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Abstract

The nodes in the commonsense knowledge
graph (CSKG) are normally represented by
free-form short text (e.g., word or phrase). Dif-
ferent nodes may represent the same concept.
This leads to the problems of edge sparsity and
node redundancy, which challenges CSKG rep-
resentation and completion. On the one hand,
edge sparsity limits the performance of graph
representation learning; On the other hand,
node redundancy makes different nodes cor-
responding to the same concept have incon-
sistent relations with other nodes. To address
the two problems, we propose a new CSKG
completion framework based on Contrastive
Pretraining and Node Clustering (CPNC). Con-
trastive Pretraining constructs positive and neg-
ative head-tail node pairs on CSKG and utilizes
contrastive learning to obtain better semantic
node representation. Node Clustering aggre-
gates nodes with the same concept into a latent
concept, assisting the task of CSKG comple-
tion. We evaluate our CPNC approach on two
CSKG completion benchmarks (CN-100K and
ATOMIC), where CPNC outperforms the state-
of-the-art methods. Extensive experiments
demonstrate that both Contrastive Pretraining
and Node Clustering can significantly improve
the performance of CSKG completion. The
source code of CPNC is publicly available on
https://github.com/NUSTM/CPNC.

1 Introduction

Commonsense knowledge graphs (CSKG) have
been widely used to build commonsense-grounded
AI applications, such as question answering (Lv
et al., 2020), visual question answering (Zhu et al.,
2020), sentiment analysis (Li et al., 2022), dia-
logue system (Tu et al., 2022), etc. Commonsense
knowledge graphs such as ConceptNet (Speer et al.,
2017) and ATOMIC (Sap et al., 2019) provide a
structured way of representing a commonsense con-
cept, which consists of a head node, a tail node, and
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Figure 1: Illustration of a subgraph and the latent con-
cept in ConceptNet. The nodes of the same color belong
to the same latent concept.

the relation edge. Nodes in commonsense knowl-
edge graphs are typically represented by free-form
short text (word or phrase), resulting in many differ-
ent nodes representing the same concept. Figure 1
shows a subgraph of ConceptNet, where nodes in
the same color indicate the same concept. E.g.,
“have breakfast”, “take breakfast” and “eat break-
fast” all express the concept of “eat breakfast”.
This problem also results in a large number of
missing edges between nodes, as illustrated by the
dashed lines in Figure 1. E.g., “eat breakfast” and
“prepare food” have a “HasPrerequisite” relation,
but such relation is missing between “eat breakfast”
and “cook food”.

On the one hand, node redundancy in CSKG
makes different nodes of the same concept have
inconsistent relations with other nodes. In CSKG
representation and completion, it would be ben-
eficial to make use of the latent concept infor-
mation behind different nodes to help learn more
semantic-general representations. However, this in-
tuition was ignored by most of the existing work in

13977

https://github.com/NUSTM/CPNC


CSKG completion. On the other hand, as analyzed
by Malaviya et al. (2020), edge sparsity in CSKG
limits information propagation in graph neural net-
works. Upon graph neural networks, researchers
further incorporated pre-trained language model
such as BERT to enhance the semantic represen-
tation of nodes (Malaviya et al., 2020; Ju et al.,
2022; Wang et al., 2021). However, fine-tuning
BERT is still imperfect in representing the com-
monsense knowledge graph, which is made up of
linked nodes represented in a free-form short text.

To tackle the two issues, we propose a
new CSKG completion framework based on the
Encoder-Decoder architecture, which contains two
core modules Contrastive Pretraining and Node
Clustering (CPNC). Contrastive Pretraining is to
alleviate the difficulty of node representation learn-
ing induced by edge sparsity. Through contrastive
learning on positive and negative head-tail node
pairs, the embedding distance between related
nodes becomes closer, and that between unrelated
nodes becomes farther so as to learn better node
representations. Node Clustering aims to address
the edge inconsistency issue caused by node re-
dundancy. We cluster nodes with close semantic
representations and take the mean vector as the la-
tent concept representation for nodes in this cluster.
To assist CSKG completion, the latent concept rep-
resentation is fused with the node representation.

