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Abstract

Emotion recognition in conversations (ERC)
aims to detect the emotion of utterances in con-
versations. Existing efforts generally focus on
modeling context- and knowledge-sensitive de-
pendencies. However, it is observed that the
emotions of many utterances can be correctly
detected without context or external knowledge.
In such cases, blindly leveraging the context
and external knowledge may impede model
training. Based on this, we propose a novel
framework based on contrastive learning (CL),
called CKCL (including the contrastive learn-
ing scenarios among Context and Knowledge),
to distinguish the above utterances for better
vector representations. The CKCL framework
defines context- and knowledge-independent
utterances, as the positive sample, whose pre-
dicted results are unchanged even masking con-
text and knowledge representations, otherwise,
the negative sample. This can obtain a latent
feature reflecting the impact degree of context
and external knowledge on predicted results,
thus effectively denoising irrelevant context
and knowledge during training. Experimental
results on four datasets show the performance
of CKCL-based models is significantly boosted
and outperforms state-of-the-art methods.

1 Introduction

Emotion recognition in conversations (ERC) has
received an active research attention (Tu et al.,
2022c; Li et al., 2022b; Xie et al., 2021; Mao
et al., 2021; Lian et al., 2021; Xiao et al., 2020) be-
cause of its wide applications in many fields such
as opinion mining (Cortis and Davis, 2021) and
recommender systems (Zheng et al., 2020). Exist-
ing works in ERC conventionally need to model
context-sensitive dependencies (Wang et al., 2020;
Jiao et al., 2020) and knowledge-sensitive depen-
dencies (Li et al., 2021a,b; Ghosal et al., 2020;
Zhong et al., 2019).
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Joyful & Positive

Example 1:

(Susan Bunch)

I've literally never been this happy. ]

Joyful & Positive

Example 2: | hat's patio furniture! ]
(Chandler Bing)

g‘External Knowledge Base: ‘ No context required ‘

éxlntent: Chandler wanted to {have fun / relax / entertain etc.}

ExReact: Chandler feels {happy / relaxed / satisfied etc.}

Patio: {garden / sunbathing / courtyard / sitting_outdoors etc.}

éFurniture: {cost_lot_of money / house / building / floor etc.}

Sad & Negative

Example 3: | Oh, but (- made - so happy. ]
(Monica Geller) il \

Context of Example 3: ‘ No knowledgé\ required ‘ Tl o |
T N

7 Vi
“motReT also goes by the name "Julio." 1

Ross: Apparently

Rachel: Do we have to tell her? 4
Ross: Yes, we have to S ———— e ___--

Figure 1: Examples of utterances, reflecting the context
and knowledge are not always necessary in ERC.

Especially, in knowledge-sensitive ERC models,
there are mainly two kinds of external knowledge:
One is concepts retrieved from external knowledge
bases ConceptNet (Speer et al., 2017) or Sentic-
Net (Cambria et al., 2020). The other is gener-
ated by the pre-training commonsense transform-
ers (COMET) (Bosselut et al., 2019). Additionally,
in context-sensitive ERC models, recent studies
proposed various methods, including memory net-
works (Kumar et al., 2022b; Xing et al., 2020; Haz-
arika et al., 2018) and graph-based models (Nie
et al., 2021; Li et al., 2020; Ghosal et al., 2019;
Zhang et al., 2019). However, these works do
not follow whether models need context and exter-
nal knowledge for the current utterance, but rather
on improving modeling methods. In Fig. 1, in-
tuitively, the emotion of example 1 can be recog-
nized even without leveraging context and exter-
nal knowledge. Example 2 (context-independent)
is the first utterance in a conversation, lacking
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any context. Without establishing a relationship
between patio furniture and ‘joyful’, it becomes
challenging to detect emotions. For example 3
(knowledge-independent), the literal meaning of
the utterance is opposite to the conveyed emotion.
So, it is difficult to correctly detect the emotion of
the utterance without context. Although the above
example exists, the removal of context or external
knowledge will lead to a semantic gap between
utterances representations. Therefore, how to dif-
ferentiate context- and knowledge-independent ut-
terances from other utterances is a challenge.
Based on the above, we proposed a framework
based on contrastive learning (CL), CKCL, to
distinguish context- and knowledge-independent
utterances during training.  Concretely, the
context-independent and knowledge-independent
(or context-dependent and knowledge-dependent)
utterances are labeled as *1’ (or labeled *0’). Then,
the CKCL pulls utterances with the same or differ-
ent labels together or further apart. For ERC mod-
els, this can alleviate the performance degradation
of context- and knowledge-independent utterance
representations during training. And the CKCL can
also denoise irrelevant context and knowledge to
improve the robustness ability of models. In ad-
dition, inspired by Li et al. (2022a), we introduce
a weighted supervised CL (SCL) named Emotion
SCL into CKCL, to further distinguish similar emo-
tions, which takes into account the uneven distri-
bution of classes in ERC. To summarize, our main
contributions can be summarized as follows:

