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Abstract

With the evolution of Knowledge Graphs
(KGs), new entities emerge which are not seen
before. Representation learning of KGs in such
an inductive setting aims to capture and trans-
fer the structural patterns from existing entities
to new entities. However, the performance of
existing methods in inductive KGs are limited
by sparsity and implicit transfer. In this paper,
we propose VMCL, a Contrastive Learning
(CL) framework with graph guided Variational
autoencoder on Meta-KGs in the inductive set-
ting. We first propose representation generation
to capture the encoded and generated represen-
tations of entities, where the generated vari-
ations can augment the representation space
with complementary features. Then, we design
two CL objectives that work across entities and
meta-KGs to simulate the transfer mode. With
extensive experiments we demonstrate that our
proposed VMCL can significantly outperform
previous state-of-the-art baselines.

1 Introduction

Knowledge Graphs (KGs) structure objective
knowledge in the form of (“head entity”, “rela-
tion”, “tail entity”) triples to express factual con-
nections. Representation learning of KGs aims to
learn implicit representations (embeddings) of en-
tities and then applies the learned representations
to knowledge-intensive tasks such as link predic-
tion (Li et al., 2021) and question answering (Hao
et al., 2017). Conventionally, KG are embedded in
a transductive setting with a fixed predefined set
of entities under the assumption that entities to be
tested are seen during training. In this transductive
setting, the learned entity representations from a
source KG can easily be applied to a target KG
(Sun et al., 2019).

However, it is well admitted that KGs are not
static, rather they evolve over time where new KGs
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Inductive: Target KG is constructed with the relation patterns of Source KG. 

But, entities in Target KG could be different with that in Source KG.  
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Figure 1: Example of inductive KGs with a source KG
and a target KG. Entities in the target KG are different
from entities in the source KG. However, there are simi-
larities in relational patterns, e.g., entity Facebook in the
source KG has relations: Headquartered-in, Economic-
sector, Member-of, and entity 1 in the target KG has
similar relation patterns. So it can be deduced that entity
1 may be a company like Facebook.

with a novel set of entities emerge. For KGs in such
an inductive setting, the learned representations of
existing (source) entities are not applicable to the
new (target) entities (Chen et al., 2022). Thus, the
problem of capturing structural patterns from exist-
ing source entities and transferring them to a new
set of target entities is of practical importance and
posits a new set of interesting research challenges
to tackle. We provide empirical insights about the
representation learning problem in the inductive
setting with an example in Fig. 1. Entities in the
target KG are new which are different from enti-
ties in the source KG. While there are similarities
in structural patterns between the two KGs, e.g.,
entity 1 in the target KG may be a company like
Facebook in the source KG. Representation learn-
ing of inductive KGs aims to capture the structural
patterns from the source KG, then transfer them
to help the learning for the target KG. Note that
what are transferred are structural patterns, not the
learned representations because entities in the tar-
get and source KGs are different.

Several efforts devoted to representation learning
of inductive KGs. AMIE (Galárraga et al., 2013),
RuleN (Meilicke et al., 2018), Neural-LP (Yang
et al., 2017) and DRUM (Sadeghian et al., 2019)
learn probabilistic logical and entity-independent
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Figure 2: The overall framework of VMCL. (1) For a given meta-KG Mi, Representation Generation uses a
graph guided variational autoencoder to generate representation variations (denoted by Mg

i ) of the entities. (2)
Transfer with Contrastive Learning simulate explicitly the transfer mode with CL across entities and meta-KGs.

rules from the source KG and apply such rules to
the target KG. GraIL (Teru et al., 2020) and CoM-
PILE (Mai et al., 2021) learn the ability of relation
prediction by subgraph extraction and graph neural
networks independent of any specific entities, and
generalize such ability to the target KG. Recently,
MorsE (Chen et al., 2022) learns transferable and
entity-independent meta knowledge by meta learn-
ing (Qin et al., 2023). Although these methods have
shown promising results for representation learning
of inductive KGs, their performance is affected by
at least two factors. First, their capability is limited
by the sparsity of KGs caused by missing links.
In four inductive KGs: N1-N4 (Teru et al., 2020),
the degree of 65%, 47%, 46%, 42% entities is less
than 3. Second, effective transfer is often limited
by the implicitness, e.g., MorsE uses meta learning
to learn transfer patterns implicitly between source
and target KGs, lacking explicit joint comparison
across the entities and KGs.

In this work, we propose VMCL, a Contrastive
Learning (CL) framework with graph guided
Variational autoencoder on Meta-KGs 1 in the in-
ductive setting. Fig. 2 gives the framework. We
first propose representation generation to capture
the encoded and generated representations of enti-
ties, where the generated variations can augment
the representation space with complementary fea-
tures (Fig. 2(1)). Then, we design two CL objec-
tives that work across entities and meta-KGs to

1Each meta-KG is a subgraph sampled randomly from the
source KG and re-labeled to imitate a new KG.

simulate the transfer mode (Fig. 2(2)). We perform
extensive evaluation and theoretical derivation to
understand the performance of VMCL. Empirical
results and analysis show the superiority of VMCL
over state-of-the-art baselines.

In summary, our key contributions are:

• We propose a graph guided variational autoen-
coder to augment entity representations, which
provides complementary features to alleviate the
sparsity and lay the foundation for transfer.

