2.2 4.6 6 3
1.2 3.6 5 2
2.4 4.8 6.2 3.2
2 4.4 5.8 2.8
2.4 4.8 6.2 3.2
-0.2 2.2 3.6 0.6
-0.2 2.2 3.6 0.6
1.8 4.2 5.6 2.6
3.4 5.8 7.2 4.2

MNLI:BERT-BASE-UNCASED

−4.5

−3.0

−1.5

0.0

1.0

2.5

4.0

Figure 26

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

2.8 2.8 6 4.2
2.4 2.4 5.6 3.8
4.2 4.2 7.4 5.6
3 3 6.2 4.4
3.2 3.2 6.4 4.6
4 4 7.2 5.4
3.6 3.6 6.8 5
4.2 4.2 7.4 5.6
3.8 3.8 7 5.2
3.2 3.2 6.4 4.6
3 3 6.2 4.4
1.4 1.4 4.6 2.8
0.2 0.2 3.4 1.6
3.4 3.4 6.6 4.8
3.2 3.2 6.4 4.6
1.8 1.8 5 3.2
5.2 5.2 8.4 6.6
2.4 2.4 5.6 3.8
1.2 1.2 4.4 2.6
1.2 1.2 4.4 2.6
2.6 2.6 5.8 4
3.6 3.6 6.8 5
0.2 0.2 3.4 1.6
1.6 1.6 4.8 3
2.2 2.2 5.4 3.6
4.6 4.6 7.8 6

SNLI:DISTILBERT-BASE-UNCASED

−4.5

53.0

51.5

0.0

1.0

2.5

4.0

Figure 27

26

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

4 2.6 3.8 6.4
2.4 1 2.2 4.8
3.4 2 3.2 5.8
2.2 0.8 2 4.6
3.2 1.8 3 5.6
2.2 0.8 2 4.6
1.8 0.4 1.6 4.2
2 0.6 1.8 4.4
0.8 -0.6 0.6 3.2
2.2 0.8 2 4.6
2.8 1.4 2.6 5.2
2.8 1.4 2.6 5.2
2 0.6 1.8 4.4
0.8 -0.6 0.6 3.2
4 2.6 3.8 6.4
3.2 1.8 3 5.6
2.2 0.8 2 4.6
4.8 3.4 4.6 7.2
1.4 0 1.2 3.8
2.4 1 2.2 4.8
2.4 1 2.2 4.8
4.6 3.2 4.4 7
3 1.6 2.8 5.4
3 1.6 2.8 5.4
2.6 1.2 2.4 5
3 1.6 2.8 5.4

SNLI:BERT-BASE-UNCASED

−4.5

53.0

51.5

0.0

1.0

2.5

4.0

Figure 28

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

3.2 3 5.2 7
3.2 3 5.2 7
2.4 2.2 4.4 6.2
2.8 2.6 4.8 6.6
3.8 3.6 5.8 7.6
3 2.8 5 6.8
3 2.8 5 6.8
3.4 3.2 5.4 7.2
5.2 5 7.2 9
3.4 3.2 5.4 7.2
1.6 1.4 3.6 5.4
4.4 4.2 6.4 8.2
2.4 2.2 4.4 6.2
2.8 2.6 4.8 6.6
4.8 4.6 6.8 8.6
3.6 3.4 5.6 7.4
1.8 1.6 3.8 5.6
4.2 4 6.2 8
3.6 3.4 5.6 7.4
4.2 4 6.2 8
2.8 2.6 4.8 6.6
3.2 3 5.2 7
2.8 2.6 4.8 6.6
2.2 2 4.2 6
3 2.8 5 6.8
2.4 2.2 4.4 6.2