e We are the first to explore self-supervised CL
in the ERC task.

e We propose a CKCL framework to differen-
tiate context- and knowledge-independent ut-
terances, which promotes the robustness of
ERC models against irrelevant context and
knowledge during training.

e Experimental results demonstrate that our pro-
posed method can boost various baselines and
outperforms state-of-the-art ERC methods.

2 Related Work

Emotion Recognition in Conversations

Context-sensitive Models The emotion genera-
tion theory (Gross and Barrett, 2011) indicates the
importance of contextual information for emotion
identification. RNN-based models (Poria et al.,

2017) are often used to model context dependen-
cies. However, they are unable to capture the dis-
tinction between historical utterances (Lian et al.,
2021) when modeling context. To solve this prob-
lem, most works began to focus on the memory
network (Hazarika et al., 2018; Jiao et al., 2020).
In addition, the role of participants in ERC is also
important to the speaker’s emotional state (Wen
et al., 2023). To model the speaker-level context,
researchers have a greater emphasis on speaker-
specific models (Kim and Vossen, 2021), graph-
based models (Nie et al., 2021), and so on. For ex-
ample, Majumder et al. (2019) utilized three GRUs
to track global context, speaker state, and emo-
tional state in conversations. Ghosal et al. (2019);
Shen et al. (2021) employed a graph-based model
to model self- and inter-speaker dependencies.

Knowledge-sensitive Models Although the above
works have achieved respectable performance
in ERC, they are not able to work like a hu-
man because of the lack of commonsense knowl-
edge (Zhong et al., 2019). Therefore, Ghosal
et al. (2020) utilized GRUs and generated knowl-
edge from COMET, to model the psychological
states of participants in conversations. Li et al.
(2021b) introduce the psychological-knowledge-
aware interaction graph (SKAIG) model to further
model the structural psychological states. Fu et al.
(2021) proposed a graph-based model to model
the knowledge-sensitive dependencies by incorpo-
rating concepts retrieved from ConceptNet (Speer
et al., 2017). Subsequently, Zhao et al. (2022) pro-
posed a causal aware model using generated knowl-
edge to capture the context information. How-
ever, these methods, both context- and knowledge-
sensitive models, have performance degradation,
that is, their performance in some utterances is even
worse than models without context and knowledge.

Contrastive Learning

Chen et al. (2020) proposed a classic comparative
learning network SimCLR, which uses various im-
age augmentation strategies to produce positive and
negative samples from the same image for visual
representation. In the field of NLP, motivated by
the poor performance of BERT in semantic text
similarity tasks, Yan et al. (2021) proposed a self-
supervised CL for fine-tuning BERT. Addition-
ally, Kim et al. (2021) explore a CL method with-
out data augmentation, which employs BERT with
frozen and fine-tunable parameters to produce posi-
tive and negative samples. Then, Gao et al. (2021)
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Figure 2: The proposed CKCL framework. The dotted line represents data flows without backpropagation. CE

denotes cross-entropy, which is widely adopted in ERC.

employed dropout to augment data. To effectively
use label information, Gunel et al. (2020) extended
the self-supervised CL to a fully-supervised CL
setting, which pulls the samples with the same
or different labels together or away, respectively,
which also boosts the performance of the model
in few-shot learning scenarios. In ERC, Li et al.
(2022a) tried to employ the supervised CL (SCL) to
pull utterances with different emotions further away
to better identify similar emotions. Unfortunately,

there is no related work based on unsupervised CL
in ERC.

