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Abstract

In this paper, we propose an alternative to
the classic masked language modeling (MLM)
pre-training paradigm, where we modify the
objective from the reconstruction of the ex-
act identity of randomly selected masked sub-
words to the prediction of their latent semantic
properties. We coin the proposed pre-training
technique masked latent semantic modeling
(MLSM for short). In order to make the con-
textualized determination of the latent semantic
properties of the masked subwords possible, we
rely on an unsupervised technique using sparse
coding. Our experimental results reveal that the
fine-tuned performance of those models that we
pre-trained via MLSM is consistently and sig-
nificantly better compared to the use of vanilla
MLM pre-training and other strong baselines.

1 Introduction

Recent successes in natural language processing
are predominantly fueled by the use of large pre-
trained language models (PLMs) that are con-
structed in a self-supervised manner over massive
amounts of raw text. Autoencoder-style language
models (Devlin et al. 2019; Liu et al. 2019; Lan
et al. 2020; inter alia) are typically trained via
masked language modeling (MLM).

PLMs pre-trained using MLM are capable of
returning distributions over their vocabulary that
peak at plausible substitutes of masked (sub)tokens
given some sequence of input text. The individ-
ual updates performed during MLM pre-training,
however, are not aligned to what we expect from
the PLMs in the long run, i.e., that they output
distributions of plausible substitutes for masked
(sub)tokens.

As a motivating example, consider the sentence
“Alice is eating a cake.”, and suppose that we ran-
domly select the token cake to be masked. For such
a training example, we would obtain the masked
input sentence “Alice is eating a [MASK].”.

The smallest possible training loss would in-
cur for this particular example if our model al-
located all its output probability mass to the word

“cake” as being the only possible replacement of
the [MASK] token, while assigning precisely zero
probability to other alternatives, that are otherwise
totally viable from a human cognitive perspective,
including words such as pear, croissant, soup, etc.

What eventually provides PLMs trained with the
MLM objective the ability to output token distribu-
tions that are plausible from a human perspective,
is that they are trained over massive amounts of di-
verse batches, and the different possible substitutes
even out in expectation. The hypothesis that we
investigate in this paper is that we can train PLMs
more efficiently if – instead of relying on the exact
identity of the masked tokens during pre-training –
we required our model to output such distributions
that are not peaked at a single symbol (correspond-
ing to the identity of the masked token).

A more natural and perhaps more sample effi-
cient option to overcome the misalignment between
the individual pre-training updates of PLMs and
their long-term objective could compare the out-
put distribution of the model to some desired dis-
tribution of substitutes, which would – instead of
encoding the masked input token with a one-hot cat-
egorical distribution – assign nonzero probabilities
to multiple viable tokens. Note, however, if we had
access to such desired output token distributions
for the masked tokens, then language modeling was
already solved and the task of training PLMs would
become obsolete.

An alternative approach for pre-training that miti-
gate the exact reliance on the identity of the masked
tokens could rely on semantic resources, such as
WordNet (Fellbaum, 1998) and ConceptNet (Speer
et al., 2017). In this case, one might require the
language model to output semantic properties of
the masked tokens, i.e., in the previous example
input sentence, instead of recovering the word cake
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for the [MASK] token, the goal of the PLM was to
output its semantic properties, such that the masked
word refers to a concept that is edible and is a kind
of dessert.

One difficulty of such an approach is that ob-
taining semantic resources with sufficient coverage
is notoriously arduous (Gale et al., 1992). In ad-
dition, such a pre-training paradigm would need
the training corpus to be annotated with the possi-
ble properties of the words in their particular con-
texts. Few well-resourced languages have such
sense-annotated corpora available, e.g., SEMCOR
(Miller et al., 1994) for English, but their size is still
several orders of magnitude smaller compared to
the size of the corpora used for pre-training PLMs.

In this work, we propose masked latent semantic
masking (MLSM), such an alternative of MLM,
which attenuates the direct reliance on the masked
tokens during pre-training. The main idea behind
MLSM is that we no longer require the PLM to
recover the exact identity of the masked tokens, but
we predict their (latent) semantic properties.