QNLI:DISTILBERT-BASE-UNCASED

−4.5

−3.0

−1.5

0.0

1.0

2.5

4.0

Figure 29

Apostrophe Hyphen Comma Full Stop

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

0.4 3.2 4 4.6
0.6 3.4 4.2 4.8
1.2 4 4.8 5.4
0.8 3.6 4.4 5
0.8 3.6 4.4 5
2 4.8 5.6 6.2
1.6 4.4 5.2 5.8
1 3.8 4.6 5.2
1.2 4 4.8 5.4
1.2 4 4.8 5.4
1.2 4 4.8 5.4
0.6 3.4 4.2 4.8
0.8 3.6 4.4 5
1.6 4.4 5.2 5.8
1.2 4 4.8 5.4
1.8 4.6 5.4 6
0 2.8 3.6 4.2
1.6 4.4 5.2 5.8
1.6 4.4 5.2 5.8
1.2 4 4.8 5.4
1 3.8 4.6 5.2
1 3.8 4.6 5.2
0.2 3 3.8 4.4
0.2 3 3.8 4.4
-1 1.8 2.6 3.2
0.2 3 3.8 4.4

QNLI:BERT-BASE-UNCASED

−4.5

53.0

51.5

0.0

1.0

2.5

4.0

Figure 30

Ap Hy Co FS Qu

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

2 0 1.8 0.4 0.2
0 -2 -0.2 -1.6 -1.8

-0.2 -2.2 -0.4 -1.8 -2
0.2 -1.8 0 -1.4 -1.6
2.8 0.8 2.6 1.2 1
0.6 -1.4 0.4 -1 -1.2
0.6 -1.4 0.4 -1 -1.2
-0.2 -2.2 -0.4 -1.8 -2
0.8 -1.2 0.6 -0.8 -1
2.6 0.6 2.4 1 0.8
-0.6 -2.6 -0.8 -2.2 -2.4
-0.6 -2.6 -0.8 -2.2 -2.4
0.2 -1.8 0 -1.4 -1.6
-0.6 -2.6 -0.8 -2.2 -2.4
0 -2 -0.2 -1.6 -1.8
-2 -4 -2.2 -3.6 -3.8
0.4 -1.6 0.2 -1.2 -1.4
1.8 -0.2 1.6 0.2 0
-1.4 -3.4 -1.6 -3 -3.2
1.6 -0.4 1.4 0 -0.2
0.2 -1.8 0 -1.4 -1.6
0 -2 -0.2 -1.6 -1.8
0.6 -1.4 0.4 -1 -1.2
-0.2 -2.2 -0.4 -1.8 -2
1.6 -0.4 1.4 0 -0.2
0.6 -1.4 0.4 -1 -1.2

QQP:DISTILBERT-BASE-UNCASED

−4.5

53.0

51.5

0.0

1.0

2.5

4.0

Figure 31

27

Ap Hy Co FS Qu

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

-1.8 -2.6 -2.2 -1.6 -1.6
-0.8 -1.6 -1.2 -0.6 -0.6
-1.4 -2.2 -1.8 -1.2 -1.2
-1.4 -2.2 -1.8 -1.2 -1.2
-0.4 -1.2 -0.8 -0.2 -0.2
-0.2 -1 -0.6 0 0
-1.2 -2 -1.6 -1 -1
-0.6 -1.4 -1 -0.4 -0.4
-1 -1.8 -1.4 -0.8 -0.8
-0.4 -1.2 -0.8 -0.2 -0.2
-1.6 -2.4 -2 -1.4 -1.4
-0.8 -1.6 -1.2 -0.6 -0.6
-0.6 -1.4 -1 -0.4 -0.4
0.4 -0.4 0 0.6 0.6
-0.4 -1.2 -0.8 -0.2 -0.2
-1.4 -2.2 -1.8 -1.2 -1.2
-0.6 -1.4 -1 -0.4 -0.4
-0.8 -1.6 -1.2 -0.6 -0.6
-0.6 -1.4 -1 -0.4 -0.4
-0.4 -1.2 -0.8 -0.2 -0.2
-0.6 -1.4 -1 -0.4 -0.4
-1.8 -2.6 -2.2 -1.6 -1.6
-1.4 -2.2 -1.8 -1.2 -1.2
-0.2 -1 -0.6 0 0
-1.4 -2.2 -1.8 -1.2 -1.2
-0.6 -1.4 -1 -0.4 -0.4