3 Proposed CKCL Framework

3.1 Task Definition

Let a conversation C' consist of utterances
U1, U2..., Un, Where n is the number of utterances.
Each utterance u; = {w1, ws..., w,, } consists of
m tokens. And, there are g participants S =
{s1,52...,84}, (¢ > 2) in C. Each utterance
u; is uttered by one of S. Then, the ERC task
aims to predict the pre-defined emotion label set
Y = {vy1,v2, .., ye } of each utterance in C. How-
ever, unlike vanilla emotion recognition, ERC
models need to focus on modeling context- and
knowledge-sensitive dependencies because of in-
teraction between participants. Accordingly, the
above issues can be expressed as follows: y; =
f((ul, k‘l), (ui_l, ki—l)’ vy (Ui—wa kil'_w)), where
w is the size of context, K = {ki, ka, ..., kn} de-
notes the external knowledge of utterances.

3.2 Overview

CL was first proposed to augment data for improv-
ing visual representation. Afterward, due to the

poor performance of BERT in semantic text sim-
ilarity tasks, researchers began to introduce self-
supervised CL to capture the correlation and dif-
ference between utterances. Subsequently, more
and more CL-based methods appeared in the NLP
field (Kumar et al., 2022a). Unfortunately, there is

no related work based on unsupervised CL in ERC.
In this section, given the defect in performance

degradation of ERC models in modeling context

and external knowledge, we introduce a CL-based

framework CKCL to refine the utterance representa-
tions during training. Additionally, inspired by Li

et al. (2022a), we incorporate a weighted super-
vised CL into CKCL, to distinguish uneven distri-

bution samples with similar emotions.

3.3 Context CL

Context is the core of NLP-related tasks and signif-
icantly improves the performance of NLP systems.
In ERC, surrounding utterances (at time < t) of
the current utterance (at time t) are treated as a
context (Poria et al., 2017). However, it is chal-
lenging to model context, mainly because of (1)
emotional dynamics: self- and inter-personal de-
pendency modeling (Poria et al., 2019), and (2)
differences between local and distant historical
utterances (Ghosal et al., 2021). Although exist-
ing ERC models aid classification performance by
modeling context, there is also a marked degener-
ation behind this because of low-quality context.
Specifically, the performance of a model in cer-
tain utterances is even worse than the model that
does not consider contextual information, which
highlights the significance of denoising irrelevant
context in ERC. Furthermore, the efficacy of de-
noising low-quality context has been demonstrated
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Algorithm 1: Calculation of CKCL for
each mini-batch B
Input: B = {z;,7;, kl}f\;bl e,
Output: L., L
1 for ¢ =1to N, do

0, 0,0

2 0; < M({l’z,fﬂ\l,k‘l})

3 0§ + M ({z;, [MASK], k;})
4 | of — M"({u;, @, [MASK]})
5 > Pseudo labeling for each z;

6 if 0; # of or 0; # of then

7 25, zf +— 0,0

8 if 0, == 0 and o; # of then
9 ‘ 26,28« 1,0

10 if o; # of and 0; == oé‘: then
u ‘ zf,zf +— 0,1

12 else

13 L zf,zf +— 1,1

w | L5000 = 1L L]
15 for j =1to Nyandi # jdo
16 if 27 == 2 then

17 | (i) += Flai, xj,7)
18 if zzk == zf then

19 ‘ 0 (z;) += Flzi xj,7)
20 07 (x;) += F(xi, xj, T)

21 |4 (@) += F(zi, x4, 7)
2 | let=L0] () [ £ (2:)
B | += E;(xz) /4y (x;)

24 > Computing contrastive loss for each x;
35 Lo —l:/Ny
26 ,Ck — —fk / Nb

in other NLP tasks (Zhang et al., 2021).

Based on this, we design a context CL to cap-
ture the correlation and difference between context-
independent and context-dependent utterances. We
first copy the model M and feed the input data
{z;, [MASK], kz}f\ﬁl masking context representa-
tion Z; of u; with 0, into the replica model M for
each mini-batch B. Especially, the context repre-
sentation of an utterance is conventionally in the
hidden layer of ERC models (Ghosal et al., 2020;
Majumder et al., 2019), but there are also models
to use context as input (Zhong et al., 2019). Then,
we conduct self-supervised pseudo labeling, repre-
sented as Line 6 - Line 12 in Algorithm 1. Finally,
we can calculate contrastive loss item L. according
to the pseudo labels 2¢ = {z¢}2t,, described as
Line 14 - Line 24 in Algorithm 1.

