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Abstract

Metaphor detection (MD) suffers from limited
training data. In this paper, we started with a
linguistic rule called Metaphor Identification
Procedure and then proposed a novel multi-task
learning framework to transfer knowledge in
basic sense discrimination (BSD) to MD. BSD
is constructed from word sense disambiguation
(WSD), which has copious amounts of data.
We leverage adversarial training to align the
data distributions of MD and BSD in the same
feature space, so task-invariant representations
can be learned. To capture fine-grained align-
ment patterns, we utilize the multi-mode struc-
tures of MD and BSD. Our method is totally
end-to-end and can mitigate the data scarcity
problem in MD. Competitive results are re-
ported on four public datasets. Our code and
datasets are available !.

1 Introduction

Metaphor involves a mapping mechanism from the
source domain to the target domain, as proposed in
Conceptual Metaphor Theory (Lakoff and Johnson,
2008).

e.g. The police smashed the drug ring after they
were tipped off .

Smash in the above sentence means "hit hard"
literally (source domain). However, it is employed
in a creative way, indicating "overthrow or destroy"
(target domain). The mapping from the source to
the target makes the word a metaphor.

Understanding metaphors in human languages
is essential for a machine to dig out the underly-
ing intents of speakers. Thus, metaphor detection
and understanding are crucial for sentiment anal-
ysis (Cambria et al., 2017), and machine transla-
tion(Mao et al., 2018), etc.

Metaphor detection (MD) requires a model
to predict whether a specific word is literal or
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metaphorical in its current context. Linguistically,
if there is a semantic conflict between the con-
textual meaning and a more basic meaning, the
word is a metaphor (Crisp et al., 2007; Steen, 2010;
Do Dinh et al., 2018). The advent of large Pre-
trained Language Models has pushed the bound-
aries of MD far ahead (Devlin et al., 2019; Liu
et al., 2019b). However, MD suffers from limited
training data, due to complex and difficult expert
knowledge for data annotation (Group, 2007).

Recently, Lin et al. (2021) used self-training to
expand MD corpus, but error accumulation could
be a problem. Many researchers used various ex-
ternal knowledge like part of speech tags (Su et al.,
2020; Choi et al., 2021), dictionary resources (Su
et al., 2021; Zhang and Liu, 2022), dependency
parsing (Le et al., 2020; Song et al., 2021), etc., to
promote MD performance. These methods are not
end-to-end, thus they impeded continuous training
on new data.

To address the data scarcity problem in MD, we
propose a novel task called basic sense discrim-
ination (BSD) from word sense disambiguation
(WSD). BSD regards the most commonly used lex-
ical sense as a basic usage, and aims to identify
whether a word is basic in a certain context. Both
BSD and MD need to compare the semantic dif-
ference between the basic meaning and the current
contextual meaning. Despite the lack of MD data,
we can distill knowledge from BSD to alleviate
data scarcity and overfitting, which leads to the
usage of multi-task learning.

We design the Adversarial Multi-task Learning
Framework (AdMul) to facilitate the knowledge
transfer from BSD to MD. AdMul aligns the data
distributions for MD and BSD through adversarial
training to force shared encoding layers (for exam-
ple, BERT) to learn task-invariant representations.
Furthermore, we leverage the internal multi-mode
structures for fine-grained alignment. The literal
senses in MD are forcibly aligned with basic senses
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in BSD, which can push the literal senses away
from the metaphorical. Similarly, the non-basic
senses in BSD are aligned with metaphors in MD,
which enlarges the discrepancy between basic and
non-basic senses to enhance model performance.

The contributions of this paper can be summa-
rized as follows:

e We proposed a new task, basic sense dis-
crimination, to promote the performance of
metaphor detection via a multi-task learning
method. The data scarcity problem in MD can
be mitigated via knowledge transfer from a
related task.

e Our proposed model, AdMul, uses adversar-
ial training to learn task-invariant representa-
tions for metaphor detection and basic sense
discrimination. We also make use of multi-
mode structures for fine-grained alignment.
Our model is free of any external resources,
totally end-to-end, and can be easily trained.

e Experimental results indicate that our model
achieves competitive performance on four
datasets due to knowledge transfer and the reg-
ularization effect of multi-task learning. Our
zero-shot transfer result even surpasses fine-
tuned baseline models.

2 Related Work

Metaphor Detection:  Metaphor detection is
a popular task in figurative language computing
(Leong et al., 2018, 2020). With the progress of
natural language processing, various methods have
been proposed. Traditional approaches used differ-
ent linguistic features like word abstractness, word
concreteness, part of speech tags and linguistic
norms, etc., to detect metaphors (Shutova and Sun,
2013; Tsvetkov et al., 2014; Beigman Klebanov
et al., 2018; Wan et al., 2020). These methods are
not end-to-end and rely heavily on feature engineer-
ing.