• We simulate explicitly the transfer mode with CL
across entities and meta-KGs.

• Extensive experiments show the superiority of
VMCL over state-of-the-art baselines. We re-
lease the code and datasets in https://github.
com/feiwangyuzhou/VMCL.

2 Related Work

2.1 Knowledge Graphs

Knowledge Graphs (KGs) structure objective facts
to express potential connections between entities
(Li et al., 2022b). In general, KGs are considered
in a transductive setting where they remain static.
Representation learning in this transductive setting
aims to learn informative representations of enti-
ties through a source KG and apply the learned
representations to a target KG, because the en-
tities in the target KG also appear in the source
KG. TransE (Bordes et al., 2013) and RotatE (Sun
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et al., 2019) design complex similarity scoring func-
tions to mine semantic features for entities and
relations. GGAE (Li et al., 2021) introduces atten-
tion networks (Huang et al., 2021) while R-GCN
(Schlichtkrull et al., 2018) adapts GNNs to encode
the features of entities and relations with k-hop
neighbor structures. Although many methods have
been proved effective in handling various trans-
ductive KGs, they cannot handle tasks related to
entities unseen during training.

As mentioned, KGs evolve over time and new
KGs with new entities emerge. This produces in-
ductive KGs where the target KG is inducted by
the source KG with predefined relations. In the
inductive setting, entities in the target KG could be
different from the entities in the source KG. Repre-
sentation learning of inductive KGs aims to capture
structural patterns from the source KG, then trans-
fer them to the target KG. Representation learning
of inductive KGs is more difficult than that of trans-
ductive KGs, but it is more realistic and practical.
Much work devotes to the representation learning
of inductive KGs with probabilistic logical rules
(Galárraga et al., 2013; Meilicke et al., 2018; Yang
et al., 2017; Sadeghian et al., 2019), relation pre-
diction ability (Teru et al., 2020; Mai et al., 2021)
and meta-learning framework (Chen et al., 2022).

However, their feature mining and transfer ca-
pability is limited by sparsity and implicit transfer.
In contrast, we propose representation generation
to augment the representation space, and design
two CL objectives that work across entities and
meta-KGs to simulate the transfer mode.

2.2 Contrastive Learning

CL aims to learn effective representation by pulling
semantically close neighbors together and pushing
apart non-neighbors, which has achieved great suc-
cess in vision (He et al., 2020), text (Gao et al.,
2021) and graph (Zhu et al., 2021). CL in graphs
improves the performance by leveraging a con-
trastive loss at node (Velickovic et al., 2019) and
graph (Sun et al., 2020) levels. (Hassani and Ah-
madi, 2020) and (Zhu et al., 2021) attempt to con-
trasts multiple structural views of graphs. (Ahra-
bian et al., 2020), (Wang et al., 2022) and (Li et al.,
2022a) introduce CL into transductive KGs by de-
signing negative sampling strategies. Although
there has been a lot of CL concerned with graphs
and transductive KGs, relatively little work focuses
on inductive KGs. In contrast, we propose a simple

but effective CL framework for inductive KGs to
transfer knowledge from source KGs to target KGs.

2.3 Variational AutoEncoder (VAE)

Deep generative models have recently attracted
much attention in that they can generate unseen
samples which have the same distribution as the
original data (Kipf and Welling, 2016; Simonovsky
and Komodakis, 2018). The generated data, as a
supplement to original data, can help the model
better mine potential features and make the model
more robust. VAE (Kingma and Welling, 2014)
is an unsupervised generative framework and has
been extensively studied and applied in various
tasks such as question answering (Zhang et al.,
2018) and graph autoencoder (Ahn and Kim, 2021;
Li et al., 2023). In this paper, we introduce a graph
guided VAE to generate similar representations of
entities, which broadens the representations with
complementary features.

3 Preliminaries

3.1 Inductive KGs

We denote a KG as a graph G=(E ,R), where E
refers to the set of entities and R refers to the set of
relations in the KG. A KG organizes entities and re-
lations as triples of (h, r, t), where h, t ∈ E respec-
tively represent the head and tail entities, and r ∈
R represents the relation between h and t. A group
of inductive KGs includes at least a source KG
GS=(ES ,RS) and a target KG GT=(ET ,RT ) with
the condition RT ⊆ RS and ET ∩ ES=∅. The goal
of representation learning for inductive KGs is to
capture the structural patterns f from GS and trans-
fer it to GT . We expect f to be able to map entities
in GT into representations with the following prop-
erty: the score of a true triple (h, r, t) ∈ GT should
be higher than that of any false triple (h−, r−, t−).

In general, target KGs (1) may retain some old
entities, e.g., character relationships, or (2) may
not retain any, e.g., new events (however, there are
similarities in the propagation modes of different
events). To our knowledge, case (2) is more diffi-
cult than case (1). Our definition is designed for
case (2), and can be easily applied to case (1) by
initializing old entities with old embeddings.

3.2 Meta-KGs

Following MorsE (Chen et al., 2022), we use meta-
KGs to simulate the transfer learning mode, where
each meta-KG Mi is a subgraph sampled randomly
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from the source KG GS . We re-label the id of all
entities in Mi in order to make the process label
insensitive as our main interest is to capture the
structural patterns. We extract multiple meta-KGs
{Mi}|M|

i=0 from GS with |M| being the number
of meta-KGs sampled. For any two meta-KGs
Mi=(EMi ,RMi) and Mj=(EMj ,RMj ), we en-
sure that EMi ∩EMj=∅, RMi ⊆ RS , RMj ⊆ RS .