Our pre-training procedure is based on the ob-
servation that sparse representations obtained via
sparse coding on the hidden representations of
neural models are well aligned with human inter-
pretable properties (Balogh et al., 2020; Berend,
2020; Yun et al., 2021). The way we incorporate
the above property into MLSM pre-training is that
we derive context sensitive latent semantic informa-
tion about the masked tokens by performing sparse
coding on their hidden representation and we aim
at predicting those as a pre-training task. Since
we determine the sparse representations in an un-
supervised way, our approach is not affected by
the difficulties that would arose when relying on
external semantic resources.

Our evaluation confirms our expectations, i.e.,
that PLMs pre-trained with MLSM can signifi-
cantly outperform such models that are trained via
vanilla MLM and other strong baselines. We re-
lease our code for performing MLSM pre-training
at https://github.com/szegedai/MLSM.

2 Related work

Integrating external semantic knowledge into
PLMs has gained increasing research interest (Mi-
haylov and Frank, 2018; Bauer et al., 2018; Peters
et al., 2019; Ye et al., 2019; Yang et al., 2019; Qiu
et al., 2019; Liu et al., 2020; Wang et al., 2021; Lu
et al., 2021). These efforts cover a wide method-

ological spectrum, depending on how the external
knowledge is incorporated into the PLMs. The dif-
ferent approaches can be distinguished for instance
on the location where the external knowledge gets
injected, i.e., either at the input, architectural or
output level.

Colon-Hernandez et al. (2021) provides a com-
prehensive overview of approaches aiming at the
incorporation of external knowledge into PLMs.
What all these approaches have in common is that
they rely on some explicit knowledge representa-
tion, e.g., in the form of triplets of some knowl-
edge graph. In contrast, our main research question
was whether it is possible to increase the seman-
tic awareness of PLMs without having access to
explicitly stored knowledge during the pre-training.

SenseBERT (Levine et al., 2020) is such a modi-
fication of BERT that also aims at the integration of
semantic knowledge, however, it also differs from
our approach in multiple aspects. The most im-
portant difference is that MLSM does not require
any external linguistic resources, whereas Sense-
BERT relies on WordNet, making it only available
for languages where such a linguistic resource is
accessible.

Our fully unsupervised approach for inducing
implicit semantic information to words within their
context builds on the observation that performing
sparse coding over the contextual representations
of PLMs results in such sparse contextualized rep-
resentations that align well with the semantic cat-
egories of the words. Berend (2020) showed that
these sparse vectors can be used for improving
word sense disambiguation (WSD), whereas Yun
et al. (2021) used it for creating visualizations that
help understanding the inner workings of PLMs
from a semantic perspective. (Berend, 2022) pro-
vided further evidence that sparse contextualized
word representations can be successfully exploited
in cross-lingual WSD as well.

3 Methodology

As opposed to vanilla MLM, being agnostic to
the semantics of the masked tokens, we propose
MLSM, an alternative pre-training formulation
which gets enhanced via semantic information.

3.1 Determining semantic information

As mentioned earlier, we wish to incorporate
context-sensitive semantic information of the
masked tokens into the pre-training procedure.
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That is, for some token ti within an input sequence
of tokens I = [t1, t2, . . . , ti, . . . , t|I|], we need to
be able to determine its semantic profile s(ti).

3.1.1 Using external semantic resources

Semantic information of words can be obtained
from ontologies or knowledge graphs such as Word-
Net (Fellbaum, 1998) and ConcepNet (Speer et al.,
2017), containing semantic information in the form
of triplets. For instance, (cake, HasProperty, sweet)
is one of the triplets included in ConceptNet, based
on which s(ti) can be determined.