We evaluate our CPNC framework on two
CSKG completion benchmarks, i.e., CN-100K and
ATOMIC. The results show that our model outper-
forms the state-of-the-art models for this task sig-
nificantly. Ablation studies demonstrate that both
Contrastive Pretraining and Node Clustering mod-
ules can significantly improve the performance of
CSKG completion. Further experiments verify that
our model can consistently improve as the sparsity
of knowledge graphs increases: the higher the spar-
sity, the more improvement our model achieves.

2 Related Work

We briefly review traditional knowledge graph com-
pletion, and then pay more attention to common-
sense knowledge graph completion.

Traditional Knowledge Graph Completion
Many knowledge graph completion methods have
been proposed, which can be classified into three
types: embedding-based completion methods, path-
finding-based completion methods, and logical
rule-based completion methods. The embedding-

based method learned the relation and node em-
bedding by shortening the distance between the
head-relation pair representation and the tail node
representation, which had good scalability. More-
over, convolution has been proven to be an effective
operation for acquiring the head-relation represen-
tation (Dettmers et al., 2018; Shang et al., 2019)
in the embedding-based method. The path-based
methods used the random walk inference based al-
gorithm to find the related path. They achieved the
prediction of missing tuples by comparing the re-
lated path with the relation to be predicted (Lao and
Cohen, 2010; Khot et al., 2011). The rule-based
methods utilized the induction rules to simplify the
path-finding process in the knowledge graphs (Ren
et al., 2020; Yang and Song, 2020). We refer the
reader to (Ji et al., 2022) for more details about
knowledge graph completion.

Commonsense Knowledge Graph Completion
The existing methods assume specific relations,
dense edges, and sufficient training samples in the
knowledge graph. However, the sparsity of edges
and the abstract nature of relations pose challenges
for directly applying these methods to the CSKG.

Early methods in this field employed a strategy
where, for a given head and tail, all relations were
used to generate a large number of tuples. BiL-
STMs and linear transformations were then utilized
to score these tuples, allowing for the prediction
of missing tuples in the CSKG (Saito et al., 2018;
Li et al., 2016; Jastrzebski et al., 2018). Building
upon this foundation, Shen et al. (2022) took a step
further. They normalized the tail nodes and used
RoBERTa to score these tuples. This approach re-
sulted in the curation of Dense-ATOMIC, a CSKG
with increased coverage and a richer set of multi-
hop paths.

these methods did not take into account struc-
tural information and may suffer from computa-
tional inefficiency during inference. Another line
of studies attempted to use the translated-based
approach to reduce computational consumption
(Malaviya et al., 2020; Ju et al., 2022; Wang et al.,
2021). Furthermore, they incorporated GCN for ex-
tracting graph representations and fine-tuned BERT
in the CSKG to obtain semantic representations.
This integration capitalizes on the complementary
nature of these two representations. In addition,
these methods have applied convolutional layers
to enhance the performance of CSKG completion.
This further improves the effectiveness of the com-
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Figure 2: Overall architecture of CPNC. The Encoder is to get node embedding. Harnessing the power of GCN and
Contractive Pretraining, the Encoder transforms CSKG into rich semantic and structural representations. In detail,
the lower left section utilizes the mechanism of Contrastive Pretraining. Then, we describe the node clustering
process in the lower right, driven by semantic representations from Contractive Pretraining. Finally, the fusion of
semantic, structure, and latent concepts in the upper right yields node embeddings. The Decoder part is to rank the
nodes in candidates set by Node Embedding.

pletion task. However, it was observed that sim-
ply fine-tuning BERT (Devlin et al., 2019) with
pretraining tasks is hard to effectively capture the
sentence-level semantic connection between two
nodes. In response to this limitation, Su et al.
(2022) proposed MICO, which learns distinct node
representations for head nodes under varying re-
lations, proving evidence that high-quality node
representation can significantly aid CSKG comple-
tion. Moreover, different nodes in the CSKG may
express the same concept. The node redundancy
will bring difficulties to the commonsense infer-
ence on the CSKG (Jung et al., 2022), while the
previous CSKG completion methods ignored.