3.3 Representation Notations

In the remaining, we use the following notations:

• R ∈ R|RS |×D denotes learnable relation repre-
sentations which reserve internal semantics of
relations; r ∈ R is the representation for the
relation r. D is the dimension of representations.

• Rhead ∈ R|RS |×D and Rtail ∈ R|RS |×D are
learnable relation embeddings to initialize the
representation of the respective entities. For a
relation r, rhead ∈ Rhead denotes the relation
embedding for the head entities connected by r,
and rtail ∈Rtail denotes the relation embedding
for the tail entities connected by r.

• For a meta-KG Mi=(EMi ,RMi), we follow
(Chen et al., 2022) and initialize the representa-
tion of each entity with its relation patterns. For-
mally, the representation of entity h in a meta-KG
Mi is initialized with features of the involved re-
lations in Mi:

h0 =
Σr∈O(h)rtail +Σr∈I(h)rhead

|O(h)|+ |I(h)| (1)

where we use O(h)={r|∃x, (h, r, x) ∈ Mi},
I(h) = {r|∃x, (x, r, h) ∈ Mi} to denote outgo-
ing and incoming relations for entity h.

• For a meta-KG Mi=(EMi ,RMi), we use h ∈
R|EMi

|×D and hg ∈ R|EMi
|×D to denote the en-

coded representation and generated representa-
tion of entity h, respectively.

4 Method

Fig. 2 depicts the overall framework of our VMCL.
In the following, we first introduce representation
generation to capture the encoded and generated
representations of entities in each meta-KG. Then,
we design two CL objectives that work across en-
tities and meta-KGs to simulate the transfer mode.
Training Procedure is described at the end.

4.1 Representation Generation
With the initialized representations of entities, we
augment the representation space with variants that
are similar but still different from the initialized
ones (Fig. 2(1)). We design a graph guided varia-
tional autoencoder to generate such variations be-
cause it provides finer-grained control (through the
prior) to generate unseen representations with the
same distribution as the original data (Kipf and
Welling, 2016). Its architecture includes an en-
coder and a decoder, where the encoder aims to
learn the encoded representation h and latent Gaus-
sian distribution N (µh, σ

2
hI), and the decoder aims

to generate representation hg by sampling from the
above latent Gaussian prior.

The encoder first captures the graph features
and then learns a latent Gaussian distribution. We
use an graph neural network (GNN) to modulate
the representations of entities with their multi-hop
neighborhood structures,

hl = σ
( 1

|EMi(h)|
∑

(t,r)∈EMi
(h)

W l
rt
l−1+W l

0h
l−1

)

(2)
where EMi(h)={(t, r)|(t, r, h) ∈ Mi} denotes
the set of (head entity, relation)-pair of immedi-
ate incoming neighbor triples of entity h. W l

r ∈
RDl×Dl−1

is the relation-specific transformation
matrix for relation r in the l-th layer, W l

0 ∈
RDl×Dl−1

is a self-loop transformation matrix for
entity h in the l-th layer, Dl and Dl−1 are the di-
mension in the l-th and l−1-th layers. σ is a ReLU
activation function. For simplicity, let Eq. (2) be,

hle = σ
(
GNN(EMi(h),h

l−1
e , Dl, Dl−1)

)
(3)

We use L-layer GNNs to capture the graph features,
where h0

e=h
0 with D0=D (Eq. (1)), {D0, ..., DL}

are a list of dimensions. Then we use hLe with di-
mension DL to learn a latent Gaussian distribution,

µh =Wµ(h
L
e ), σ

2
h =Wσ(h

L
e )) (4)

q(z|h) = N (µh, σ
2
hI) (5)

where Wµ and Wσ denote the weight matrices cor-
responding to the mean and variance of the (latent)
Guassian distribution, respectively.

The decoder generates representation hg for en-
tity h. We use the reparametrization trick to sample
z from the above latent Guassian distribution,

z = µh + σh ◦ ϵ (6)
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where ϵ ∼ N (0, I) (i.e., a standard normal dis-
tribution), ◦ denotes element-wise multiplication.
We (re)construct hg from z using another L-layer
GNNs. The GNNs use dimension list {DL, ..., D0}
which is reversed with that in Eq. (3) and thus we
denote this process from L-layer to 0-layer,

hld = σ
(
GNN(EMi(h),h

l+1
d , Dl, Dl+1)

)
(7)

where hLd =z. Let hg = h0
d denote the generated

representation of entity h.
We optimize the parameters with the combined

loss of reconstruction and KL divergence,

LG(h) = ||h− hg||2 +KL(N (µh, σ
2
h),N (0, I))

(8)
here, h = WL(h

L
e )

2, WL is a projection matrix to
transform dimension from DL to D.

During inference, we encode a representation h
and generate a representation hg for entity h in Mi.
To distinguish, we use Mg

i to denote the generated
meta-KG which has the same structure as Mi but
different representations, i.e., the representation
of entity h in Mi is the encoded representation h
and that of entity hg in Mg

i is the corresponding
generated representation hg 3. In summary, the gen-
erated representation variations can augment the
representation space with complementary features,
which are later used in the CL objectives.