The rise of deep learning boosted the advance-
ment of metaphor detection significantly. Gao et al.
(2018), Wu et al. (2018) and Mao et al. (2019) used
RNN and word embeddings to train MD models.
Recently, lots of works combined the advantages
of pre-trained language models and external re-
sources to enhance the performance of metaphor
detection (Su et al., 2020, 2021; Choi et al., 2021;
Song et al., 2021; Zhang and Liu, 2022). Though

great improvements have been made, these models
still suffer from the lack of training data, which is
well exemplified by their poorer performance on
small datasets.

Multi-task Learning: Multi-task learning (MTL)
can benefit a target task via related tasks. It has
brought great success in computer vision and nat-
ural language processing. MTL learns universal
representations for different task inputs, so all tasks
share a common feature space, where knowledge
transfer becomes possible. Previous studies trained
MTL models by deep neural networks like CNN
or RNN, achieving promising results in text classi-
fication (Liu et al., 2017; Chen and Cardie, 2018).
Liu et al. (2019a) and Clark et al. (2019) com-
bined MTL framework with BERT (Devlin et al.,
2019), obtaining encouraging results on multiple
GLUE tasks. There are some other successful
MTL applications in machine translation (Dong
et al., 2015), information extraction (Nishida et al.,
2019), and sentiment analysis (Liang et al., 2020),
etc. Dankers et al. (2019) applied MTL to study the
interplay of metaphor and emotion. Le et al. (2020)
combined WSD and MD for better metaphor de-
tection results. However, to the best of our knowl-
edge, we are the first to use adversarial MTL for
metaphor detection based on the linguistic nature
of metaphors.

3 Proposed Method

3.1 Metaphor Identification Procedure

Metaphor Identification Procedure (MIP) (Crisp
et al., 2007) is the most commonly used linguis-
tic rule in guiding metaphor detection. It is origi-
nally the construction guideline of VU Amsterdam
Metaphor Corpus. MIP indicates that if a word con-
trasts with one of its more basic meanings but can
be understood in comparison with it, then the word
is a metaphor. A more basic meaning is more con-
crete, body-related, more precise, or historically
older (Steen, 2010; Do Dinh et al., 2018).

Some researchers have pointed out that when a
word is used alone, it is very likely to depict a more
basic meaning (Choi et al., 2021; Song et al., 2021).
We concatenate the target word and the sentence as
input. In the input, the first segment is the target
used alone, presenting a more basic meaning. The
second segment is the whole sentence, which can
encode the contextual meaning of the target. Then
the model adopts MIP to detect metaphors.
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Figure 1: AdMul architecture. The black arrows mean forward propagation, while the blue ones denote back
propagation. BERT is the shared feature extractor ()y. GRL stands for gradient reversal layer. Classifier Q,, is
task-specific to perform MD or BSD, and y is the label for MD or BSD. Global discriminator Q¥ aligns overall data
distribution to make BERT learn universal representations. Two local discriminators Qs are in line with two labels.
Each is responsible for aligning the data in MD and BSD of label c. Both QY and ij predict which task the input
sentence comes from. Task d € {0, 1}, 0 or MD and 1 for BSD. L,, is the loss for Q,,. L is the loss for Q9 or Q.

3.2 From WSD to BSD

Metaphor detection (MD) aims to identify whether
a contextualized word is metaphorical. Word sense
disambiguation (WSD) aims to determine the lex-
ical sense of a certain word from a given sense
inventory. The two tasks share the same nature: we
should decide the sense of a given word according
to its context.

A word may have multiple senses, so WSD is a
multinomial classification task, whereas MD is a
binary classification task. Integrating WSD with
MD can be quite expensive. For example, the state-
of-the-art model (Barba et al., 2021) regarded WSD
as an information extraction task. It concatenated
all the candidate senses and tried to extract the cor-
rect one. Such a method requires not only external
dictionary resources, but also enormous comput-
ing resources since the input may be a very long
sequence.

WordNet (Miller, 1995; Fellbaum, 1998) ranks
the senses of a word according to its occurrence
frequency”. The most commonly used lexical sense
is at the top of the inventory list, which is usually a
more basic meaning(Choi et al., 2021; Song et al.,
2021; Zhang and Liu, 2022). Thus, we regard the

Zhttps://wordnet.princeton.edu/frequently-asked-
questions

most commonly used sense as a basic sense of a
word, and try to figure out whether a word in a
certain context is basic or not. We call this task
basic sense discrimination (BSD). Obviously, BSD
is a binary classification task and fits MD.