One difficulty arising when using knowledge re-
sources for determining s(ti) originates from the
potential ambiguity of words, as knowledge bases
can provide multiple (often semantically conflict-
ing) relations a word can partake. For instance,
ConceptNet contains the triplet (book, AtLocation,
university), as well as (book, SameAs, reserve),
which refer to the noun and verb senses of the word
book, respectively. When the knowledge base of-
fers multiple semantic relations a word is involved,
we choose one of the viable semantic information
uniformly at random, which is akin to how Levine
et al. (2020) handled ambiguity.

We consider such a modified pre-training pro-
cedure in which we extend the output vocabulary
of our model by special symbols corresponding to
the relations pertaining to some knowledge base
K, and the objective of pre-training is to output
such a special symbol for a randomly masked input
token, which is compatible with the knowledge in
K. We refer to this approach as MESM (Masked
Explicit Semantic Modeling). When referring to
a concrete realization of MESM, we shall suffix it
with the abbreviated name of the knowledge base
we rely on, with WN and CN denoting WordNet
and ConceptNet, respectively.

3.1.2 Using sparse coding

We propose an efficient unsupervised method for
determining the latent semantic description of any
token given its context. Our approach requires
a teacher PLM denoted by T . During MLSM
pre-training of a student model S, we can use T
for inferring latent semantic information that we
require S to recover as its pre-training objective.

Our proposed way of determining s(ti) from T
is based on the use of sparse coding (Mairal et al.,
2009). We first perform a dictionary learning phase,

during which we solve for

min
D,αj∈Rk

≥0

N∑

i=1

1

2
∥h(l)

j −Dαj∥22 + λ∥αj∥1, (1)

where D ∈ Rd×k is a dictionary matrix, the norm
of its column vectors not exceeding 1, αj ∈ Rk

is a sparse vector of coefficients indicating the ex-
tent to which the vectors from D are used for the
reconstruction of h(l)

j ∈ Rd, which is the hidden
state of token j determined by T in layer l. λ is the
regularization coefficient that control the sparsity
of αj .

Once the dictionary matrix D is determined, we
can obtain sparse contextualized representation for
any h

(l)
i , i.e., a hidden state from layer l of T as

min
αi∈Rk

≥0

1

2
∥h(l)

i −Dαi∥22 + λ∥αi∥1. (2)

An important difference between (1) and (2) is
that for the latter case, we do not optimize towards
D, hence the determination of the sparse coeffi-
cients for a fixed dictionary matrix D corresponds
to solving a LASSO optimization on the hidden rep-
resentation of the tokens for which we determine
sparse contextual representations for.

As both (1) and (2) include a non-negativity con-
straint towards αi, a natural approach to convert
its sparsity structure into a latent semantic distribu-
tion is to ℓ1-normalize it. That way, we can handle
the ℓ1-normalized coefficients of αi as a proba-
bility with which the k latent semantic properties
(expressed by the column vectors of D) hold for
token ti in its particular context.

During MLSM pre-training, we consider these
sparse normalized distributions obtained from (2)
for each masked token as the latent semantic infor-
mation describing them. Similar to the integration
of explicit human-collected semantic information
into pre-training described in Section 3.1.1, we
introduce k new special symbols into the output
vocabulary of the model.

The k new symbols correspond to the semantic
atoms that comprise the columns of the dictionary
matrix D determined by (1), and we consider the
loss of the student model S regarding the masked
input tokens by comparing its output distribution
towards the k special symbols with the latent se-
mantic distribution that we obtain from the teacher
model T described above. Unless stated otherwise,
the loss that we employ for comparing the similar-
ity of the output distribution of S and the desired
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target distribution derived from T during MLSM
is the KL divergence.

4 Experiments

We pre-trained several BERT language models of
medium size relying on the transformers library
(Wolf et al., 2020). The medium models (Turc et al.,
2019; Bhargava et al., 2021) comprise of 8 trans-
former blocks and use a hidden representation of
512 dimensions. We considered the official pre-
trained bert-base-cased model as the teacher
model T for MLSM and we relied on its tokenizer
for all the models that we pre-trained.