4.2 Transfer with Contrastive Learning
With the support of encoded representation h and
generated representation hg, we design two CL
objectives to simulate the transfer mode across en-
tities and meta-KGs (Fig. 2(2)).

Transfer across Entities focuses on enhancing
transferability across entities. We design a CL ob-
jective that works across entities inside a meta-KG,

LI(h, r, t) = − log
e(β(h

I ,r,tI)/τ)

∑
n∈{P,NI} e

(β(n)/τ)
(9)

where we use a triple P=(h, r, t) in the meta-KG
Mi as a positive sample, and contrast it with neg-
ative samples NI . hI = h + hg and tI = t + tg

are respectively the representations of the head and
2The encoder representation hL

e shows better performance
than the initialized representation h0.

3Relations in source KGs and target KGs are the same,
so relation representations do not need to be transferred. We
have tried to generate relation representations for the generated
meta-KG, but the results are not ideal. To ensure completeness,
the relation representations of the generated meta-KG are the
same as that of the original meta-KG.

tail entity computed as the sum of the encoded and
generated representations. The representations of
the head and tail entities in a negative sample use
the same summation format. For relation, we use
its initial representation r. τ is the temperature hy-
perparameter and β(hI , r, tI) is a similarity score
which can be any Knowledge Graph Embedding
(KGE) methods, such as TransE (−||hI + r− tI ||)
(Bordes et al., 2013) or RotatE (−||hI ◦ r − tI ||)
(Sun et al., 2019). For a positive sample P=(h, r, t),
its negative samples can be generated as,

Nh = {(h−j , r, t)}Uj=0, Nt = {(h, r, t−j )}Uj=0

(10)
Nr = {(h, r−j , t)}Uj=0 (11)

where Nh is a set of negative samples with number-
U generated by replacing the head entity of (h, r, t)
with negative “head” entities h−j , which are sam-
pled from a candidate entity list EMi − EMi(r, t)
with EMi(r, t) being an entity list of true head enti-
ties (i.e., hj ∈ EMi(r, t) iff (hj , r, t) ∈ Mi). Simi-
larly, Nt is a set of negative samples generated by
replacing the tail entity of (h, r, t) with negative
“tail” entities t−j , which are sampled from an en-
tity list EMi − EMi(h, r) with EMi(h, r) being an
entity list of true tail entities (i.e., tj ∈ EMi(h, r)
iff (h, r, tj) ∈ Mi). Likewise, Nr is a set of nega-
tive samples generated by replacing the relation of
(h, r, t) with negative relations r−j , which are sam-
pled from a candidate relation list RS −RMi(h, t)
with RMi(h, t) being a relation list that satisfies
the condition: rj ∈ RMi(h, t) if (h, rj , t) ∈ Mi.
Let all negative samples be NI = {Nh,Nt,Nr}.

To analyse how this CL loss affects the transfer
across entities, we perform gradient analysis. The
gradients with respect to the head entities are:

−∂L
I(h, r, t)

∂hI
=

1

τψ

([ ∑

n∈NI

e
β(n)
τ

]
β′(hI , r, tI)

−
[ ∑

n∈{Nt,Nr}
e(

β(n)
τ

)
]
β′(n)

)

(12)

where ′ denotes the partial derivative, ψ is a nor-
malization constant (see Appendix). The gradients
of the head entity h are closely related to positive
entity t, negative entities t−j ∈ Nt and relations
r−j ∈ Nr. Thus, this CL can transfer the features
from positive and negatives samples to head enti-
ties. The gradients with respect to the tail entity
t are closely related to positive entity h, negative
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entities h−j ∈ Nh and relations r−j ∈ Nr (see
Appendix), which proves the transferability from
positive and negatives samples to tail entities.

Transfer across Meta-KGs aims to learn trans-
ferability across meta-KGs. With the support that
the generated representation hg in Mg

i has the
same distribution with respect to the encoded rep-
resentation h in Mi, we add a relation rg to create
the link between the two meta-KGs Mi and Mg

i .
Specifically, for entity h in Mi, we form the hg

in Mg
i as a positive sample and use the entities

in other meta-KGs {Mk}Ua
k=0 as negative samples.

We design a CL objective that works across meta-
KGs to simulate the transfer mode,

LA(h, rg, hg) = − log
e(β(h,r

g,hg)/τ)

∑
n∈{P,NA} e

(β(n)/τ)

(13)
NA = {{(h, rg, t−k,j), (h, rg, {t−k,j}g)}Uj=0}Ua

k=0

(14)
Similar to the positive sample, we form each neg-
ative sample as (h, rg, t−k,j) by adding rg between
Mi and Mk, where t−k,j ∈ Mk denotes the j-th
negative entity sampled from Mk and t−k,j is its
representation; {t−k,j}g ∈ Mg

k denotes the j-th neg-
ative entity sampled from Mg

k and {t−k,j}g is its
representation. We sample U negative entities ran-
domly from both Mk and Mg

k, and sample Ua
negative meta-KGs from the same batch.