3.3 Task Description

Formally, given the MD dataset Dyp =
{(xMP yMP)"™P} and the BSD dataset Dpsp =
{(2BSD, yBSD)B0Y | they have mmp and npsp
labeled training samples respectively. « =
([CLS], target, [SEP], sentence, [SEP]). Usually,
MD and BSD have different data distributions p, so
pmp(Zmp) # pBsp(ZBsp). Both Dyp andDpsp
will be used to train a multi-task learning model,
which will align pyp and ppsp in a same feature
space via adversarial training. Our goal is to min-
imize the risk € = Eg ) pyp[f(T) # y]. We
actually use BSD as an auxiliary task and only care
about the performance of MD.

3.4 Model Details

We present AdMul to tackle MD and BSD simul-
taneously. As Fig. 1 shows, AdMul has five key
parts: shared feature extractor )y (BERT in our
case, the green part), task-specific classifier ), (the
purple part), gradient reversal layer ) ( the grey
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part), global task discriminator Qfl (the red part)
and local task discriminators Qil“ (the yellow part).

3.4.1 Feature Extractor

AdMul adopts BERT as the feature extractor Q) s,
which is shared by both MD and BSD. We take
the BERT hidden state of [CLS] as a semantic sum-
mary of the input segment pair (Devlin et al., 2019).
[CLS] can automatically learn the positions of two
target words in the two segments, and then perceive
the semantic difference via self-attention mecha-
nism (Vaswani et al., 2017). The hidden state then
goes through a non-linear activation function and
produces semantic discrepancy feature v:

v = tanh (Qf (a:[CLS})) . (1)

On the other hand, we use the whole input se-
quence x to generate sentence embedding h via
average pooling:

h=Q f (IIZ) . )
3.4.2 Task-specific Classifier

Task-specific classifier (), takes semantic discrep-
ancy feature v as input. For the sake of brevity, we
only draw a single classifier in the diagram. Actu-
ally, we are using use different classifiers for MD
and BSD.

9 = Qy(v) = softmax(Wg, v +bg,), (3
where § € R? is the predicted label distribution

of z. Wq, and bg, are weights and bias of Q.
Finally, we can compute classification losses:

EMD

|DNID|
Aia 1) 4
|DMD|Z ce (@i yi), @4

[Despl R
EBSD Z > LCE (ylv yl) ) (5)

!DBSD\

where Lo is a cross-entropy loss function. ¢; and
y; are the predicted probability and the ground truth
label of the i-th training sample respectively.

3.4.3 Gradient Reversal Layer

Gradient Reversal Layer (GRL) @, is the key
point of adversarial learning (Ganin and Lempit-
sky, 2015). During the forward propagation, GRL
works as an identity function. While during the
back propagation, it will multiply the gradient by a

negative scalar —\ to reverse the gradient. The op-
erations can be formulated as the following pseudo
function:

Qx(h) = h, (6)
9Qx(h) _
oh A, @)

where I is an identity matrix and A\ can be com-
puted automatically (see Section 4.3).

3.4.4 Global Discriminator

Sentence embedding h = Q ¢ () first goes through
GRL, then global discriminator Qg tries to predict
which task h belongs to. The training objective of

QY is:

d \D‘ Z Leg Qd Qf(wZ)) z)y (8)

x, €D

where D = Dyp U Dgsp. d; is the task label for
input «; (d = 0 for MD and d = 1 for BSD).

The feature extractor () s tries to generate similar
features to fool global task discriminator 9, so
that Qfl cannot accurately discern the source task of
the input feature. The features that cannot be used
to distinguish the source are task-invariant (Liu
et al., 2017; Chen and Cardie, 2018). As the model
converges, () ; will learn universal representations
to align the distributions for MD and BSD.

3.4.5 Local Discriminator

We noticed some corresponding patterns between
MD and BSD via simple linguistic analysis. As
Fig. 2 illustrates.

A . .
@ Literal ® Basic

O Metaphor ® Non-basic

Figure 2: Multi-mode structures of MD and BSD data
distributions.

The samples in MD can be classified as literal
or metaphorical, while the samples in BSD can be
categorized as basic or non-basic. A basic sense
(red samples) must be literal (green samples), so
they are clustered closer in the feature space. A
metaphor (yellow samples) must be non-basic (blue
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samples), hence they are closer. Moreover, the
metaphorical and the basic are significantly dissim-
ilar, so they lie at different corners in the feature
space, far from each other. If we bring the literal
and the basic closer, then the dividing line between
the metaphorical and the literal will be clearer. If
the metaphorical and the non-basic get closer, then
BSD will be promoted as well. Better performance
of BSD will strengthen knowledge transfer from
BSD to MD.