In order to assess the effects of the different
pre-training variants, we evaluated the fine-tuning
performance of the models over 10 diverse tasks.
We repeated all fine-tuning experiments 10 times in
order to account for the variability of the results that
occur due to the random initialization of the task-
specific classification head (Dodge et al., 2020).

We used 3 NVIDIA A6000 GPUs for perform-
ing the experiments. Each pre-training and the re-
peated fine-tuning experiments that followed them
for a single checkpoint took approximately 2 GPU
weeks and 1 GPU day, respectively. 1

4.1 Details on pre-training

We used the preprocessing pipeline released as part
of the WikiBERT models (Pyysalo et al., 2021)2

for obtaining a recent Wikipedia dump for conduct-
ing pre-training. We also shuffled the preprocessed
input sequences for ensuring the diversity of the
pre-training batches. Our corpus consisted of ap-
proximately 125 million sentences and 2.7 billion
whitespace delimited tokens.

As large batch-size has been demonstrated to
be beneficial during pre-training (Liu et al., 2019),
we set the batch size to 1024 (using gradient ac-
cumulation over 32 batches). For ensuring model
comparability, we fixed the input contents (includ-
ing the positions of the tokens being masked) and
the order of the batches in which they followed
each other across the different pre-trainings.

We performed 300,000 update steps, resulting in
approximately 300 million input sequences. Simi-
lar to the original implementation of BERT (Devlin
et al., 2019), in order to speed up pre-training, we
used a maximal sequence length of 128 for 90%

1We have since added support for AMP, which provides
an approximate 2-fold speedup during pre-training.

2https://github.com/spyysalo/wiki-bert-pipeline

of the pre-training, then increased it to 512 for
the remaining steps. We used the typical learning
rate of 1e−4 with linear learning rate scheduling,
a warm-up phrase of 3, 000 steps and the AdamW
optimizer (Loshchilov and Hutter, 2019).

The way MLSM determines latent semantic dis-
tribution to tokens requires obtaining D. For do-
ing so, we followed (Berend, 2020), i.e., we pro-
cessed the SEMCOR corpus (Miller et al., 1994),
and collected the hidden states from the last layer
of bert-base-cased, while setting the number of
semantic atoms and the regularization coefficient
to k = 3000 and λ = 0.05, respectively.

Besides using MLSM, we constructed four dif-
ferent PLMs that served as our baselines. One
of our baseline was pre-trained using the standard
MLM objective, where the goal is to reconstruct
the exact identity of the masked tokens from the
output distribution of the model.

We pre-trained two further PLMs, where we re-
lied on the contents of explicit semantic informa-
tion in the form of knowledge bases. For these
models, that we refer to as MESM-WN and MESM-
CN, we required the models to output semantic
information about the masked words according to
WordNet and ConceptNet, respectively. When re-
lying on WordNet, we introduced 45 additional
special symbols to the vocabulary of our model,
each corresponding to one of the possible lexnames
in WordNet, and our goal was to classify masked
tokens to their correct supersense. When using
ConceptNet, we first collected its 3000 most fre-
quent relations (since we used that many semantic
atoms for determining our latent semantic descrip-
tions as well), and created a special symbol for
each (e.g.,IsA_food).

Since MLSM utilizes a pre-trained teacher
model T , which allows us to determine the latent
semantic distributions that is required by MLSM
pre-training, a natural baseline to compare against
is based on distillation from the same teacher
model. We refer to the distilled pre-training as
MLM-D. In this scenario, we first determine the
token output distribution of T for the masked to-
kens, and calculate our pre-training loss as the KL
divergence between that distribution and the one
our model outputs.