QQP:BERT-BASE-UNCASED

−4.5

−3.0

31.5

0.0

1.0

2.5

4.0

Figure 32

28

Dataset Model Method After Attack Acc [%] Perturbed Words [%] Semantic Sim Average Time Taken [s] Avg Number Queries Drop [%]

MR

CNN
(76.6)

Zeroe 75 11.33 0.88 0.4007 0 1.6
DWB 66.4 7.41 0.88 0.8542 26.23 10.2
ZIP - 69 15 1 0.2901 0 7.6
ZIP ’ 68.8 25.94 1 0.5539 0 7.8

LSTM
(77)

Zeroe 75.2 8.49 0.92 0.4879 0 1.8
DWB 66 7.5 0.88 1.0247 26.32 11
ZIP - 66.8 14.02 1 0.3308 0 10.2
ZIP ’ 65.4 24.26 1 0.5739 0 11.6

BERT
(83.8)

Zeroe 82.2 7.43 0.89 0.3426 0 1.6
DWB 77.8 8.4 0.89 1.0962 26.95 6
ZIP - 78 13.46 1 0.4014 0 5.8
ZIP ’ 70 25.12 1 0.5532 0 13.8

RoBERTa
(88)

Zeroe 87.6 12.27 0.95 0.2185 0 0.4
DWB 80.8 8.64 0.87 0.9447 26.73 7.2
ZIP - 80.6 14.26 1 0.3216 0 7.4
ZIP ’ 78.2 24.09 1 0.4729 0 9.8

XLNet
(87)

Zeroe 85.6 6.64 0.95 0.7718 0 1.4
DWB 78.2 7.77 0.88 1.9823 26.89 8.8
ZIP - 79.6 13.6 1 0.5011 0 7.4
ZIP ’ 76.8 24.36 1 0.6806 0 10.2

MNLI

BERT
(82.8)

Zeroe 75.6 5.14 0.93 0.329 0 7.2
DWB 62.2 5.94 0.91 0.8279 31.89 20.6
ZIP - 64.6 6.9 1 0.2379 0 18.2
ZIP ’ 57 11.2 1 0.3272 0 25.8

DistilBERT
(80.6)

Zeroe 75.4 4.73 0.95 0.3012 0 5.2
DWB 60.4 6.15 0.9 0.7645 31.82 20.2
ZIP - 69.6 7.49 1 0.1913 0 11
ZIP ’ 57.6 11.99 1 0.3292 0 23

SNLI

BERT
(91.2)

Zeroe 86.2 6.32 0.94 0.2505 0 5
DWB 69.4 6.28 0.89 0.5844 23.83 21.8
ZIP - 61 6.16 1 0.1865 0 30.2
ZIP ’ 65.8 10.33 1 0.2095 0 25.4

DistilBERT
(86.6)

Zeroe 84.2 6.61 0.92 0.2391 0 2.4
DWB 72 6.13 0.89 0.434 24.25 14.6
ZIP - 74.4 6.37 1 0.165 0 12.2
ZIP ’ 65.2 11.37 1 0.2254 0 21.4

QNLI

BERT
(91.2)

Zeroe 88.6 5.94 0.94 1.6294 0 2.6
DWB 74 6.37 0.92 1.7717 47.69 17.2
ZIP - 81.2 10.69 1 0.5898 0 10
ZIP ’ 73.4 21.69 1 1.0907 0 17.8

RoBERTa
(92)

Zeroe 90.6 3.19 0.96 0.9367 0 1.4
DWB 80.6 5.99 0.93 1.7655 47.94 11.4
ZIP - 82 10.59 1 0.7899 0 10
ZIP ’ 77 22.08 1 1.0432 0 15

DistilBERT
(86.2)

Zeroe 84.4 7.36 0.94 0.9437 0 1.8
DWB 73.4 6.23 0.92 1.6188 47.96 12.8
ZIP - 76 10.14 1 0.5882 0 10.2
ZIP ’ 66.2 20.63 1 1.0017 0 20

QQP

BERT
(90.4)

Zeroe 87.6 6.56 0.92 0.3038 0 2.8
DWB 79.6 7.48 0.9 0.6998 25.79 10.8
ZIP - 74.4 8.79 1 0.2272 0 16
ZIP ’ 68.4 14.55 1 0.3317 0 22