To analyse how this CL loss affects the transfer
across meta-KGs, we perform gradient analysis.
The gradients (−∂LA(h,rg ,hg)

∂h ) with respect to the
head entities are,

1

τψg

([ ∑

n∈NA

e
β(n)
τ

]
β′(h, rg,hg)

−
[ ∑

n∈NA

e
β(n)
τ

]
β′(n)

) (15)

where ψg is a normalization constant (see Ap-
pendix). According to the gradients, this CL can
transfer positive features from hg ∈ Mg

i and neg-
ative features from t−k,j ∈ Mk, {t−k,j}g ∈ Mg

k to
the object entity h ∈ Mi.

In summary, these CLs, simulating the transfer
mode across entities and multiple KGs, can en-
hance transferability explicitly to help the model
capture transferable structural patterns. And our
CL objectives are relatively independent of the rep-
resentation generation module. Although we use
the generated representations as contrastive objects,

Source KG Target KG

Rel Ent Train Valid Test Rel Ent Train Valid Test

F1 180 1,594 4,245 489 492 142 1,093 1,993 206 205
F2 200 2,608 9,739 1,166 1,180 172 1,660 4,145 469 478
F3 215 3,668 17,986 2,194 2,214 183 2,501 7,406 866 865
F4 219 4,707 27,203 3,352 3,361 200 3,051 11,714 1,416 1,424

N1 14 3,103 4,687 414 439 14 225 833 101 100
N2 88 2,564 8,219 922 968 79 2,086 4,586 459 476
N3 142 4,647 16,393 1,851 1,873 122 3,566 8,048 811 809
N4 76 2,092 7,546 876 867 61 2,795 7,073 716 731

Table 1: Dataset statistics. Rel, Ent show the no. of
relations, entities in the source/target KG. Train, Valid,
Test show the no. of triples in train, valid, test sets of
the source/target KG.

we can use the random, initial or word embeddings
as contrastive objects for other models and tasks.

4.3 Training Procedure

PreTrain (PT) stage is trained on multiple meta-
KGs (extracted from the source KG) with the com-
bined loss of the generation loss (LG), CL losses
(LI , LA) and task-specific loss (Lζ):

L =
∑

Mi∈MS

∑

(h,r,t)∈Mi

η1(L
G+LI +LA)+η2L

ζ

(16)
where the weights η1 and η2 are used to bring the
two kinds of losses to the same order of magnitude.
We use link prediction as a downstream task to
optimize the parameters.

Lζ(h, r, t) = −logϑ(λ+ β(hI , r, tI))
−∑

n∈NI
ζ(n)logϑ(−λ− β(n))

(17)

ζ(n) =
e(β(n))∑

n∈NI
e(β(n))

(18)

where hI , r, tI are the representations of h, r, t
(similar to Eq. (9)); ζ(n) is a self-adversarial neg-
ative sampling function which generates different
weights for different negative samples according
to their importance to the triple (h, r, t). ϑ is the
sigmoid function, λ is a fixed margin.
FineTune (FT) With pretrained parameters (by the
source KG) as initialization, the FT stage is fine-
tuned on the target KG with task-specific loss.

L = Σ(h,r,t)∈GT
Lζ(h, r, t) (19)

5 Experiments

5.1 Datasets

Table 1 shows the statistics of our datasets. We use
8 benchmark inductive KGs: F1, F2, F3, F4 and
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Model
F1 F2 F3 F4

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Neural-LP * 46.13 40.21 52.92 51.85 45.68 58.94 48.70 44.09 52.90 49.54 44.12 55.88
DRUM * 47.55 42.71 52.92 52.78 47.49 58.73 49.64 45.84 52.90 50.43 45.53 55.88
RuleN * 45.97 41.46 49.76 69.08 62.13 77.82 73.68 65.95 87.69 74.19 67.21 85.60
GraIL * 48.56 40.00 64.15 62.54 52.20 81.80 70.35 60.25 82.83 70.60 60.99 89.29
CoMPILE * - - 67.64 - - 82.98 - - 84.67 - - 87.44
MorsE 69.61 58.82 90.39 80.38 71.34 96.33 78.58 69.73 95.34 80.74 72.02 96.62

VMCL 72.68 62.61 92.47 81.66 73.05 97.29 78.29 69.75 95.51 80.42 71.68 96.72

Table 2: Results of VMCL over baselines on F1-F4 datasets, where the results with * are taken from (Chen et al.,
2022). Bold numbers denote the best results. VMCL is significantly better than MorsE with p-value=.028.

Model
N1 N2 N3 N4

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Neural-LP * 35.71 29.13 40.78 64.68 55.45 78.73 69.93 60.46 82.71 68.21 59.27 80.58
DRUM * 18.89 14.08 19.42 66.44 58.55 78.55 72.28 64.29 82.71 70.42 63.09 80.58
RuleN * 46.35 39.00 53.50 70.80 63.08 81.75 68.76 61.99 77.26 56.31 51.44 61.35
GraIL * 52.04 46.50 59.50 72.92 63.08 93.25 74.37 64.22 91.41 62.98 57.27 73.19
CoMPILE * - - 58.38 - - 93.87 - - 92.77 - - 75.19
MorsE 54.10 46.80 66.68 80.13 70.35 96.65 86.38 78.43 98.34 80.11 70.29 96.12

VMCL 55.06 48.16 66.86 84.70 76.32 97.61 87.17 79.65 98.30 82.17 72.86 96.91

Table 3: Results of VMCL over baselines on N1-N4 datasets, where the results with * are taken from (Chen et al.,
2022). Bold numbers denote the best results. VMCL is significantly better than MorsE with p-value=.006.