4.2 Fine-tuning evaluations

We next investigate if the different pre-training
regimes come with different fine-tuning capabil-
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ities. During our evaluations, we relied on a
wide range of tasks spanning both token clas-
sification in the form of named entity recogni-
tion (NER), and various sentence classification
and regression tasks. More specifically, we per-
formed evaluations on the Corpus of Linguistic
Acceptability (CoLA; Warstadt et al., 2019), the
CoNLL 2003 dataset for NER (Tjong Kim Sang
and De Meulder, 2003), MNLIm and MNLImm,
i.e., the matched and mismatched versions of the
MNLI natural language inference dataset (Williams
et al., 2018), the Microsoft Research Paraphrase
Corpus (MRPC; Dolan and Brockett, 2005), the
QNLI benchmark (Rajpurkar et al., 2016; Wang
et al., 2019b) datasets, Quora Question Pairs (QQP;
Iyer et al., 2017), Recognizing Texutal Entailment
(RTE; Dagan et al., 2006; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009),
Stanford Sentiment Treebank (SST2; Socher et al.,
2013), Semantic Textual Similarity (STSB; Cer
et al., 2017) and the Word-in-Context (WiC; Pile-
hvar and Camacho-Collados, 2019) datasets.

As many of the datasets are part of the
GLUE (Wang et al., 2019b) and SuperGLUE
benchmarks (Wang et al., 2019a), where the la-
bels of the test set are not available, we performed
our evaluation on the development sets. The hyper-
parameters were not tuned in any way to perform
well on these sets, i.e., we used the same hyperpa-
rameters for all the tasks, and our choice for the
selected values was purely driven by adapting com-
monly used values from earlier work and common
best practices.

We accessed the above benchmarks and per-
formed the evaluation of the fine-tuned models via
the datasets and evaluate libraries (Lhoest et al.,
2021; von Werra et al., 2022). We used the same
frequently used hyperparameters for fine-tuning
all the datasets. That is, we used a learning rate
of 2e−5 with linear learning rate scheduling and
a batch size of 32, performing 3 epochs. As the
evaluation metric, we always report the fine-tuning
performance after the last epoch.

4.2.1 Results of the fine-tuning experiments
As mentioned before, evaluations were conducted
10 times for each task and differently pre-trained
PLM. Table 1 summarizes the average performance
of each PLM on each tasks, verifying that MLSM
pre-training offers a competitive edge during fine-
tuning compared to all other investigated alterna-
tives of pre-training.
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Figure 1: Scatterplot of the pairwise performances of
the individual fine-tuning evaluations of the model pre-
trained with MLSM and distillation (MLM-D). Markers
above the diagonal indicate evaluations for which the
MLSM pre-trained model scored better.

The largest performance gap is between MLSM
and the approaches that try to integrate external
human knowledge bases into the pre-training (the
MESM-* paradigms). On average, the distilled
model (MLM-D) was able to stay the closest in
performance to the PLM pre-trained using MLSM,
however, its performance still lags considerably
behind that of our proposed model.

We performed the 10 repeated experiments for
each dataset by ensuring their comparability across
differently pre-trained models, i.e., we made sure
that whenever a pair of PLMs was evaluated with
the same seed and on the same task, their classifi-
cation heads were initialized identically. Addition-
ally, for each task, the batches included the same
instances and got utilized in the same order during
the fine-tuning experiments.

We depict the pairs of final task performances
across all the fine-tuning experiments between the
comparable trials of the two best performing mod-
els, i.e., the one pre-trained with MLSM and the
one using distillation (MLM-D) in Figure 1. We
can see that the MLSM pre-trained model resulted
in better fine-tuning performances compared to
those of the distilled model in most of the cases.

Indeed, the p-value of the Wilcoxon signed-rank
test between their paired experimental results is
p < 2e−12, which indicates that MLSM performs
significantly better during fine-tuning compared to
standard distillation. The p-value between the re-
sults of vanilla MLM and MLSM was even smaller,
i.e., p < 3e−17.
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Dataset Metric MLM MESM-WN MESM-CN MLM-D MLSM