Compared to these methods, we address the is-
sue of node redundancy by employing a clustering
algorithm. Our work stands out by learning the se-
mantic representations of nodes through sentence-
level semantic connections and integrating latent
concept information into node representations.

3 Task Definition

Given a CSKG G = (N,V,R) where N is the set
of nodes, V is the set of edges and R is the set
of relations. We regard each tuple vi = (h, rel, t)
in the CSKG as a sample, which is composed of
head node h, tail node t and relation rel, where
h, t ∈ N , vi ∈ V , and rel ∈ R. Given a query
(h, rel) formed by a head node h and a relation
rel, the target of the CSKG completion is to max-
imize the score of the tail node t. Following the

previous work (Malaviya et al., 2020), for an edge
(h, rel, t) existing in the CSKG, we also add an in-
verse edge (t, rel−1, h) to the graph, where rel−1

is the inverse relation of rel.

4 Approach

In this paper, we propose a new framework, CPNC,
for CSKG completion using an Encoder-Decoder
architecture (see Figure 2). The Encoder incorpo-
rates semantic, graph structure, and latent concept
representation obtained from Contrastive Pretrain-
ing, Graph Convolutional Network (GCN), and
Node Clustering, respectively, to acquire node rep-
resentations. Given query (h, rel), the Decoder
ranks the nodes in the candidate set N and finds
tail nodes for the query by the rank.

4.1 Contrastive Pretraining
The current mainstream approach for completing
CSKG utilizes translation-based methods and relies
on GCN to represent the graph structure of nodes.
Although GCNs are effective in modeling graph
structure, they have limitations in capturing graph
structure information in CSKG due to sparse edges.
To address this issue, these methods incorporate se-
mantic information by fine-tuning BERT on CSKG
using Masked Language Model (MLM) and Next
Sentence Prediction (NSP) tasks.

However, those methods are imperfect in model-
ing CSKGs composed of nodes presented as short
text. MLM, which is a token-level task, focuses on
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modeling the connection between masked words
and other words, making it unsuitable for achieving
sentence-level node representation. Similarly, NSP,
while capable of modeling the semantic connection
between two nodes at the sentence level, suffers
from a mismatch between the input of the pretrain-
ing phase and the CSKG completion phase. During
pretraining, NSP requires a pair of head and tail
nodes for prediction, but during CSKG completion,
only a single node is used for sentence represen-
tation. Consequently, NSP is not well-suited for
the task of learning node representations, and sim-
ilar observations have been made in the field of
sentence representation learning (Li et al., 2020).

To obtain better node representations for the
CSKG completion, we introduce Contrastive Pre-
training (CP), a new method that sufficiently lever-
ages semantic information at the sentence level.
CP focuses on CSKG completion and differs from
MICO (Su et al., 2022) by not incorporating rela-
tion categories. Instead, it fine-tunes BERT’s node
representation using contrastive learning and cap-
ture sentence-level connections between nodes.

4.1.1 Building Contrastive Learning Samples
Assuming node pairs linked in the CSKG are se-
mantically related, we consider node pairs without
a link in the CSKG as semantically unrelated.