DistilBERT
(90.8)

Zeroe 87.8 7.26 0.93 0.3298 0 3
DWB 79.4 7.01 0.91 0.6158 25.97 11.4
ZIP - 72.8 8.33 1 0.1927 0 18
ZIP ’ 69.8 14.29 1 0.2581 0 21

XLNet
(91.2)

Zeroe 89.8 7.26 0.92 0.8158 0 1.4
DWB 79.6 7.44 0.9 1.6554 25.95 11.6
ZIP - 78 8.77 1 0.3762 0 13.2
ZIP ’ 75.8 14.34 1 0.455 0 15.4

Table 10: Results of Zeroe, DWB and ZIP attacks while using the LanguageTool grammar checker

29

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Perturbed
Words [%]

Semantic
Sim

Avg Time
Taken [s]

Avg Number
Queries

MR

CNN
(76.6)

DWBP 14.6 16.99 1 0.0513 69.01
TextFooler 0.4 11.82 0.85 0.2144 74.79
TextFooler/DWBP 0.2 13.09 0.89 0.1145 69.75
SememePSO 2.6 13.73 0.83 0.6824 2711.91
SememePSO/DWBP 2 10.97 0.86 0.4516 1012.17

LSTM
(77)

DWBP 19.2 15.13 1 0.066 66.9
TextFooler 0.8 11.43 0.86 0.1943 71.03
TextFooler/DWBP 0.4 12.87 0.89 0.1289 67.95
SememePSO 2.8 13.17 0.83 0.7235 2342.27
SememePSO/DWBP 1.6 10.26 0.86 0.5366 923.21

BERT
(83.8)

DWBP 17.4 18.32 1 0.721 74.7
TextFooler 9.4 17.54 0.82 1.3072 118.5
TextFooler/DWBP 7.6 18.31 0.89 1.122 105.35
SememePSO 7 16.52 0.81 16.1811 4950.71
SememePSO/DWBP 6 9.99 0.89 7.3252 988.44

RoBERTa
(88)

DWBP 14 19.08 1 0.71 72.42
TextFooler 5.4 16.21 0.83 1.1566 106.89
TextFooler/DWBP 5.8 16.92 0.89 0.9861 94.63
SememePSO 6 17.44 0.8 15.9324 4855.71
SememePSO/DWBP 5.8 10.96 0.88 9.4678 1225.24

XLNet
(87)

DWBP 16.2 19.1 1 2.8193 74.35
TextFooler 7.4 15.68 0.83 4.4761 108.5
TextFooler/DWBP 5.4 17.19 0.88 3.9146 96.17
SememePSO 5.8 16.75 0.81 53.6015 4619.19
SememePSO/DWBP 6 10.8 0.88 35.2176 1162.83

Table 11: Results on classification for multi-level DWBP

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Perturbed
Words [%]

Semantic
Sim

Average Time
Taken [s]

Avg Number
Queries

MNLI

BERT
(82.8)

DWBP 9.6 8.43 1 0.5381 51.26
TextFooler 12.2 6.99 0.9 0.8749 76.18
TextFooler/DWBP 4.2 8.02 0.96 0.706 63.68
SememePSO 20.2 5.9 0.9 2.0034 1200.36
SememePSO/DWBP 5 6.16 0.94 2.068 208.73

DistilBERT
(80.6)

DWBP 11.4 7.95 1 0.2668 50.55
TextFooler 12.6 7.54 0.9 0.516 77.88
TextFooler/DWBP 5.4 7.95 0.96 0.3899 64.85
SememePSO 21.6 6 0.89 1.0294 1146.93
SememePSO/DWBP 6.2 6.44 0.94 1.0934 220.54

SNLI

BERT
(91.2)

DWBP 7.2 7.99 1 0.4037 38.57
TextFooler 14 7.46 0.9 0.6992 64.2
TextFooler/DWBP 3.2 7.72 0.97 0.523 47.96
SememePSO 16.6 6.9 0.88 2.1876 764.64
SememePSO/DWBP 2.8 6.63 0.93 1.3637 139.42