CoLA Matthews correlation 0.391 0.371 0.369 0.390 0.403
CoNLL2003 F1 0.919 0.905 0.909 0.920 0.926
MNLIm Accuracy 0.768 0.719 0.735 0.771 0.798
MNLImm Accuracy 0.771 0.731 0.749 0.782 0.808
MRPC Accuracy 0.761 0.713 0.712 0.775 0.786
MRPC F1 0.841 0.815 0.815 0.846 0.851
QNLI Accuracy 0.850 0.775 0.779 0.852 0.870
QQP Accuracy 0.886 0.840 0.850 0.888 0.892
QQP F1 0.847 0.777 0.797 0.849 0.855
RTE Accuracy 0.571 0.552 0.552 0.578 0.571
SST2 Accuracy 0.892 0.880 0.891 0.890 0.905
STSB Pearson correlation 0.809 0.277 0.243 0.803 0.818
STSB Spearman correlation 0.809 0.264 0.226 0.804 0.820
WiC Accuracy 0.629 0.614 0.599 0.644 0.639

Average 0.7675 0.6596 0.6590 0.7709 0.7815

Table 1: Fine-tuning performances of the differently pre-trained PLMs, averaged over 10 independent initializations
of their classification head.
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Figure 2: Average performance of the differently pre-
trained models as a function of the number of pre-
training update steps performed.

4.2.2 Investigating pre-training dynamics

Besides investigating the fine-tuning performance
of the differently pre-trained models at the end
of pre-training, we additionally evaluated them at
different checkpoints, i.e., after processing 10%
(30K), 25% (75K), 50% (150K) and 100% (300K)
of all the update steps performed during pre-
training.

Figure 2 illustrates that the fine-tuning perfor-
mances of the PLM that was pre-trained using
MLSM is substantially higher than any of the
PLMs pre-trained in an alternative fashion. This
observation does not only hold at the end of pre-

training, but also for the earlier checkpoints.
Furthermore, the performance of the PLM

relying on MLSM already surpasses the end-
of-training performance of all alternatively pre-
trained PLMs at its 25% checkpoint (at 75K pre-
training steps), supporting our earlier hypothesis
that MLSM converges faster and provides a more
sample efficient form of pre-training.

4.2.3 The role of using semantic distributions
As mentioned in Section 3.1.2, the loss function
employed by MLSM is the KL divergence between
the latent semantic distributions determined for the
masked tokens using the teacher model T and the
output of the student model S. We experimented
with such a variant of MLSM that does not utilize
the entire latent semantic distribution of the masked
tokens, but only considers the index of the semantic
category with the highest probability mass it is
assigned to.

Under this variant of MLSM, the loss function
we employed was no longer the KL divergence,
but the cross entropy of the output of S and the
most probable latent semantic category determined
from T . We refer to this variant of masked latent
semantic modeling as MLSM-CE (owing to the
use of cross entropy as the loss function).

Figure 3 compares the evaluation scores of both
MLSM and MLSM-CE, revealing that the use of
the entire latent semantic distribution determined
by our approach together with KL divergence loss
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Figure 3: The fine-tuning performance of the PLMs
pre-trained with MLSM-CE and MLSM.

is more beneficial compared to the use of the cross
entropy-based loss. The overall average perfor-
mance scores of the MLSM and MLSM-CE pre-
trained models are 0.781 and 0.762, respectively.

4.2.4 Comparing model sizes
As a final quantitative experiment, we pre-trained
another BERT model with vanilla MLM training,
but this time, the model was of the base version.
Apart from its larger capacity, pre-training was con-
ducted entirely identically to the previously dis-
cussed smaller PLMs. The base model differs
from the medium models in that it consists of 12
transformer blocks and it has a hidden dimension
of size 768 (as opposed to the 8 blocks and 512-
dimensional hidden states for the medium model).
These differences make the size of the base model
more than 2.5 times that of the medium (there are
≈ 110M and ≈ 42M parameters for the base and
medium models, respectively).

In this comparison, we investigated if the sub-
stantially larger capacity of the base model that we
pre-trained using standard MLM would make it a
clearly better choice for fine-tuning compared to
the considerably smaller medium-sized model that
we trained with MLSM. Fine-tuning experiments
using the base model was also conducted 10 times
for each task. The average performances of the
two pre-trained models of different capacities and
pre-training protocol are included in Table 2.