Such multi-mode patterns inspire us to apply
fine-grained alignment (Pei et al., 2018; Yu et al.,
2019). We forcibly push the class 0 samples (literal
in MD and basic in BSD) closer, and cluster the
class 1 samples (metaphor in MD and non-basic in
BSD) closer. Therefore, we use two local discrimi-
nators. Each aligns samples from class ¢ € {0, 1}:

c
L= |12 > waLop(Q(95Qy(xi)), dy),

c=0 x;€D

(©))

where d; is the task label and C' is the number of
classes. d = 0 for MD and d = 1 for BSD. w is a
task weight. To maintain the dominance of MD in
local alignment, we set wg = 1 and w; = 0.3 in all
experiments. ¢ comes from Eq. 3. The classifier
@y will deliver a normalized label distribution for
each sample x;, no matter which task it belongs
to. We can view it as an attention mechanism. (),
thinks x; has a probability of §{ to be class c. Then
we use the label distribution as attention weights to
apply to the sample. In practice, it performs better
than hard attention, because more information can
be considered.

The training of local discriminators is also ad-
versarial. The feature extractor () ; generates task-
invariant features to fool local discriminators ij,
so that Qilc cannot discern which task the features
in class ¢ come from.

3.4.6 Training Objective

The training of AdMul involves multiple objectives.
It can be formulated as the loss function below:

L(0,04,0,) =

LY + oLl —NBLY+ LY, (10)
where «, § and ~ are hyper-parameters to balance
the loss magnitudes. 0y, 04 and 0, are parameters

of ()7, Q)4 (all discriminators) and (), respectively.

The optimization of £ involves a mini-max game
like Generative Adversarial Network (Goodfellow
etal., 2014). The feature extractor (s tries to make
the deep features as similar as possible, so that
both global and local task discriminators cannot
differentiate which task they come from. After the
training converges, the parameters 6 s 9 and 6,
will deliver a saddle point of Eq. 10:

(éf,éy) = arg min L(6y, 0y, 04), (11)
efﬁy

(04) = argrréaxﬁ(Qf,Gy,Hd). (12)
d

At the saddle point, ¢, will minimize classifi-
cation loss £, (combined by Eg/[D and LESD). 04
will minimize task discrimination loss £, (com-
bined by £ and Eld). 67 will maximize the loss
of task discriminators (features are task-invariant,
so the task discrimination loss increases). AdMul
can be easily trained via standard gradient descent
algorithms. We take stochastic gradient descent
(SGD) as an example:

oL oL

efe—ef—n<69—Aaéﬁj (13)
8/:@

0, «— 0, — (ae > (14)
oL

04— 04— <895> , (15)

where ¢ denotes the i-th training sample and 7 is
learning rate. The update for 6, and 6, is the same
as SGD. As for 0, if there is no minus sign for %,
then SGD will minimize the task discrimination
loss L4, which means the features generated by Q) ¢
are dissimilar across tasks (Ganin and Lempitsky,

2015).

4 Experiments

4.1 Datasets

Four metaphor detection datasets are used in our
experiments. The information is shown in Table 1.
VUA All (Steen, 2010) is the largest metaphor de-
tection dataset to date. VUA All labels each word
in a sentence. The sentences are from four genres,
namely academic, conversation, fiction, and news.
VUA Verb (Steen, 2010) is drawn from VUA All
dataset. The target words are all verbs. MOH-X
(Mohammad et al., 2016) is sampled from Word-
Net, with only verb targets included. WordNet
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Dataset #Sent. #Tar.  %Met. Avg. Len
VUA Ally, 6,323 116,622 11.19 18.4
VUA All,,; 1,550 38,628  11.62 24.9
VUA Ally. 2,694 50,175 12.44 18.6
VUA Verby, 7479 15516  27.90 20.2

VUA Verb,, 1,541 1,724 2691 25.0
VUA Verb,, 2,694 5,873 29.98 18.6
MOH-X 647 647 48.69 8.0
TroFi 3,737 3,737 43.54 28.3

Table 1: MD Datasets information. #Sent.: Number
of sentences. #Tar.. Number of target words. % Met.:
Proportion of metaphors. Avg. Len: Average sentence
length.

creates a sense inventory for each verb, of which
some may have metaphorical senses. TroFi (Birke
and Sarkar, 2006, 2007) is a dataset collected from
1987-1989 Wall Street Journal Corpus via an un-
supervised method. TroFi only has verb targets as
well.

We use a word sense disambiguation (WSD)
toolkit (Raganato et al., 2017) to create the basic
sense discrimination (BSD) dataset. The toolkit
provides SemCor (Miller et al., 1994), the largest
manually annotated dataset for WSD. We filter out
the targets that have less than 3 senses to balance
the magnitudes of WSD and MD datasets. The
information of BSD dataset is shown in Table 2.

#Sent.
34,479

#Tar.
130,808

% Basic

60.83

Dataset Avg. Len

22.34

SemCorgsp

Table 2: BSD Dataset information. % Basic: Proportion
of basic senses.

4.2 Compared Methods

RNN_ELMo and RNN_BERT (Gao et al., 2018)
are two end-to-end models use both GloVe and
ELMo embeddings.