For each arbitrary edge (h, rel, t) in CSKG,
we randomly sample a node t̄ having no linking
with the head node h as its hard negative tail and
construct a contrastive learning training sample
c = (h, t, t̄). As shown in Figure 3, “take breakfast”
and “cook food” are the head and tail nodes in a
edge of CSKG. We randomly select a node “find in-
formation” having no linking with “take breakfast”
to construct a training sample (“take breakfast”,

“cook food”, “find information”).
The previous methods primarily focused on the

head nodes while constructing negative samples,
neglecting the importance of capturing unrelated
semantics among the tail node set. To tackle this
problem, we additionally constructed a contrastive
learning sample creverse = (t, h, h̄) for the tail
node t in the edge (h, rel, t).

4.1.2 Multiple Negatives Ranking Loss
We employ BERT for node embedding by inputting
all nodes in a batch separately and applying Mean
Pooling on the final layer’s output. Then, we use
x(n) to denote the representation of a specific node
n obtained through BERT.
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Figure 3: Main process of building Constractive Pre-
training samples.

In order to ensure that semantically related nodes
are positioned closely in the embedding space, we
utilize contrastive learning and employ the Multiple
Negatives Ranking Loss for contrastive learning.

For a given sample ci = (hi, ti, t̄i) in a batch,
we employ the Multiple Negatives Ranking Loss.
We consider hi paired with ti as the positive sample
while treating hi paired with other tail nodes tj in
the batch as negative samples. Additionally, we
consider hi paired with all hard negative tails in the
batch as negative samples as well. The objective
is to minimize the semantic distance between the
nodes in positive samples within the batch. The
formulation of the multiple negatives ranking loss
is as follows:

L = −
M∑

i=1

log
eD(hi,ti))

∑M
j=1 e

D(hi,tj) + eD(hi,t̄j)
, (1)

where D(h, t) = (x(h) · x(t)T )/(∥x(h)∥ · ∥x(t)∥)
represents the cosine similarity of two nodes, M is
the number of samples in the a batch.

4.2 Encoder
The Encoder aims to generate node representations
for CSKG completion,as illustrated in the left part
of Figure 2.
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The node representation comprises two compo-
nents,

1) the semantic representation matrix of nodes
Esem obtained through Contrastive Pretraining:

Esem = Contrastive-Pretraining(N), (2)

2) the graph structure representation matrix of
nodes acquired using a Graph Convolutional Net-
work (GCN),

Egraph = GCN(G). (3)

Specifically, esem and egraph represent the se-
mantic and graph representations of a particular
node, respectively, which can be derived from
Esem and Egraph.

4.3 Node Clustering
On the basis of the semantic node representation
esem, we use the K-means algorithm to cluster all
nodes N in the graph as follows:

{C1, C2, ..., CK} = K-means(N), (4)

where Ci is the i-th cluster, and K represents the
number of clusters. Nodes in Ci are considered
to have the same latent concept. As shown in the
Node Clustering part of Figure 2, “eat breakfast ”,
“have breakfast ” and “take breakfast ” are in the
same cluster and have the same latent concept.

We define the representation of the latent con-
cept as the mean of semantic representation of all
nodes in a cluster, denoted as mean(Ck), where Ck
contains a set of nodes in the same cluster.

To acquire the final node representation, we com-
bine the node semantic representation, esem, the
graph representation, egraph, and the latent concept
representation, mean(Ck). This fusion is performed
as follows:

e = [esem; egraph;mean(Ck)] ·Wembedding, (5)

where Wembedding is a weight matrix. The result-
ing node embeddings are considered as the node
embedding space.

Intuitively, Node Clustering enhances CSKG
completion by leveraging information from nodes
within the same latent concept.

We also use a progressive masking process, fol-
lowing Malaviya et al. (2020), to integrate latent
concept information. Initially, the latent concept
representation is fully masked, and throughout the
first 100 training epochs, it is gradually unmasked,
improving the overall performance.

4.4 Decoder

The goal of Decoder is to rank the nodes in the
candidate set, which is considered as N in our
work.

In order to obtain the query representation, we
first use a convolutional layer to fuse the relation
and head node representation:

q = Conv(eh, erel), (6)

where eh is the representation of the head nodes in
node embedding space obtained from Eq. 5, erel
is the representation of relation rel and Conv is a
convolution operation.