We can observe that even though the medium
model has approximately only 40% of the param-
eters of the base model, when trained with the
proposed MLSM approach, it is still capable of
performing close to the more than 2.5× sized base
model. Indeed, the medium model pre-trained with

Dataset Metric base w/ MLM medium w/ MLSM

CoLA Matthews corr. 0.430 (0.014) 0.403 (0.012)
CoNLL2003 F1 0.940 (0.002) 0.926 (0.003)
MNLIm Accuracy 0.803 (0.002) 0.798 (0.001)
MNLImm Accuracy 0.807 (0.002) 0.808 (0.002)
MRPC Accuracy 0.763 (0.056) 0.786 (0.020)
MRPC F1 0.837 (0.034) 0.851 (0.013)
QNLI Accuracy 0.882 (0.003) 0.870 (0.004)
QQP Accuracy 0.898 (0.001) 0.892 (0.001)
QQP F1 0.862 (0.001) 0.855 (0.001)
RTE Accuracy 0.538 (0.019) 0.571 (0.011)
SST2 Accuracy 0.903 (0.006) 0.905 (0.004)
STSB Pearson corr. 0.828 (0.004) 0.818 (0.024)
STSB Spearman corr. 0.824 (0.003) 0.820 (0.021)
WiC Accuracy 0.630 (0.025) 0.639 (0.007)

Average 0.7818 0.7815

Table 2: Breakdown of the average performance of the
base-sized BERT pre-trained with vanilla MLM and
the medium-sized BERT pre-trained with MLSM. The
standard deviation of the scores are put in parenthesis.

Teacher model T
BERT base BERT large RoBERTa large

MLM-D 0.7709 0.7698 0.7563
MLSM 0.7815 0.7696 0.7783

Table 3: The results of vanilla distillation and MLSM
when using different teacher models.

MLSM is capable of preserving 99.96% of the av-
erage performance of the base model trained with
vanilla MLM. In contrast, the medium model pre-
trained with vanilla MLM had an average perfor-
mance of 0.7675 (see Table 1), which corresponds
to only roughly 98.17% of the 0.7818 average per-
formance of the base model.

Our computational budget prevented us from
using student models S larger than medium size,
however, we managed to pre-train models with
larger teacher models T (as for those backpropaga-
tion did not have to be performed). The two larger
T that we relied on were bert-large-cased and
roberta-large. Following the observations in
(Berend, 2020), we determined the contextualized
latent semantic profiles based on the hidden repre-
sentations from layer 21 of the large models.

The fine-tuning results of the fully-trained PLMs
averaged over all evaluation scenarios are reported
in Table 3, illustrating that without increasing the
capacity of S, we were not able to improve the
fine-tuning scores of the PLMs. A likely cause for
this is the capacity gap between S and T (nearly
a factor of ×10). It is worth mentioning that this
phenomenon not only affected MLSM, but vanilla
distillation as well. In fact, when using BERT large
as T , the performance of MLM-D and MLSM are
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Figure 4: Illustration of the 10 most prominent latent semantic categories of the example words and the corresponding
probabilities our approach assigned to them.

on par, whereas MLSM performs noticeably better
compared to MLM-D when using RoBERTa large
as T . That is, using the same T , MLSM always
performed at least as good as vanilla distillation.

4.3 Illustrating latent semantic distributions

We next illustrate the latent semantic distributions
qualitatively over a small example. Consider the
following sentences, each containing a token of
interest written in boldface:

(i) Alice is eating a cake.
(ii) Bob is cooking a soup.
(iii) The cat sits on the mat.
(iv) The fox is chasing a rabbit.

Figure 5 illustrates the pairwise cosine similari-
ties between the token representations of the target
words extracted from bert-base-cased and its
sparse counterparts that we obtained by solving (2).