3.4 Knowledge CL

In conversations, humans usually rely on common-
sense knowledge to convey emotions (Zhong et al.,
2019). However, in knowledge-sensitive ERC mod-
els, irrelevant knowledge for understanding the
utterance might be absorbed as noise (Tu et al.,
2022b). Although there are some works Jiang et al.
(2022); Tu et al. (2022a); Zhu et al. (2021) striving
for knowledge selection, they are still limited in
knowledge-independent utterances as identifying
the emotions of these utterances does not necessi-
tate external knowledge. To distinguish between
knowledge-independent and knowledge-dependent
utterances and denoise irrelevant knowledge, we
also design a CL-based method, Knowledge CL.
The process of Knowledge CL is similar to that
of Context CL, but the difference is that Knowl-
edge CL is masking the knowledge representation,
rather than the context representation. As a result,
we can obtain another loss item L, described in
Algorithm 1.

3.5 Emotion SCL

Considering the ERC task characteristics, that is,
the class distribution is extremely uneven and emo-
tional labels have heightened similarity, we pro-
posed a class-weighted SCL, Emotion SCL, to clar-
ify the representation of utterances with similar
emotions. The Emotion SCL can pull samples with
different emotional labels further apart and allevi-
ates the impact of the class imbalance problem to
a certain extent. The process of Emotion SCL for
each mini-batch B is as follows:

1
Le= N, Z log £, (1)
x;€B
x; = Embedding Layer(u;) ()
N,
fe = ijbl 1 [175]]]1 [yi:yj]aj ' f(.%'z, Zj, 7—) (3)

Sy L i F (i, @, 7)

where B denotes a mini-batch sample, [V, is the
size of B. 1) € {0,1} represents an indicator
function. «; is the class weight of the j-th utter-
ance. EmbeddingLayer(.) represents the word
embedding methods. ERC models usually lever-
age BERT (Vaswani et al., 2017), Glove (Penning-
ton et al., 2014), or Roberta (Liu et al., 2019) to
encode utterance representations. F(x;, x, T) =
e5"mi(z73)/T where T is the temperature param-

eter, simi(x;, x;) = i denotes the cosine
et [ERNIE]
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similarity function. And {y;} ZN:b1 is the emotional
label set of utterances in .

3.6 Model Training

We jointly train our proposed framework by mini-
mizing the sum of the following three losses.

L =L 47eLo+veLe+mLi +AO)F @)

where v, 7. and ~; are tuned hyper-parameters.
L’ is the classification loss. © is a set of learnable
parameters of the CKCL framework. A represents
the coefficient of Lo-regularization.

4 EXPERIMENTS
4.1 Datasets

We conduct experiments on four datasets: IEMO-
CAP (Busso et al., 2008), Dailydialog (Li
et al., 2017), MELD (Poria et al., 2019), and
EmoryNLP (Zahiri and Choi, 2018). The statis-
tics of datasets are shown in Table 1.

IEMOCAP consists of dyadic sessions where
actors perform improvisations or scripted scenar-
i0s. And each utterance is labeled with one of the
emotions: happy, angry, neutral, sad, excited, or
frustrated.

Dailydialog is a dyadic conversation dataset
from human-written daily communications. And
each utterance is annotated with one of the emo-
tions: happiness, surprise, sadness, anger, disgust,
neutral, or fear, and one of the sentiments: neutral,
negative, or positive.

MELD is a multi-party conversation dataset col-
lected from the TV show Friends, which is an ex-
tension of the EmotionLines dataset (Hsu et al.,
2018). Each utterance is annotated with one of the
emotions: surprise, fear, disgust, anger, sadness,
neutral, or joy, and one of the sentiments: neutral,
negative, or positive.

EmoryNLP consists of multi-party sessions
from the TV show Friends, and each utterance is
labeled with one of the emotions: surprise, fear,
disgust, anger, sadness, neutral, or joy, and one of
the sentiments: neutral, negative or positive.