Then, we predict a 0-1 distribution vector, based
on the representation of the query q, indicating
the likelihood of each node in the candidate set N
becoming the tail node:

pt = δ(qWconvEN ), (7)

where Wconv is a weight matrix, EN is the repre-
sentation matrix of candidate nodes in node embed-
ding space obtained from Eq. 5, and δ is a sigmoid
function.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets
We evaluate our CPNC framework on two CSKG
completion benchmarks, i.e., CN-100K (Speer
et al., 2017) and ATOMIC (Sap et al., 2019).

CN-100K is a dataset that encompasses general
commonsense knowledge. This version contains
36 relation types and the Open Mind Common
Sense (OMCS) entries from ConceptNet (Speer
and Havasi, 2013). The average length of the nodes
in CN-100K is 2.85 words. Following Malaviya
et al. (2020)’s split, the training set contains 10,000
tuples, and the validation set and test set both con-
tain 1200 tuples.

ATOMIC is an atlas of everyday commonsense
reasoning and primarily focuses on event-level
commonsense knowledge in the form of if-then
relations. It comprises 9 relation types, with an
average of 4.40 words per node. We split ATOMIC
following Malaviya et al. (2020)’s work, where the
training set consists of 610,536 tuples, while the
validation and test sets contain 87,700 tuples and
87,701 tuples, respectively.
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Methods CN-100K ATOMIC
Type Model MRR HITS@1 @3 @10 MRR HITS@1 @3 @10

KG-adapted

DistMult 8.97 4.51 9.76 17.44 12.39 9.24 15.18 18.30
ComplEx 11.40 7.42 12.45 19.01 14.24 13.27 14.13 15.96
ConvE 20.88 13.97 22.91 34.02 10.07 8.24 10.29 13.37
ConvTransE 18.68 7.87 23.87 38.95 12.94 12.92 12.95 12.98

Generation-based COMeT-Normalized 6.07 0.08 2.92 21.17 3.36 0.00 2.15 15.75
COMeT-Total 6.21 0.00 0.00 24.00 4.91 0.00 2.40 21.60

CSKG-dedicated
RGAT 43.97 30.75 51.54 69.34 - - - -
SGBC 49.12* 37.71* 56.67* 71.29* 10.25* 8.72* 10.54* 13.26*
InductivE 56.92* 45.54* 63.38* 78.63* 13.19* 10.26* 13.61* 18.83*

Ours CPNC-S 54.52 45.33 61.46 75.92 13.14 10.11 13.75 18.80
CPNC-I 59.00 48.29 65.04 79.13 14.38 10.53 15.22 21.79

Table 1: CSKG completion results on CN-100K and ATOMIC. The result of HITS@1 was not reported in Wang
et al. (2021). To fairly compare our method with the previous method in the same setting, we rerun the code of
InductivE and SGBC on ATOMIC and CN-100K and mark the results of rerun experiments with *. Those results
are a little lower than that in the original paper. For KG-adapted and Generation methods, we reuse the results
reported in Malaviya et al. (2020).

5.1.2 Evaluation Metric
We evaluate the performance of our method using
MRR and HITS, following previous CSKG com-
pletion methods (Wang et al., 2021; Malaviya et al.,
2020; Ju et al., 2022). The results are reported by
averaging over both forward tuples (h, rel, t) and
inverse tuples (t, rel−1, h). Moreover, because the
nodes in CSKG are represented in free-form text,
it is possible for nodes other than the golden tail
nodes to be considered reasonable tail nodes. To
address this, we conduct a human evaluation to
assess the predictions made by our models.