N1, N2, N3, N4 derived from (Teru et al., 2020). A
group of inductive KGs (e.g., F1) has a source KG
and a target KG, where the source KG has train,
valid, test sets which are different with the train,
valid, test sets of the target KG. All experiments
are evaluated on the test set of the target KG. The
average degree of F1-4 and N1-4 is increasing, e.g.,
F1-4 (2.7, 3.7, 4.9, 5.8) and N1-4 (1.5, 3.2, 3.5,
3.6). Low average degree represents a sparser KG,
while high average degree represents a denser KG.
Obtaining meta-KGs. Our model uses meta-KGs
to simulate the inductive setting where a meta-KG
Mi is sampled from a source KG GS with the fol-
lowing steps (Fig. 2(1)): (1) Sample an entity from
the entity list EGS

of the source KG GS , and put
it into set EMi . (2) Sample an entity from EMi ,
walk randomly n1 times with length-n2, and put
the walked entities into set EMi . (3) Repeat the
above step (2) n3 times and use entities in EMi to
induce a meta-KG Mi. (4) Anonymize the enti-
ties in Mi by re-labeling the id of entities to be
{1,2,...,|EMi |} in an arbitrary order.

5.2 Evaluation Metrics and Baselines
We report MRR, H@N scores to evaluate the per-
formance of link prediction in the test set of the

target KG. The results are averaged by head and
tail predictions. Following the settings in (Chen
et al., 2022), the results of baselines and VMCL are
approximated by ranking each test triple among 50
other randomly sampled negative triples five times.

To show the effectiveness of our approach, we
compare VMCL against several strong baselines:

• One Stage models are directly adapted to the
target KG after being trained on the source
KG. They do not have pretraining-finetuning
steps. This includes: RuleN (Meilicke et al.,
2018), Neural-LP (Yang et al., 2017), DRUM
(Sadeghian et al., 2019), GraIL (Teru et al., 2020),
CoMPILE (Mai et al., 2021).

• PT+FT models are trained on the source KG then
finetuned on the target KG. This includes variants
of MorsE (Chen et al., 2022) with different KGEs
(TransE/RotatE). To our best knowledge, these
MorsE models are the state-of-the-art baselines.

VMCL is a PT+FT model. We design variants of
VMCL with different KGEs (TransE/RotatE) and
training settings (Full/-PT/-FT). The Full is fine-
tuned on the target KG with pretrained parameters
from the source KG then uses the finetuned param-
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Figure 3: Results of VMCL over pretrain/finetune stages on F1-F4 and N1-N4.

eters to test the target KG, -PT variant is trained on
the target KG with random parameters, -FT variant
is trained on the source KG then uses pretrained
parameters to test the target KG. Please refer to Ap-
pendix (A.3) for the settings and hyperparameters.

5.3 Results

In this section, we conduct extensive experiments
to show the effectiveness of VMCL.

• VMCL over Baselines The results of VMCL
and baselines are shown in Table 2 (for F1-F4
datasets) and Table 3 (for N1-N4 datasets).4 We
notice that VMCL achieves significant improve-
ments over the baselines. The one stage baselines
perform poorly because they only allow training
on the source KG and lack adaptive training on
the target KG, while MorsE is better than those as
it also finetunes the model on the target KG. Our
VMCL, which uses generated representations to
provide complementary features and uses CL to
enhance the transfer across entities and KGs, out-
performs MorsE by a large margin. Specifically,
the H@1 score of VMCL increases by 1.36, 5.97,
1.22, 2.57 points in N1, N2, N3,and N4 datasets,
respectively (Table 3). And we find that VMCL
performs better on sparse KGs (F1-F3, N1-N4),
and does not have a significant effect on dense KGs
(F4), which aligns with our motivation to alleviate
sparsity. These significant improvements over the
baselines prove the effectiveness of our model.

4The default KGE model of MorsE and VMCL is RotatE.

• VMCL over PT/FT Stages We report the re-
sults of VMCL with Full/-PT/-FT settings in Fig. 3.
First, we show the necessity of PT stage by com-
paring the Full with -PT models. The Full model
outperforms -PT with sizeable margins in F1-F4
and N2-N4 and competitive margin in N1. Con-
cretely, H@1 score of Full increases by 22.83 in F1,
12.31 in F2, 7.86 in F3, 6.27 in F4 and 1.06 in N1,
10.52 in N2, 5.60 in N3, and 6.61 in N4. The perfor-
mance improvement of Full over -PT indicates the
transfer capability of PT stage in VMCL. That is,
the structural patterns, captured by PT stage from
the source KG, can help the representation learning
of the target KG achieve better results. Second, we
show the necessity of FT stage by comparing the
Full with -FT models. The performance of Full
is better than that of -FT on all datasets. Notably,
H@1 score of Full increases by 9.93 point in F1,
5.35 in F2, 7.53 in F3, 10.79 in F4, and 0.86 in
N1, 29.85 in N2, 25.97 in N3, and 43.50 point in
N4. The above results of Full over -FT show that
although the pretrained parameters by the source
KG can bring performance improvements, it is nec-
essary to finetune the parameters on the target KG
to adapt to its own characteristics.