We can see in Figure 5a that the pairwise similar-
ities are rather homogeneous for the dense represen-
tations, which can be explained by their anisotropy
(Ethayarajh, 2019). Figure 5b, in contrast, reveals
that the pairwise similarities of the inspected to-
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Figure 5: The pairwise cosine similarity between the
words in the example sentences using the original dense
contextualized representations and the sparse ones.

kens behave more plausibly for the sparse represen-
tations.

Figure 4 helps in better assessing the semantic
distributions induced by our approach. Each subfig-
ure considers one of the target words (disclosed in
their captions), and contains their top-10 semantic
categories (referenced by their indices) that the par-
ticular target word got assigned, ordered by their
decreasing order of probability mass.

The subplots also include those probabilities that
the other 3 non-target words received for the most
dominant latent semantic categories of the target
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word. We can see in Figure 4a and Figure 4b that
words referring to edible things (cake and soup)
have an overlapping set of dominant semantic cate-
gories (with category 2782 being the most impor-
tant for both of them), whereas their most promi-
nent latent semantic categories overlap little (if any)
with the other two example words that are related
to animals. A similar tendency can be noticed be-
tween the animal related words in Figure 4c and
Figure 4d.

5 Conclusion

In this paper, we proposed masked latent seman-
tic modeling (MLSM), such a modification of the
classical masked language modeling task, where
the goal is changed from the prediction of the ex-
act identity of the masked tokens to that of their
latent semantic categories. We suggested a context-
sensitive unsupervised approach for determining
the latent semantic categories of tokens by perform-
ing sparse coding of their hidden representations
from a pre-trained teacher model. The reliance
on a teacher model makes our approach similar to
model distillation in the sense that we can transfer
the capabilities of a (larger) pre-trained model into
a newly trained one. Comparison of the fine-tuning
capabilities of the PLM pre-trained via classical
model distillation and MLSM revealed a clear ben-
efit towards the latter approach.

Our experiments also corroborate that MLSM
pre-training behaves more sample efficient com-
pared to other alternatives, as the fine-tuning per-
formance of the pre-trained model at its 25% com-
pleteness level was capable of achieving better per-
formances than any of the alternatively trained mod-
els at their end of pre-training stage (see Figure 2).
More importantly, our experiments revealed that
by relying on MLSM pre-training, it was possi-
ble to cram the fine-tuning capabilities of a PLM
with 2.5× parameter into a smaller one (see Ta-
ble 2). Finally, in order to foster reproducibility
of our proposed approach, we share all our code
and pre-trained models at https://github.com/
szegedai/MLSM and https://huggingface.co/
SzegedAI/bert-medium-mlsm, respectively.
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Risks and Limitations

Our pre-training relies on distributions of latent
semantic properties of masked tokens that we de-
termine in a purely unsupervised manner by per-
forming sparse coding of the hidden states from
an already pre-trained PLM. This property would
make our approach in principle available to be used
in pre-training PLMs for any language with an al-
ready pre-trained PLM and a pre-training corpus
of raw, unannotated text available. Despite of this
fact, we only considered English in our experi-
ments, causing the potential risk of reinforcing the
community bias in mainly focusing on the English
language only.

The fact that our proposed approach requires
an already pre-trained PLM can be deemed as a
limitation. Hence for languages, where only a pre-
training corpora exist, but no PLM has been pre-
trained with vanilla MLM, a classical PLM needs
to be pre-trained first, which increases the costs
of performing MLSM. We should add, however,
that once the MLSM pre-training ends, it has the
same fine-tuning costs as a PLM pre-trained with
traditional MLM.

It would be interesting to see if the proposed
pre-training paradigm was applicable for autore-
gressive models as well. Currently we tested our
proposed approach in autoencoder-style masked
language models. Extending our work to autore-
gressive models is something we regard as a poten-
tial future work.

Finally, we considered the pre-training of
medium-sized model, with the knowledge being
distilled from larger models. This decision was
driven by our computation budget, but it would be
definitely instructive to see the effects of the same
procedure employed for student models of larger
capacity.
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