5.1.3 Implementation Details
To perform Contrastive Pretraining, we use the con-
trastive learning framework provided in https://
github.com/UKPLab/sentence-transformers.
Our approach employs BERT-large as the base
model, which contains 340M parameters. During
training, we utilized a batch size of 128 and
conducted training for 3 epochs on the CN-100K
and ATOMIC datasets. We choose the Adam
optimizer for optimization, setting the learning
rate to 1e-4 for BERT-large and 5e-5 for the MLP.
For the remaining hyperparameters, we used the
default values provided by the framework.

For the CPNC-I and CPNC-S model, we use
experimental settings proposed by Malaviya et al.
(2020) and Wang et al. (2021), respectively. Both
models are trained for a minimum of 200 epochs
using BERT-large, which consists of 340M param-
eters, to encode semantic representations. During
training, we evaluate the MRR on the development
set every 10 epochs for CN-100K and ATOMIC.
Training continues until no further improvement in

MRR is observed. We select the model checkpoint
that achieves the highest MRR on the development
set for testing.

5.2 Compared Systems

We compare our approach with nine baseline sys-
tems across three categories.

5.2.1 KG-adapted Methods

We adapt classic knowledge graph completion
methods for CSKG completion. DistMult (Yang
et al., 2015) employed a bi-linear product to cal-
culate score of a tuple; ComplE (Trouillon et al.,
2016) utilized imaginary number representation to
effectively handle a large number of relations in the
knowledge graph; ConvE (Dettmers et al., 2018)
fused the representation of the source node and the
relation through a 2D convolution layer to obtain
the representation of query (h, rel); ConvTransE
extended ConvE by incorporating the translational
properties of TransE.

5.2.2 Generation-based Methods

COMeT (Bosselut et al., 2019) is a Transformer-
based knowledge generation model. Follow-
ing Malaviya et al. (2020), we adapt COMeT for
the CSKG completion and only evaluate in the for-
ward direction. Additionally, we also use their mod-
ifications to the ranking method used in COMeT.
Specifically, COMET-Normalized and COMET-
Total use the normalized negative log-likelihood
scores and total log-likelihood scores, respectively,
to rank nodes in the candidate set.
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5.2.3 CSKG-dedicated Methods
SIM+GCN+BERT+ConvTransE (SGBC) densi-
fied the CSKG by connecting the synthetic edges
between similar semantic nodes, improving the
graph structure representation (Malaviya et al.,
2020). Moreover, they used fine-tuned BERT to
encode the semantic information of the nodes.

InductivE (Wang et al., 2021) is proposed to en-
hance the unseen entity representation with neigh-
boring structural information by densifying Graph.
Relational graph attention networks (RGAT) are
proposed weighted the importance of neighbor
nodes of each node to obtain a better node rep-
resentation.

5.2.4 Our CPNC Methods
By incorporating CPNC with two CSKG-dedicated
methods (SGBC and InductivE), we obtain two
models, i.e., CPNC-S and CPNC-I.

5.3 Main Results
In Table 1, we report experimental results of KG-
adapted methods, Generation methods, CSKG-
dedicated methods and our methods on CN-100K
and ATOMIC.

On CN-100K, both KG-adapted methods and
Generation methods exhibit unsatisfactory perfor-
mance, with MRR values below 21% and HITS@1
values below 14%. These results demonstrate
that directly applying KG-adapted and Generation
methods to CSKG completion is ineffective. In
contrast, CSKG-dedicated methods achieve signifi-
cantly better results on CN-100K, with MRR val-
ues above 43% and HITS@1 values above 30%.
These metrics are twice as high as those obtained by
KG-adapted and Generation methods, highlighting
the advantage of CSKG-dedicated methods. Com-
paring our proposed CPNC-S and CPNC-I models
with mainstream CSKG-dedicated methods (SGBC
and InductivE), we observe performance improve-
ments of 5.40% and 2.08% on MRR, respectively.
Notably, our CPNC-I model sets a new state-of-the-
art result on CN-100K.