RNN_HG and RNN_MHCA (Mao et al., 2019)
are based on RNN. Both models regard the
static GloVe embedding as literal, and dynamic
ELMo embedding can present metaphorical senses.
RNN_HG and RNN_MHCA also utilize linguistic
rules.

MUL_GCN (Le et al., 2020) uses multi-task learn-
ing to transfer knowledge from WSD to MD. How-
ever, it does not use shared layers. The knowl-
edge transfer is accomplished via a loss term.
MUL_GCN also leverages dependency relations.
DeepMet (Su et al., 2020) is the winning method

in the 2020 VUA and TOEFL Metaphor Detection
Shared Task (Leong et al., 2020). DeepMet is built
upon BERT, with various external resources like
fine-grained part of speech tags utilized.
MeIBERT (Choi et al., 2021) is designed upon
RoBERTa. It uses a late-interaction mechanism
to encode the literal meaning and the contextual
meaning of a target respectively. MelBERT also
leverages part of speech information.

MrBERT (Song et al., 2021) uses relation clas-
sification paradigm to detect metaphors. It em-
beds dependency relations into input to fine-tune
pre-trained BERT, with various relation models ap-
plied.

MisNet (Zhang and Liu, 2022) is a linguistics-
driven model. Two linguistic rules, namely
Metaphor Identification Procedure and Selectional
Preference Violation (Wilks, 1975, 1978) guide the
model design. MisNet regards MD as semantic
matching, with dictionary resources leveraged.

4.3 Implementation Details

We use DeBERTa;,,.. as the backbone (feature ex-
tractor () in Fig. 1) for all experiments (He et al.,
2021), through the APIs provided by HuggingFace
(Wolf et al., 2020). The embedding dimension is
768. We set the maximum input sequence length as
150. The optimizer is AdamW (Peters et al., 2019).
Welet « = 0.2, 5 = 0.1, and v = 0.1 according
to the model performance on VUA Verb, and apply
them to the rest datasets. The total training epoch,
batch size, and learning rate are specific for each
dataset, as Table 3 shows.

Dataset Epochs Batch Size LR
VUA All 8 64 3e-5
VUA Verb 5 64 3e-5
MOH-X 5 32 2e-5
TroFI 10 64 le-5

Table 3: Hyper-parameters. LR stands for learning rate.

Instead of using a fixed constant, the parameter
Ain GRL (Eq. 7)is set by A\ = ﬁ(*wm —n,
wherem = 1.4andn = 0.6. p = % where ¢ and
T are the current training step and the maximum
training step respectively. A is increasing from 0.1
to 0.8 in our case. Such a method stabilizes the
training (Ganin and Lempitsky, 2015). At the be-
ginning of the training, A should be small so that
the generated feature is not too hard for task dis-

crimination. With training going on, adversarial
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Model VUA All VUA Verb MOH-X (10 fold) TroFi (10 fold)

Pre. Rec. Fl Acc. | Pre. Rec. Fl1 Acc.| Pre. Rec. Fl1 Acc. | Pre. Rec. FI Acc.
RNN_ELMo |71.6 73.6 726 931|682 713 69.7 814|791 735 756 772|701 716 711 746
RNN_BERT | 715 719 717 929 | 667 715 69.0 807|751 818 782 78.1|703 67.1 687 734
RNN_HG 718 763 740 936|693 723 708 821 |79.7 798 798 79.7 | 674 778 722 749
RNN_MHCA | 730 757 743 938 | 663 752 70.5 818|775 831 800 79.8 | 68.6 768 724 752
MUL_GCN | 748 755 751 938|725 709 717 832|797 805 796 799|731 736 732 764
DeepMet 8.0 713 763 - | 795 708 749 - - - - - - - - -
MelBERT 80.1 769 785 - |787 729 757 - - - - - - - - -
MrBERT 827 725 772 947 | 808 715 759 864 |80.0 851 821 819|704 743 722 751
MisNet 804 784 794 949|783 736 759 860|842 840 834 836|675 776 719 736
AdMul | 784 795 790 947|785 781 783 87.0 | 874 888 879 88.0|70.5 798 747 765

Table 4: MD Results on VUA All, VUA Verb, MOH-X, and TroFi. The first four baseline models are end-to-end.
The best performance for each metric in bold, and the second best in italic underlined.