• VMCL over KGE Models We investigate the
impact of different KGE (TransE/RotatE) models,
and the results are shown in Table 4. Through ob-
servation, we find the following two conclusions:
(1) With the same KGE, the proposed VMCL al-
ways outperforms the baseline MorsE with sizeable
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Model
F1 F2 F3 F4

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE
MorsE 67.49 55.90 89.73 79.22 69.58 96.37 77.03 67.55 94.77 79.48 70.01 96.66
VMCL 70.80 59.64 91.81 80.47 71.45 96.00 77.52 68.12 95.41 79.52 70.21 96.84

RotatE
MorsE 69.61 58.82 90.39 80.38 71.34 96.33 78.58 69.73 95.34 80.74 72.02 96.62
VMCL 72.68 62.61 92.47 81.66 73.05 97.29 78.29 69.75 95.51 80.42 71.68 96.72

Model
N1 N2 N3 N4

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE
MorsE 47.61 39.92 61.42 76.53 64.63 96.69 81.55 70.20 98.60 74.71 62.04 95.62
VMCL 49.88 41.50 63.70 78.55 66.97 97.53 83.57 73.24 98.74 76.71 64.87 95.82

RotatE
MorsE 54.10 46.80 66.68 80.13 70.35 96.65 86.38 78.43 98.34 80.11 70.29 96.12
VMCL 55.06 48.16 66.86 84.70 76.32 97.61 87.17 79.65 98.30 82.17 72.86 96.91

Table 4: Results of different KGE models.

Model F1 F2 F3 F4

Full 62.61 73.05 69.75 71.68

w/o G 52.05 62.84 58.83 59.47
w/o GFNN 51.96 65.86 60.48 61.25

w/o CL 58.76 72.75 69.69 71.98
w/o CLE 61.19 71.70 70.06 72.79
w/o CLM 58.93 72.93 70.46 71.86

Table 5: Results (H@1%) of ablation study in F1-F4.

margins in all datasets. (2) The performance of the
models with RotatE is better than that with TransE.

• Ablation Study We first investigate the abla-
tion study (Table 5) of representation generation by
removing / replacing one component from the Full
at a time: (w/o G) removing the generated repre-
sentations in which the CL across meta-KGs is also
removed, (w/o GFNN) replacing the GNN with a
fully-connected neural network. Compared to Full,
removing the representation generation module
(w/o G) decreases the performance in all datasets,
especially, 10.56, 10.21, 10.92, 12.21 points in F1-
F4. And the performance degradation of GFNN
over Full proves the effectiveness of the proposed
GNN module. Second, we investigate the ablation
study of Transfer with CL by: (w/o CL) removing
the two CL objectives, (w/o CLE) removing the CL
across entities, (w/o CLM) removing the CL across
meta-KGs. The results in Table 5 show that these
CL modules (across entities and meta-KGs) play a
crucial role in improving the performance of F1, F2
datasets and has little effect in F3, F4 datasets. That
is, these CL modules are more effective on sparse
KGs (e.g., F1, F2) because the introduced negative

samples across entities and meta-KGs effectively
alleviate the problem of insufficient training caused
by sparse data (missing links). Please refer to Ap-
pendix for the ablation study (A.1) in N1-N4.

• Time Complexity We analyze the time com-
plexity of VMCL for a meta-KG Mi=(EMi ,RMi)
with |Mi| as the number of triples. A GNN
(Eq. (2)) requires O(|Mi| · D2), where we
use D represent the maximum dimension in
{D0, ..., DL}. So the representation generation
module requires O(2L · |Mi| · D2). A CL ob-
jective (Eq. (9) or Eq. (13)) requires O((N + 1) ·
2L · |Mi| · D2) with N as the maximum of NI

and NA. So the two CL objectives for meta-KG
Mi require O(2|Mi| · (N + 1) · 2L · |Mi| ·D2),
omitted and abbreviated as O(|Mi|2 · N · D2).
The time complexity of all meta-KGs (|M|) is
O(|M| · |Mi|2 · N ·D2). Because the number of
triples in meta-KG |Mi| is small relative to source
KG, the calculation speed in fact is very fast.

6 Conclusion

In this work, we have provided empirical insights
about inductive KGs, and proposed VMCL to al-
leviate the sparsity and implicit transfer. VMCL
first uses representation generation to capture the
encoded and generated representations of entities,
where the generated variations can augment the
representation space with complementary features.
Then, VMCL uses two CL objectives that work
across entities and meta-KGs to simulate the trans-
fer mode. Extensive experiments and comprehen-
sive analysis have shown that VMCL outperforms
state-of-the-art baselines with sizeable margins.
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Limitations

The representation dimension (default is 32) is im-
portant but limited by our GPU resources. With the
support of large GPU, a large dimension (e.g., 512)
may achieve better performance. We also attempt
to expand the inductive setting (Relational patterns
are same in the source and target KGs) to the in-
dependent setting (The source KG is independent
from the target KG), but experimental performance
is not good. That is, if the two KGs are irrelevant,
it may be impossible to transfer information.
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A Appendix

A.1 Ablation Study in N1-N4

Comp N1 N2 N3 N4

Full 48.16 76.32 79.65 72.86

w/o G 48.10 55.40 67.35 48.75
w/o GFNN 49.60 63.26 69.88 56.82

w/o CL 47.24 77.36 80.71 73.14
w/o CLE 47.88 75.92 80.20 71.90
w/o CLM 47.46 75.71 79.39 72.80

Table 6: Results (H@1%) of ablation study on N1-N4.