DistilBERT
(86.6)

DWBP 6.6 8.36 1 0.2101 38.77
TextFooler 10 7.75 0.9 0.4072 64.33
TextFooler/DWBP 1.6 7.79 0.96 0.2848 48.09
SememePSO 14.4 6.66 0.88 1.1608 689.18
SememePSO/DWBP 2 6.68 0.93 0.7641 151.06

Table 12: Results on entailment for multi-level DWBP

30

Dataset Model Method After Attack
Acc [%]

Perturbed
Words [%]

Semantic
Sim

Average Time
Taken [s]

Avg Number
Queries

QNLI

BERT
(91.2)

DWBP 24.4 10.01 1 0.9616 114.79
TextFooler 22.6 9.46 0.9 1.6601 168.88
TextFooler/DWBP 18.2 10.32 0.95 1.413 156.15
SememePSO 37.4 11.13 0.88 44.0359 12838.6
SememePSO/DWBP 27.2 5.79 0.96 18.2188 2093.68

RoBERTa
(92)

DWBP 26.8 11.9 1 1.0311 120.65
TextFooler 26.8 9.94 0.9 1.6683 174.98
TextFooler/DWBP 18.8 11.45 0.94 1.4461 159.57
SememePSO 41 11.32 0.87 40.4838 14041.7
SememePSO/DWBP 32.4 6.45 0.95 28.7531 2325.13

DistilBERT
(86.2)

DWBP 23.8 9.28 1 0.4786 110.45
TextFooler 22 10.04 0.9 0.9577 168.64
TextFooler/DWBP 13.8 10.66 0.95 0.7953 145.54
SememePSO 37.2 11.28 0.88 18.1074 13254.8
SememePSO/DWBP 28.4 6.26 0.96 15.2255 2207.65

QQP

BERT
(90.4)

DWBP 45.2 8.31 1 0.388 60.53
TextFooler 42.2 8.44 0.9 0.7218 116.5
TextFooler/DWBP 41.2 8.43 0.97 0.6001 102.06
SememePSO 50.4 7.94 0.88 2.2428 10858
SememePSO/DWBP 42.8 7.36 0.96 3.8072 398.73

DistilBERT
(90.8)

DWBP 45.4 8.62 1 0.2059 60.1
TextFooler 38.6 9.48 0.9 0.4686 114.73
TextFooler/DWBP 37.6 9.9 0.95 0.3919 100.76
SememePSO 50 8.59 0.88 2.925 11194.4
SememePSO/DWBP 40.8 7.84 0.95 1.9978 397.52

XLNet
(91.2)

DWBP 44.8 9.88 1 1.7345 61.85
TextFooler 38.8 9.6 0.89 3.1888 115.37
TextFooler/DWBP 37.2 9.71 0.94 2.6764 100.81
SememePSO 49.4 8.3 0.88 10.0921 10057.7
SememePSO/DWBP 41.4 7.91 0.93 10.092 400.73

Table 13: Results on question answering tasks for multi-level DWBP

31

P ZIP Ap ZIP Hy ZIP Co
Aaft−atk S Aaft−atk S Aaft−atk S

0.2 77.8 1.0 79.2 1.0 77.0 1.0
0.5 68.2 1.0 75.2 1.0 68.0 1.0
0.8 47.8 1.0 75.0 1.0 58.0 1.0

P ZIP FS ZI Ze ZI Ch
Aaft−atk S Aaft−atk S Aaft−atk S

0.2 78.4 0.97 77.6 0.91 78.6 0.83
0.5 66.8 0.94 61.6 0.79 68.2 0.72
0.8 50.0 0.91 44.0 0.69 50.4 0.62

Table 14: Results of black-box insertions on MR/BERT

Dataset Model Baseline
Orig Acc [%]

Baseline
After Attack

Acc [%]

Robust
Orig Acc [%]