4.2 Comparison Models

We compare our proposed framework with vari-
ous ERC baselines, including RNN-based mod-
els: COSMIC (Ghosal et al., 2020), Dia-
logueRNN (Majumder et al., 2019); Memory net-
work: AGHMN (Jiao et al., 2020), and Graph-
based models: DialogueGCN (Ghosal et al., 2019),

Dialogues Utterances
Dataset . .
train ‘ val test train ‘ val test

IEMOCAP 120 31 5,810 1,623
DailyDialog | 11,118 | 1,000 | 1,000 | 87,832 | 7,912 | 7,863

MELD 1039 114 280 9,989 | 1,109 | 2610
EmoryNLP 659 89 79 7,551 954 984

Dataset Classes Metric

IEMOCAP 6

DailyDialog 7
MELD 3and 7

EmoryNLP | 3 and 7

Weighted Avg F1
Macro F1 and Micro F1
Weighted Avg F1 over 3 and 7 classes
Weighted Avg F1 over 3 and 7 classes

Table 1: Statistics of experimental datasets. Since
the IEMOCAP dataset does not provide a predefined
train/validation split, we utilize 10% of the training
dialogues as the validation split.

Dataset Ye Ve Yk T
IEMOCAP | 0.1 09 0.2 0.07
DailyDialog | 0.1 0.1 0.3 0.07

MELD 02 0.1 03 0.07
EmoryNLP | 0.3 0.3 0.6 0.07

Table 2: Setting of hyper-parameters.

and DAG-ERC (Shen et al., 2021); Transformer-
based model: KET (Zhong et al., 2019), and
state-of-the-art methods: TODKAT (Zhu et al.,
2021), CoG-BART (Li et al., 2022a), COS-
MIC+HCL (Yang et al., 2022) and CauAIN (Zhao
etal.,2022). And we also employ ERC baselines as
the base model to prove the generalization ability
of the CKCL framework.

4.3 Experimental Settings

All of the baselines have released their source
codes. Thus, we hold identical settings as the
original papers. For CKCL, e, ¢, V%, and 7 are
tuned manually on each dataset with hold-out val-
idation. Specifically, the hyperparameters setting
of COSMIC*+CKCL reported in Table 2. 7., e,
71 of baselines are 1: 1: 1 on each dataset and 7
of baselines is always 0.07. The reported results
are the average score of 5 random runs on the test
set. Additionally, because the models are different
in modeling context and knowledge representation,
as shown in Table 3, thus, the mask objects are also
different during our experiments.

4.4 Experimental Results and Analysis

Table 4 reports the experimental results on differ-
ent datasets. We can observe that the performance
on sentiment and emotion identification of COS-
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(d) F1_k

Figure 3: Ablation studies on CKCL. The Numbers_C and Numbers_K represent the number changes of in context-
and knowledge-independent utterances. And the F1_C and F1_K denote the weighted avg F1 score of context-
and knowledge-independent utterances in the validation set. Especially, the ’_o0’,’_c’, _k, and ’_all’ indicate the
COSMIC *, COSMIC *+ Context CL, COSMIC *+ Knowledge CL, and COSMIC *+ CKCL, respectively.

Model Context . Knowledg-e
Representation Representation
COSMIC Context Commonsense
N Stte Vectors
KET Context . Conce;?t
Representation Embedding
DialogueRNN Global State -
The Output of
DialogueGCN Speaker-Level -
Context Encoding
DAG-ERC The Output of i
DAGERC layers
AGHMN Contextual Vectors -

Table 3: The mask objects are in various models, which
is consistent with the original papers.

MIC based on the CKCL framework is significantly
boosted. The COSMIC* achieves the best improve-
ment result of F1 on the DailyDialg dataset, i.e.,
2.18%. And the COSMIC *+ CKCL outperforms
all compared methods on different datasets except
for the IEMOCAP dataset. This verifies the effec-
tiveness ability of our CKCL framework.