Model Verb Adjective Adverb Noun

Pre. Rec. F1 Acc.| Pre. Rec. F1 Acc.| Pre. Rec. Fl1 Acc. | Pre. Rec. FI Acc.
RNN_ELMo | 68.1 719 69.9 - 56.1 60.6 583 - 672 537 59.7 948 | 599 60.8 60.4 -
RNN_BERT | 67.1 72.1 69.5 879 |58.1 516 547 883|648 61.1 629 948 | 63.3 568 599 88.6
RNN_HG 66.4 755 70.7 88.0 592 656 622 89.1 | 61.0 66.8 638 945|603 66.8 634 88.4
RNN_MHCA | 66.0 76.0 70.7 879 | 614 617 616 89.5|66.1 60.7 632 949 | 69.1 582 632 89.8
DeepMet 788 685 733 - 79.0 529 633 - 79.4 664 723 - 76.5 57.1 654 -
MelBERT 742 759 751 - 694 60.1 644 - 80.2 69.7 74.6 - 754 665 70.7 -
MisNet 77.5 77.7 776 914 | 688 652 670 912|764 70.5 733 963 | 744 672 706 916
AdMul ‘ 772 781 77.6 914 ‘ 724 669 69.5 92.0 ‘ 763 713 737 96.3 ‘ 770 703 735 924

Table 5: MD Breakdown results on VUA All for open word classes, the most important parts of metaphor detection.

The first four baseline models are end-to-end.

training can be strengthened for better knowledge
transfer. We choose the best model on the valida-
tion set for testing. Since MOH-X and TroFi do not
have the training, validation, and testing split, we
leverage 10-fold cross-validation. In each iteration,
we pack MD and BSD samples into a mini-batch
input. They have the same amount (half of the
batch size). All experiments are done on an RTX
3090 GPU and CUDA 11.6.

S Metaphor Detection Results
5.1 Overall Results

To be consistent with previous studies (Mao et al.,
2018; Choi et al., 2021; Zhang and Liu, 2022), we
mainly focus on the F1 score. As Table 4 shows,
our proposed AdMul obtains great improvements
compared with the baseline models. Best scores
are reported on 3 out of 4 datasets, including VUA
Verb, MOH-X, and TroFi. We attain a compara-
ble result to the state-of-the-art model on VUA All
as well. The average F1 score across 4 datasets
is 79.98, which is 2.33 points higher than MisNet
(77.65 on average). We notice that AdMul per-
forms better on small datasets (VUA Verb, MOH-

X, and TroFi) than the large dataset (VUA All). We
attribute it to different dataset sizes. Deep learn-
ing models need numerous data to achieve good
performance, so MTL can help. The knowledge
distilled from BSD can greatly promote MD, espe-
cially when faced with severe data scarcity prob-
lems. MTL also works as a regularization method
to avoid overfitting via learning task-invariant fea-
tures (Liu et al., 2019a). However, VUA All is a
large dataset, so there may be a marginal utility for
more data from a related task. VUA All requires
predictions for each word class as well, while BSD
only has open class (i.e., verb, noun, adjective, and
adverb) words. Consequently, the rest word class
targets cannot get enough transferred knowledge.

The most significant enhancement is from MOH-
X. BSD dataset and MOH-X are both built upon
WordNet, so the data distributions can be very simi-
lar. In such a case, AdMul can easily align globally,
and pay more attention to local alignment. The im-
provement from TroFi is barely satisfactory. TroFi
is built via an unsupervised method, therefore it
may contain many noises. Many baseline models
perform mediocrely on TroFi as observed.
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MUL_GCN is the only chosen baseline method
in our experiments. MUL_GCN used an L2 loss
term to force the encoder of MD and the encoder of
WSD to generate similar deep features for both MD
and WSD data. However, MUL_GCN only lever-
aged the features at the output layer, without using
parameter-sharing strategy. Thus MUL_GCN did
not allow latent interaction between different data
distributions, and that is why our method performs
better.

5.2 VUA All Breakdown Results

Table 5 shows a breakdown analysis of VUA All
dataset. The most important part of MD is the
model performance on open class words. As we
can see, AdMul achieves the best F1 scores on 3
out of 4 word classes, and acquires a result sim-
ilar to MelBERT on adverbs. The biggest gains
are reported on nouns, with 2.8 absolute F1 score
improvements against the strongest baseline Mel-
BERT. The enhancement in adjectives is also en-
couraging (2.5 absolute improvements against Mis-
Net). Though AdMul performs slightly less well
than MisNet on VUA All, AdMul obtains better
results on open class words. As we mentioned be-
fore, WordNet only has annotated knowledge for
open class words, which demonstrates that AdMul
can get benefits from MTL.

5.3 VUA All Genres

The sentences of VUA All dataset originate from
four genres, namely academic, conversation, fic-
tion, and news. The performance of our proposed
AdMuL on the four genres is shown in Table 6.

Genre ‘Pre. Rec. F1 Acc.

Academic 83.9 835 837 944
Conversation | 66.6 739 70.1 952
Fiction 745 817 779 957
News 81.1 764 787 93.7

Table 6: Performance of four genres in VUA All.