Robust
After Attack

Acc [%]
LSTM 78.2 29.8 77.6 32.2

MR Hy
BERT 84.2 29.4 84.4 36.8
LSTM 78.2 19.8 78.8 21.4

MR Ap
BERT 84.2 17.0 84.0 23.4

Table 15: Adversarial training

Dataset Punctuation Counts Percentage

MR

Total Punctuation Count
. 2596 1.37E+00%
, 1934 1.02E+00%
’ 1073 5.68E-01%
- 1007 5.33E-01%
" 146 7.72E-02%
[58 3.07E-02%
] 58 3.07E-02%

Internal Punctuation Count
’ 922 5.02E-01%
- 718 3.91E-01%
/ 17 9.26E-03%
] 4 2.18E-03%
[2 1.09E-03%

MNLI

Total Punctuation Count
. 3499 1.22E+00%
, 2041 7.13E-01%
’ 1460 5.10E-01%
- 527 1.84E-01%
) 156 5.45E-02%
(150 5.24E-02%
? 125 4.37E-02%

Internal Punctuation Count
’ 1347 4.81E-01%
- 496 1.77E-01%
. 68 2.43E-02%
, 49 1.75E-02%
? 15 5.36E-03%

SNLI

Total Punctuation Count
. 3523 1.99E+00%
, 598 3.38E-01%
- 113 6.39E-02%
’ 54 3.06E-02%
" 28 1.58E-02%
& 3 1.70E-03%
/ 1 5.66E-04%

Internal Punctuation Count
- 113 6.55E-02%
’ 50 2.90E-02%
. 5 2.90E-03%
/ 1 5.79E-04%
, 1 5.79E-04%

QNLI

Total Punctuation Count
, 3755 9.98E-01%
. 2328 6.18E-01%
? 1983 5.27E-01%
- 734 1.95E-01%
’ 715 1.90E-01%
" 672 1.79E-01%
(562 1.49E-01%

Internal Punctuation Count
- 708 1.93E-01%
’ 611 1.67E-01%
. 202 5.52E-02%
, 155 4.23E-02%
– 55 1.50E-02%

QQP

Total Punctuation Count
? 4220 2.10E+00%
, 521 2.60E-01%
" 470 2.34E-01%
’ 460 2.29E-01%
. 349 1.74E-01%
- 162 8.08E-02%
(138 6.88E-02%

Internal Punctuation Count
’ 397 2.04E-01%
- 146 7.50E-02%
. 93 4.78E-02%
/ 89 4.57E-02%
(30 1.54E-02%

Table 16: Frequency of total punctuation in samples and
frequency of punctuation only found within words

32

Dataset Model Method New Orig
Acc [%] Drop [%]

All 72.2 4.4
Internal 74.4 2.2CNN

(76.6)
Internal With Exception 76.6 0
All 72.8 4.2
Internal 74.2 2.8LSTM

(77)
Internal With Exception 77 0
All 81.2 2.6
Internal 82.6 1.2BERT

(83.8)
Internal With Exception 83.8 0
All 86.2 1.8
Internal 87.8 0.2RoBERTa

(88)
Internal With Exception 88 0
All 84.6 2.4
Internal 86.4 0.6

MR

XLNet
(87)

Internal With Exception 87 0
All 80.8 2
Internal 82.4 0.4BERT

(82.8)
Internal With Exception 82.4 0.4
All 78.4 2.2
Internal 80 0.6

MNLI
DistilBERT
(80.6)

Internal With Exception 80.4 0.2
All 90.8 0.4
Internal 91.2 0

BERT
(91.2)

Internal With Exception 91.2 0
All 86.6 0.4
Internal 87 0

SNLI
DistilBERT
(87)

Internal With Exception 87 0
All 87.2 4
Internal 90.6 0.6BERT

(91.2)
Internal With Exception 90.8 0.4
All 91.2 0.8
Internal 92 0

RoBERTa
(92)

Internal With Exception 92 0
All 84.2 2
Internal 85.8 0.4

QNLI

DistilBERT
(86.2)

Internal With Exception 85.8 0.4
All 88.6 1.8
Internal 90 0.4BERT

(90.4)
Internal With Exception 90 0.4
All 88.6 2.2
Internal 90.6 0.2DistilBERT

(90.8)
Internal With Exception 90.8 0
All 89.8 1.4
Internal 91.2 0

QQP

XLNet
(91.2)