4.5 Ablation Study

To investigate the impact of each component of our
proposed CKCL framework, we conducted an abla-
tion study on COSMIC*, and the results are shown
in Table 4. ‘w/o L.y, ‘Wlo Li,..°, and “W/0o Lo’
represent without Context CL, Knowledge CL, and
Emotion SCL respectively. The results suggest
that all components of the CKCL framework have
worked and all the improvements by Context CL,
Knowledge CL, and Emotion SCL are statistically
significant, as evidenced by the paired t-test results
with a p-value < 0.05.

Analysis of CKCL: In model training, adap-
tively distinguishing context- or knowledge-
independent utterances can capture a latent feature,

reflecting the impact degree of modeling context
or knowledge on the prediction results, which en-
riches utterance representations and the denoising
ability of the model in ERC. Reported results in
Table 4 also demonstrated it, and the effectiveness
of Knowledge CL is superior to that of Context CL.
It may be attributed to the model’s inherent ability
to denoise irrelevant context to some extent, but
struggling to effectively handle irrelevant knowl-
edge. In addition, considering the difference in data
size between IEMOCAP and Dailydialog datasets,
we analyze CKCL on IEMOCAP and EmoryNLP
datasets for better visualization. The number of
context- or knowledge-independent utterances is
shown in Fig. 3, which converges as the training
iterations and remains consistent with the model’s
convergence. This is primarily because the CKCL
annotation heavily relies on the model’s prediction
results. Especially, Fig. 3.(c-d) also demonstrates
the capability of CKCL to effectively enhance the
performance of context- or knowledge-independent
utterances. This further proves the effectiveness
of the CKCL framework in denoising irrelevant
contexts or knowledge.

Analysis of Emotion SCL: To better understand
differences of utterance representations with differ-
ent emotions, we show the t-SNE (van der Maaten
and Hinton, 2008) visualization of the intermediate
representation of COSMIC* and COSMIC*+ Emo-
tion SCL on IEMOCAP and Dailydialog datasets.
Overall, the differences in utterance representa-
tions derived from the latter are clearer than the
former, as shown in Fig. 5. Specifically, as shown
in Fig. 5.(a), Emotion SCL alleviates the difficulty
of distinguishing similar emotions such as ‘happy’
and ‘excited’ to some extent. Additionally, the ut-
terance representations of the emotion "happy" is
effectively differentiated from others. Similarly, in
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Methods IEMOCAP DailyDialog MELD EmoryNLP
. W-Avg F1 W-Avg F1 W-Avg Fl W-Avg Fl
W-Avg F1 Macro F1 Micro F1 ( 3—ci) (7—c;és) ( 3»Ci) (7—cigs)
# DialogueRNN 62.57 41.80 55.95 66.10 57.03 48.93 31.70
f DialogueGCN 64.18 - - 58.10 -
4§ AGHMN 62.70 - - 58.10 - -
& {KET 59.56 - 53.37 58.18 - 34.39
& § COSMIC 65.28 51.05 58.48 73.20 65.21 56.51 38.11
§ DAG-ERC 68.03 59.33 63.65 - 39.02
" ARTODKAT | 6133 - 5847 - 6547 - 3869
§ CoG-BART 66.18 - 55.34 64.81 - 39.04
& § COSMIC + HCL 66.23 59.54 65.85 - 38.96
& § CauAIN 67.61 53.85 58.21 - 65.46 - -
COSMIC* 65.10 51.87 58.87 73.19 64.91 56.50 38.69
COSMIC*+ CKCL | 67.16(1 2.06%)  53.09(1 1.22%) ~ 60.96(1 2.18%) 73.90(1 0.71%) 66.21(} 1.30%) 58.18 ( 1.68%) 40.23(1 1.54%)
77777 wio L. | 66.06( 1.10%) 52.51 (] 0.58%) 59.18 (| 1.78%) 73.37(}0.53%) 65.55(] 0.66%) 57.16 (| 1.02%) 38.84 (| 1.39%)
wlo L, 65.92 (| 1.18%) 52.48 (] 0.61%) 59.91 (] 1.05%) 73.44 (] 0.46%) 65.39 (| 0.82%) 57.01 (| 1.17%) 39.41 (| 0.82%)
wlo Ly, 65.83 (1 1.27%) 52.37(1 0.72%) 59.37 (| 1.59%) 73.51 (| 0.39%) 65.27 (L 0.94%) 56.88 (| 1.30%) 38.81 (| 1.42%)

Table 4: Comparison results on different methods. The best scores are in bold. « is our replication results, § and §
represents results from the original papers and (Ghosal et al., 2020), respectively. # denotes knowledge-sensitive
models. W-Avg F1 denotes the weighted avg F1 score. The depth of color symbolizes the declining or rising value.