The performance of conversation is inferior to
the others. Conversations have more closed word
classes (e.g., conjunctions, interjections, preposi-
tions, etc.). The performance on academic is the
best, since it has more open class words, which
are adequate in WordNet. VUA All dataset anno-
tates metaphoricity for closed word classes as well.
However, these cases may be confusing.

e.g. She checks her appearance in a mirror.

The preposition irn in the above sentence is
tagged as metaphorical. However, it is quite tricky
even for humans to notice the metaphorical sense.
As Table 7 shows, there are lots of words in closed
classes, but our proposed AdMuL cannot get trans-
ferred knowledge from auxiliary task BSD.

POS | Train  Val  Test

VERB | 20917 7,152 9,872
g NOUN | 20,514 6,859 8,588
=] ADJ 9,673 3,213 3,965
ADV 6,973 2,229 3,393
PART | 2966 1,137 1,463
= PRON | 6,942 27230 3,955
g ADP | 13,310 4,556 5,300
T DET 10,807 3,541 4,118
CCONJ | 3,645 1,369 1,581
INTJ 734 159 398

Table 7: Number for different word classes in VUA All
dataset.

5.4 Zero-shot Transfer

We use AdMul trained on VUA All to conduct
zero-shot transfer on two small datasets, i.e., MOH-
X and TroFi. The results are shown in Table 8.
Though the performance on VUA All is inferior
to MisNet, AdMul has a stronger generalization
ability, defeating the baseline models in all metrics
across two datasets. It is worth mentioning that
DeepMet and MelBERT are trained on an expanded
version of VUA All (Choi et al., 2021), so they have
more data than us. Our zero-shot performance on
MOH-X is even better than fine-tuned MisNet, the
previous state-of-the-art method (see Table 4).

MOH-X (Zero-shot) TroFi (Zero-shot)
Pre. Rec. F1 Acc.| Pre. Rec. Fl1 Acc.

DeepMet | 79.9 765 779 - 537 729 61.7
MelBERT | 793 797 792 - |534 741 620 -
MrBERT | 759 84.1 79.8 793 | 538 750 627 61.1
MisNet 718 844 81.0 80.7 | 538 762 631 612

AdMul ‘82.3 854 83.8 83.9 ‘ 55.7 771 64.7 63.3

Model

Table 8: Zero-shot transfer results.

5.5 Ablation Study

We carried out ablation experiments to prove the
effectiveness of each module, as Table 9 shows. We
removed global discriminator Y, local discrimi-
nators Qif, and adversarial training (no discrimi-
nators used) respectively. Each setting hurts the
performance of the MTL framework. It demon-
strates that we cannot naively apply MTL to com-
bine MD and BSD. Instead, we should carefully
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deal with the alignment patterns globally and lo-
cally for better knowledge transfer. In addition, we
tested DeBERTa, ¢, a model trained only on MD
dataset. DeBERTay, . takes the target word and its
context as input, thus it can be viewed as a real-
ization of MIP. The performance of DeBERTa .
is mediocre, which indicates that the progress of
AdMul is not only due to the large pre-trained lan-
guage model, but closely related to our adversarial
multi-task learning framework.

Model ‘Pre. Rec. F1 Acc.
AdMul ‘78.5 78.1 1783 87.0

w/o global disc. | 75.0 773 76.2 855
w/olocal disc. | 71.9 80.5 76.0 84.7
w/o adv. 793 730 760 86.2
DeBERTay,,c | 782 713 746 854

Table 9: Ablation on VUA Verb. w/o denotes without.

5.6 Hyper-parameter Discussion

In Eq. 10, there are three hyper-parameters, i.e., a,
B, and +y that balance the loss of BSD, global align-
ment loss, and local alignment loss respectively.
Here we conduct experiments on VUA Verb dataset
to see the impacts of different loss weight values.
We tune each weight with the rest fixed. The re-
sults are shown in Fig. 3. If «v is too small, then the
model cannot get enough transferred knowledge
from BSD. On the contrary, if « is too large, then
BSD will dominate the training, leading to poorer
performance of MD.

Two adversarial weights 8 and -y share the same
pattern. If they are too small, then the data distri-
butions cannot be aligned well globally or locally,
resulting in inadequate knowledge transfer. On the
contrary, if they are too big, distribution alignment
will dominate the training. It is worth mentioning
that the training is quite sensitive to vy, because our
local alignment is based on a linguistic hypothesis.
We should not pay much attention to local align-
ment, or it will disrupt the correct semantic space,
leading to bad results.