Internal With Exception 91.2 0

Table 17: Results when punctuation is removed

Dataset Model
Baseline

Finetune with punctuation
Eval Acc [%]

Finetune with no punctuation
Eval Acc [%] Drop [%]

LSTM 79.8±0.5 78.9±0.4 0.9
MR

BERT 85.3±0.8 84.7±0.6 0.6
MNLI BERT 84.9 83.5 1.4
SNLI BERT 89.9 88.6 1.3

Table 18: Finetuning on no punctuation

Dataset Model
(Orig Acc) Method After Attack

Acc [%]
Average Time

Taken [s] Drop [%]

DWBP . 15.4 0.0412 61.2
DWBP , 14.6 0.0407 62CNN

(76.6)
DWBP " 27.2 0.0391 49.4
DWBP . 19.4 0.0574 57.6
DWBP , 19.2 0.0564 57.8LSTM

(77)
DWBP " 26.6 0.0544 50.4
DWBP . 18.4 0.4748 65.4
DWBP , 18.4 0.462 65.4BERT

(83.8)
DWBP " 29.4 0.4428 54.4
DWBP . 19.4 0.499 68.6
DWBP , 18.6 0.4812 69.4RoBERTa

(88)
DWBP " 34.6 0.4459 53.4
DWBP . 17.8 1.8583 69.2
DWBP , 18 1.855 69

MR

XLNet
(87)

DWBP " 34 1.7026 53
DWBP . 14 0.4317 68.8
DWBP , 12.6 0.4317 70.2BERT

(82.8)
DWBP) 11.6 0.4423 71.2
DWBP . 12.8 0.2232 67.8
DWBP , 13.2 0.2195 67.4

MNLI
DistilBERT
(80.6)

DWBP) 10.4 0.2231 70.2
DWBP . 10 0.323 81.2
DWBP , 10.6 0.3258 80.6BERT

(91.2)
DWBP " 17 0.3175 74.2
DWBP . 9.6 0.1677 77
DWBP , 4 0.175 82.6

SNLI
DistilBERT
(86.6)

DWBP " 16.8 0.168 69.8
DWBP , 25 0.6877 66.2
DWBP . 26.8 0.6731 64.4BERT

(91.2)
DWBP ? 25 0.7068 66.2
DWBP , 28.6 0.756 63.4
DWBP . 32.2 0.7564 59.8RoBERTa

(92)
DWBP ? 31.4 0.7678 60.6
DWBP , 19 0.377 67.2
DWBP . 19.2 0.3675 67

QNLI

DistilBERT
(86.2)

DWBP ? 23.2 0.3559 63
DWBP ? 46.2 0.311 44.2
DWBP , 48.6 0.3075 41.8BERT

(90.4)
DWBP " 49.4 0.305 41
DWBP ? 43.4 0.169 47.4
DWBP , 46.2 0.1698 44.6DistilBERT

(90.8)
DWBP " 50.4 0.1617 40.4
DWBP ? 47.4 1.3345 43.8
DWBP , 47.6 1.3518 43.6

QQP

XLNet
(91.2)

DWBP " 53.8 1.3201 37.4

Table 19: Results when only one punctuation symbol
type is used in the attack

33

MR
(Negative)

A dark comedy that goes for sick and demented
humor simply to do so . the movie is without
intent .

TextFooler
(Positive)

A dark comedy that goes for psychopathic
and coot humor honestly to do so . the
film is without object .

DWBP
(Positive)

A dark comedy that goes for sick and
demented humor simply to do so . the movie
is withou’t intent .

MNLI
(Entailment)

Premise:
Sit down, will you?" Tuppence sat down on the
chair facing him.
Hypothesis:
He asked Tuppence to sit on a red chair.

TextFooler
(Neutral)

He asked Tuppence to assisi on a flushed
chair.

DWBP
(Neutral)

He asked Tuppence to sit on a r’ed c’hair.

Table 20: Qualitative examples of DWBP vs TextFooler. Bold words represent a perturbed word

34