Methods IEMOCAP DailyDialog A MELD EmoryNLP
W-Avg Fl Macro Micro W-Avg F1 W-Avg F1 W-Avg F1 W-Avg F1
F1 F1 (3-cls) (7-cls) (3-cls) (7-cls)
DialogueRNN* 62.02 38.67 52.73 66.13 57.16 - -
w/ CKCL | 63.15(1 1.13%) 39.38 (1 0.71%) 53.09 (1 0.36%) 66.58(1 0.45%) 57.65(1 0.49%) - -
"DialogueGCN* | 6383 3789 5153 - - - -
w/ CKCL | 64.45 (1 0.62%) 38.66 (1 0.77%) 51.84 (1 0.31%) - -
" DAG-ERC* | | 6803 5329 5916 - 6359 5954 3910
w/CKCL | 68.78(1 0.75%) 53.82(1 0.53%)  59.44(1 0.28%) - 64.02 (1 0.43%) 60.65 (1 1.11%) 39.55 (1 0.45%)
© AGHMN* | 6166 - - - 5724 - -
w/ CKCL | 62.60(1 0.94%) - - - 57.70 (1 0.46%) - -
~ KET* | 5790 48.18 5346 63.66 5700 5142 3441
w/ CKCL | 59.54 (1 1.64%) 49.27 (1 1.09%) 54.30 (1 0.84%) 65.24 (1 1.58%) 58.32 (1 1.31%) 52.95 (1 1.53%) 36.17 (1 1.76%)

Table 5: Experimental results of generalizability analysis on different baselines and datasets.

Fig. 5.(b), the differentiation between similar emo-
tions like ‘happiness’ and ‘surprise’ is also allevi-
ated and the differences among the other emotions
become more pronounced.

4.6 Analysis of Performance Degradation

Although modeling context and knowledge can en-
hance performance, it also leads to performance
degradation in certain utterances. As shown in
Fig. 4, the theoretical performance suggests that
the model will not experience performance degra-
dation, meaning that after modeling context and
knowledge, the model can also correctly identify
utterances that it could correctly identify previously
(i.e. when the model lacked modeling context and
knowledge). The difference between theoretical
and actual performance implies existing ERC sys-
tems can not achieve a resultful denoising effect
for irrelevant context and knowledge. This is also
the primary motivation behind this paper.
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Figure 4: Performance Degradation on Dailydialog
dataset. The use_none, use_context, use_kb, and use_all
represents the Micro F1 score of COSMIC* masking
context and knowledge, masking knowledge, masking
context, and masking none, respectively.
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(a) IEMOCAP

(b) Dailydialog

Figure 5: Visualization of intermediate embeddings of COSMIC* (left) and COSMIC* + Emotion SCL (right).
Because neutral classes for 83% of the DailyDialog dataset, are excluded during visualization.

ID Utterances for Prediction w/o CKCL. w/CKCL Golden Label
1 Exactly, "laugh". excited happy

2 I’m sorry, I’'m sorry, I’'m sorry. You're right. neutral sad

3 | Idon’t feel so bad then. Well, I'm excited for you. happy excited

Table 6: Examples of utterances from the IEMOCAP and Dailydialog datasets for the case study.

4.7 Case Study

Table 6 shows three utterances sampled from the
IEMOCAP and Dailydialog datasets. These ut-
terances were initially recognized correctly by
COSMIC* without modeling context or external
knowledge, but upon considering the context and
external knowledge, they were actually recognized
incorrectly. Intuitively, the emotions of these ut-
terances can be recognized even without context
and knowledge, but the model showed disappoint-
ing performance, because blindly modeling context
and knowledge may deteriorate utterance represen-
tation. Fortunately, CKCL can effectively distin-
guish these utterances, thus absorbing irrelevant
context and knowledge as noise to improve the ro-
bustness ability of ERC models. As a result, the
CKCL-based model can correctly identify these
cases as expected.