On ATOMIC, we draw a similar conclusion. The
KG-adapted methods exhibit poor performance,
while CSKG-dedicated methods achieve better re-
sults. In addition, compared with the SGBC and
InductivE models, our CPNC-S and CPNC-I mod-
els outperform the SGBC and InductivE models by
2.89% and 1.19% on MRR, respectively. And the
CPNC-I model achieves the state-of-the-art result
on ATOMIC.

We conduct Paired t-Test and the result proves
that the improvement of CPNC is significant.

5.4 Ablation Study

MRR HITS@10

CN-100K

CPNC-S 54.52 75.92
-w/o CP 51.90 76.08
-w/o NC 49.74 71.38
SGBC 49.12 71.29

CPNC-I 59.00 79.13
-w/o CP 57.16 74.90
-w/o NC 58.30 78.75
InductivE 56.92 78.63

ATOMIC

CPNC-S 13.14 18.80
-w/o CP 12.77 17.15
-w/o NC 12.46 17.72
SGBC 10.25 13.26

CPNC-I 14.38 21.79
-w/o CP 13.22 19.16
-w/o NC 14.21 21.38
InductivE 13.19 18.83

Table 2: MRR and HITS@10 of removing CP and NC
from CPNC on CN-100K and ATOMIC.

To demonstrate the effectiveness of Contrastive
Pretraining (CP) and Node Clustering (NC) on
CSKG completion, we perform the ablation study
where we removed CP and NC. The results are
presented in Table 2.

When NC was removed, we can observe that
the performance of both CPNC-S and CPNC-I de-
creases on CN-100K and ATOMIC. This indicates
that NC’s latent concept representation effectively
assists CSKG completion. It is worth noting that
CP can still bring improvement compared with the
previous method, showing that the semantic rep-
resentation provided by CP is crucial for CSKG
completion.

CPNC, which combines NC and CP, consistently
yields the highest result. By replacing CP with
finetuned BERT (Malaviya et al., 2020), the perfor-
mance of both CPNC-S and CPNC-I drops. How-
ever, they still achieve comparable results with the
previous CSKG-dedicated methods. This demon-
strates that the CP requires a high-quality semantic
representation of nodes to acquire good latent con-
cept representation.

5.5 Human Evaluation
For a given query (h, rel), additional nodes besides
the golden tail node could also become reasonable
tail nodes. For example, given a query “(do house-
work, Causes) ”, besides golden tail node “ clean
the house”, “ house get clean” and “ clean the room”
are also reasonable tail nodes. However, automated
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metrics fail to cover these nodes. To address this
issue, we randomly select 200 queries from the
test set of the CN-100K and ATOMIC. For each
query, we use our methods and current mainstream
methods to rank the nodes in the candidate set, We
manually calculate the number of reasonable tail
nodes in the top 10 candidates. The results are
shown in Table 3.

ATOMIC CN-100K
CPNC-I 70.22 83.20
InductivE 64.45 76.40
CPNC-S 60.23 69.40
SGBC 62.11 65.40

Table 3: Average percentage of reasonable tuples by
human evaluation results.

Observing human evaluation results, the CPNC
model has an excellent performance in CSKG com-
pletion. Besides, our method is significantly higher
than the current mainstream methods under the hu-
man evaluation results, which further validates the
effectiveness of our approach.

5.6 Model Adaptability

The CPNC can be effectively applied to various
methods. In our experiment, we incorporate CPNC
into SGBC and InductivE, resulting in significant
improvements.

The SGBC method initializes the input of GCN
randomly and combines graph structural representa-
tion acquired by GCN and semantic representation
obtained by BERT as the node representation; In-
ductivE initializes the input of GCN with BERT
and uses the output of GCN as the node represen-
tation. Despite the differences in their structures,
both methods benefit from the application of CP
and NC.

On CN-100K, CPNC-S and CPNC-I bring im-
provements of 5.40% and 2.08% in MRR, respec-
tively; On ATOMIC, CPNC-S and CPNC-I yield
MRR improvements of 2.89% and 1.19%, respec-
tively. This result demonstrates the adaptability of
our method.