We first investigate the ablation study (Table 6)
in N1-N4 datasets. The representation genera-
tion module improve the performance in N2-N4
datasets, and these CL modules (across entities and
meta-KGs) play a crucial role in improving perfor-
mance of N1 datasets.

A.2 Gradient Reasoning
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, r, tI)

−∑
(h,r−j ,t)∈Nr

e(
β(hI ,r−

j
,tI )

τ
)β′(hI , r−j , t

I))

= 1
τψ (

∑
(n)∈NI

e(
β(n)
τ

)β′(hI , r, tI)

−∑
(h−j ,r,t)∈Nh

e(
β(h−

j

I
,r,tI )

τ
)β′(h−

j
I
, r, tI)

−∑
(h,r−j ,t)∈Nr

e(
β(hI ,r−

j
,tI )

τ
)β′(hI , r−j , t

I))

= 1
τψ ([

∑
n∈NI

e(β(n)/τ)]β′(hI , r, tI)

−[
∑

n∈{Nh,Nr} e
(
β(n)
τ

)]β′(n))

(21)

ψ = e(
β(hI ,r,tI )

τ
)

+
∑

(h,r,t−j )∈Nh
e(

β(hI ,r,t−
j

I
)

τ
)

+
∑

(h−j ,r,t)∈Nt
e(

β(h−
j

I
,r,tI )

τ
)

+
∑

(h,r−j ,t)∈Nr
e(

β(hI ,−
j

,tI )

τ
)

(22)

ψg = e(
β(h,rg,hg)

τ
)

+
∑

(h,rg ,t−k,j)∈NA
e(

β(h,rg,t−
j

)

τ
)

+
∑

(h,rg ,{t−k,j}g)∈NA
e(

β(h,rg,{t−
j

}g)
τ

)

(23)
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−∂LA(h,rg ,hg)
∂h

= ∂
∂h(log

e(β(h,rg,hg)/τ)∑
n∈{P,NA} e

(β(n)/τ) )

= ∂
∂h(

β(h,rg ,hg)
τ − log

∑
n∈{p,NA} e

(
β(n)
τ

))

= ∂
∂h(

β(h,rg ,hg)
τ − log(e(

β(h,rg,hg)
τ

)

+
∑

(h,rg ,t−k,j)∈NA
e(

β(h,rg,t−
j

)

τ
)

+
∑

(h,rg ,{t−k,j}g)∈NA
e(

β(h,rg,{t−
j

}g)
τ

)))

= β′(h,rg ,hg)
τ − 1

ψg (e
(
β(h,rg,hg)

τ
) β′(h,rg ,hg)

τ

+
∑

(h,rg ,t−k,j)∈NA
e(

β(h,rg,t−
k,j

)

τ
) β

′(h,rg ,t−k,j)
τ

+
∑

(h,rg ,{t−k,j}g)∈NA
e(

β(h,rg,{t−
k,j

}g)
τ

) β
′(h,rg ,{t−k,j}g)

τ )

= 1
τψg (ψgβ′(h, rg,hg)− e(

β(h,rg,hg)
τ

)β′(h, rg,hg)

−∑
(h,rg ,t−k,j)∈NA

e(
β(h,rg,t−

k,j
)

τ
)β′(h, rg, t−k,j)

−∑
(h,rg ,{t−k,j}g)∈NA

e(
β(h,rg,{t−

k,j
}g)

τ
)

β′(h, rg, {t−k,j}g))
= 1

τψg (
∑

n∈NA
e(

β(n)
τ

)β′(h, rg,hg)

−[
∑

n∈NA
e(

β(n)
τ

)]β′(n))
(24)

A.3 Settings and Hyperparameters
The results of the baselines with * are taken from
(Chen et al., 2022) while the results of MorsE and
its variants (TransE/DistMult/ComplEx/RotatE)
are reproduced with publicly available code and
optimal values of hyperparameters.5 The repro-
duced baselines and our VMCL are implemented
in PyTorch and DGL with a single GeForce RTX
2080 GPU. With the same setting with baselines,
walk times n1 = 10, walk length n2 = 5, and re-
peat times n3 = 10, the number of negative enti-
ties U = 32(PT)/64(FT), the dimension D = 32,
the fixed margin λ = 10. The optimizer is set to
Adam with learning rate of 0.01/0.001, the epoch
is set to 10/100 for pretraining/finetuning stages.
For our VMCL, the dimension DL is set to 128,
D1 = ... = Dl−1 = D. The layers L of the en-
coder is selected from {1, 3, 5} and the best L is 3.
The number Ua of negative meta-KGs is selected
from {0, 1, 4, 8} and the best Ua is 4. The tempera-
tures τ , τζ is selected from {0.01, 0.05, 1} and the
best τ is 0.05 and the best τζ is 1. The loss weights
η1, η2 are selected from {.002, .001, .0005} and
the best η1 is .001 and the best η2 is 1.

5https://github.com/zjukg/MorsE
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