4.8 Generalizability Analysis

To evaluate the generalizability of our CKCL frame-
work, following Yang et al. (2022), we conduct the
experiment on various ERC baselines as shown in
Table 4. We can see that the improvement effect on
the Dailydialog dataset is not in line with expecta-
tions, which shows that the influence of CKCL on
different models is quite different. Additionally, the
CKCL without hyperparameter adjustment can still
boost the performance of all models on emotion or
sentiment classification. It verifies the effectiveness
and generalizability of CKCL in ERC.

4.9 Analysis of Static Pseudo Labels

Because the CKCL needs to reason three times for
adaptively annotating dynamic pseudo labels, it
causes the growth in time complexity. Therefore,
we explored a low-time complexity method, that is,
in the first epoch, using a trained model to annotate
static pseudo labels that remain unchanged during
subsequent training, which means there is no need
for additional reasoning in the following training.
As a price, the model performance has declined
to some extent, but fortunately, the CKCL is still
adequate for the model, as shown in Table 7.

Methods IEMOCAP DailyDialog '
W-Avg F1 Macro F1 Micro F1
COSMIC* 65.10 51.87 58.87
COSMIC*+ CKCL | 67.16(1 2.06%) 53.09(1 1.22%) 60.96(1 2.18%)
~ COSMIC*+ CKCL* [ 66.22(1 1.12%) 52.54(1 0.67%) 59.79(f 0.92%)

Table 7: Comparison results of dynamic and static
pseudo labels on different methods. Y denotes the
CKCL framework with static pseudo labels.

4.10 Error Analysis

In this section, we conduct an error analysis on the
reported results per dataset and found that most
errors are attributed to the following three points:

¢ Class imbalance problem: The unbalanced
distribution of classes is the primary cause of errors.
In the training set of the MELD dataset, the number
of samples is as follows: ‘fear’: 268, ‘disgust’: 271,
‘sadness’: 683, ‘anger’: 1109, ‘surprise’: 1205,
‘joy’: 1743, ‘neutral’: 4710, which causes the F1
score of emotion ’fear’ is as low as 0.0806.
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o Diversity of context modeling: Unlike knowl-
edge representation, masking the context represen-
tation as demonstrated in Table 3 does not com-
pletely eliminate the influence of contextual infor-
mation. This is mainly due to the fact that even
RNNSs or their variations can capture potential con-
textual information. As a result, generating pseudo
labels for Context CL has become challenging.

¢ Limitation of pseudo labeling: The quality of
labeled results in pseudo-label annotation primarily
relies on the model’s predictions. Thus, the model’s
performance directly impacts the quality of the la-
beled samples. Consequently, there is a possibility
of leveraging incorrectly labeled samples, which
can hinder the model’s training. For example, in a
specific epoch of the training process, Example 3 in
Fig. 1 might be mistakenly labeled as a knowledge-
dependent utterance or other. Consequently, such
situations can lead to fluctuations in the model’s
performance during training, potentially even lower
than the original model. Nevertheless, the benefits
of this approach still outweigh the drawbacks as
shown in Fig. 3, because as the model converges,
the annotations tend to stabilize.

5 Conclusion

In this paper, we propose a novel CKCL frame-
work to enhance utterance representations in
ERC. More concretely, we employ Context
(or Knowledge) CL to capture the correlation
and difference between context-independent and
context-dependent (or knowledge-independent and
knowledge-dependent) utterances representations,
which also enhances the ability of models to denois-
ing irrelevant context or knowledge. Additionally,
the Emotion SCL can pull utterances with different
labels further apart, and then obtain clearer differ-
ences in utterances with similar emotions. Exper-
imental results show that our CKCL framework
significantly boosted various ERC models and out-
performed state-of-the-art methods.
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Limitations

Although the CKCL performs satisfactorily in ERC,
there are still some limitations. Because CKCL
primarily concentrates on the effect of modeling
context and external knowledge on the prediction
results, when met some tasks that do not rely on
context and external knowledge, pseudo labels can
not be annotated, which causes the paralysis of
the CKCL. In addition, when the class distribution
of the sample is not uneven, the improvement of
Emotion SCL will be weakened.
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