5.7 Discussion on the Effect of Relieving
Sparsity

To evaluate the effectiveness of CPNC in mitigat-
ing the impact of edge sparsity in the CSKG, we
conducted a comparative study between CPNC-S
and SGBC on CN-100K with varying sparsity lev-
els. The removal of edges in the CSKG results in

increased sparsity, with a higher number of deleted
edges corresponding to a higher sparsity degree.
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Figure 4: CSKG completion results of SGBC and
CPNC-S on CN-100K with various degrees of spar-
sity.

As shown in Figure 4, when the sparsity degree
increases, CSKG completion performance deterio-
rates. CPNC-S consistently outperforms SGBC in
terms of MRR on CN-100K across different spar-
sity levels, indicating CPNC’s ability to mitigate
edge sparsity in the CSKG. CPNC-S achieves a
12.48% and 3.95% increase in MRR compared to
SGBC at sparsity extents of 25% and 50% respec-
tively. These results demonstrate that CPNC is
more effective in alleviating edge sparsity in the
CSKG, with greater improvements observed for
sparser graphs.

5.8 Discussion on the Number of Latent
Concepts
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Figure 5: CSKG completion performance with different
cluster numbers on CN-100K and ATOMIC.

Different numbers of clusters can lead to varying
levels of granularity in latent concepts, which in
turn can impact the performance of CSKG com-
pletion. In order to investigate this, we conducted
experiments with the different numbers of clusters
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on CN-100K and ATOMIC datasets and present
the results in Figure 5.

On CN-100K, we observed an overall increasing
trend in completion results as the number of clus-
ters increased. However, the rate of improvement
tends to diminish after reaching 900 clusters. The
maximum MRR achieved when using the number
of clusters is 1200.

On ATOMIC, the MRR initially increases with
an increasing number of clusters but starts to de-
cline once the number of clusters reaches 900.

Based on our main results, we selected 1200 clus-
ters for CN-100K and 900 clusters for ATOMIC,
allowing us to effectively capture latent concepts
through cluster nodes.

5.9 Discussing on Contrastive Learning Loss

In order to obtain a better semantic representation
of nodes, we experiment with five kinds of con-
trastive learning methods and observe their perfor-
mance in CSKG completion. The result is shown
in Table 4.

Methods MRR
Contrastive Loss 40.03
MTriplet Loss 44.36

MICO 45.93
Batch Semi Hard Triplet Loss 27.92

Multiple Negatives Ranking Loss 49.74

Table 4: CSKG completion performance of CPNC-S
using different Contrastive Learning Loss on CN-100K.

In order to compare those contrastive learning
methods, we use the node embedding obtained by
those methods to complete CSKG without node
clustering. Each contrastive learning method yields
distinct results, and our main result selects Multiple
Negatives Ranking Loss due to its highest MRR.

6 Conclusion

In this work, we propose a new CSKG comple-
tion framework CPNC to address issues arising
from node redundancy and edge sparsity. CPNC
obtains better semantic node information through
Contrastive Pretraining, which alleviates the prob-
lems caused by edge sparsity. CPNC also utilizes
the latent concept representation acquired through
Node Clustering to alleviate the problem caused
by node redundancy. On CN-100K and ATOMIC,
experimental results and extensive analysis demon-
strate the effectiveness of Contrastive Pretraining
and Node Clustering.

Limitations

Due to the limitation of time and resources, in this
work, we select a relatively small number of clus-
ters during the clustering process, which results in
coarse-grained clustering. Fine-grained clustering
can provide a better latent concept but will also
lead to increased computational resources and time
consumption. We will attempt to trade-off between
the cost and the granularity of clustering in future
work to further explore the impact of the latent
concept on CSKG completion. Besides, our Node
Clustering module is not integrated in an end-to-
end manner in our work; We will consider using
the topic neural network to construct an end-to-end
model.
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