5.7 Hyper-parameter Search

In this paper, the hyper-parameters are BSD
loss weight «, global alignment loss weight
B, local alignment loss weight +, learning
rate 7, batch size, and total training epoch.
We tune each hyper-parameter with the rest
fixed. «, B, and  are searched from 0.05 to
0.5, with an interval of 0.05. 7 is searched

T T
8 N\ N :
/ \ /
/ P L r .~ o
(5] T \ -
276} ° \
b X
= \
\ /
T2 b \/ A
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Figure 3: Impacts of hyper-parameters.

in [le —5,2e —5,3e — 5,4e — 5,5e — 5]. The
batch size is selected from [16,32,64]. The to-
tal training epoch is selected from [5, 8, 10]. The
best hyper-parameters are described in Section 4.3.
As mentioned before, we tune all hyper-parameters
on VUA Verb dataset, and apply them to the rest
datasets, except 7, batch size, and the total training
epoch.

6 Conclusion

In this paper, we proposed AdMul, an adversar-
ial multi-task learning framework for end-to-end
metaphor detection. AdMul uses a new task, ba-
sic sense discrimination to promote MD, achieving
promising results on several datasets. The zero-shot
results even surpass the previous fine-tuned state-
of-the-art method. The ablation study demonstrates
that the strong ability of AdMul comes not only
from the pre-trained language model, but also from
our adversarial multi-task learning framework.
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Limitations

Though we simply assume that the most commonly
used lexical sense is a more basic sense and such an
assumption fits most cases, it may not be accurate
all the time. Take the verb dream as an example.
The most commonly used sense of dream accord-
ing to WordNet is "have a daydream; indulge in
a fantasy", which is metaphorical and non-basic.
While it has another literal and basic sense, mean-
ing "experience while sleeping”. We are expecting
a more fine-grained annotation system to clarify
the evolution of different senses: which sense is
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basic and how other senses are derived. Such a
system will benefit both metaphor detection and
linguistic ontology studies.

Due to computing convenience, our model can-
not handle long texts. An indirect metaphor needs
to be determined across several sentences. Such
a case is beyond our capabilities (Zhang and Liu,
2022). We will also leave it as a future work.

Ethics Statement

Our proposed AdMul aims to detect metaphors in
English, and the method can also be applied to
other languages or multi-lingual cases. Though our
manual observations did not show that there were
biased metaphor detection cases for AdMul, there
may still exist biases from the pre-trained language
model.

We use DeBERTa,,,. in all experiments, which
is pre-trained on a variety of datasets, includ-
ing Wikipedia, BookCorpus?®, and CommonCrawl,
etc(He et al., 2021). The total pre-training data size
is about 78GB. Since AdMul needs to fine-tune
DeBERTay, s, AdMul may inherit poisonous lan-
guages from the pre-trained language model, like
hate speech, gender bias, stereotypes, etc.
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¥ Al. Did you describe the limitations of your work?
We have discussed the limitations in Section Limitations.

¥ A2. Did you discuss any potential risks of your work?
We believe that our work is only for metaphor detection and linguistic study, so there will not be
potential risks. However, we discussed the underlying poisonous languages from the pre-trained
language model that we used in Section Ethics Statement.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
We have summarized the main claims in Abstract and Introduction.

A4. Have you used Al writing assistants when working on this paper?
We did not use any Al writing assistants.

B ¥ Did you use or create scientific artifacts?

We used public datasets for our experiments, and open-source libraries for implementation. Please see
Section 4.1 Dataset and 4.3 Implementation Details.

v/ B1. Did you cite the creators of artifacts you used?
We have cited the datasets and open-source software in Section 4.1 Dataset and 4.3 Implementation
Details.

B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
MOH-X dataset did not clearly tell the license. TroFi dataset is under GPL policy. VUA All and
VUA Verb datasets are under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
Huggingface Transformers is under the Apache-2.0 license. DeBERTa is under the MIT license. We
use these artifacts for research purposes, which is permitted by the terms of all artifacts.
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compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

We use the artifacts for research purposes, which is permitted by their terms.

L1 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

Not applicable. The datasets we used in this work are widely used, but we cannot trace how they
deal with ethical problems. However, we cannot make changes to the datasets to maintain fair
comparisons with the baseline methods.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
We only have a brief introduction to the used artifacts in Section 4.1 Datasets. We cited the artifacts,
and the original websites or information can be easily found.

v B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

1496


https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

be significant, while on small test sets they may not be.
We have statistical information for the used datasets in Section 4.1 Datasets, including the number of
examples, details of the dataset split, and how they were collected.

C ¥ pid you run computational experiments?

The experiments are shown in Section 4 Experiments.

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
The parameters and computing device are reported in Section 4.3 Implementation Details. All
experiments are completed on a single RTX 3090 GPU. The training time on VUA All, VUA Verb,
MOH-X, and TroFi are about 3.5h, 18m, 10m, and 70m respectively.

vf C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
The information is discussed in Section 4.3 Implementation Details and Appendix A.2 Hyper-
parameter Search.

¥ C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Experimental statistics can be seen in Section 5. The computing method is also clarified in Section
4.3 Implementation Details.

C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Our method is end-to-end, so we did not use any existing packages.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(1 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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