
Findings of the Association for Computational Linguistics: ACL 2023, pages 13914–13934
July 9-14, 2023 ©2023 Association for Computational Linguistics

DP-BART for Privatized Text Rewriting under Local Differential Privacy

Timour Igamberdiev and Ivan Habernal
Trustworthy Human Language Technologies

Department of Computer Science
Technical University of Darmstadt

{timour.igamberdiev, ivan.habernal}@tu-darmstadt.de
www.trusthlt.org

Abstract

Privatized text rewriting with local differen-
tial privacy (LDP) is a recent approach that
enables sharing of sensitive textual documents
while formally guaranteeing privacy protection
to individuals. However, existing systems face
several issues, such as formal mathematical
flaws, unrealistic privacy guarantees, privati-
zation of only individual words, as well as a
lack of transparency and reproducibility. In this
paper, we propose a new system ‘DP-BART’
that largely outperforms existing LDP systems.
Our approach uses a novel clipping method, it-
erative pruning, and further training of internal
representations which drastically reduces the
amount of noise required for DP guarantees.
We run experiments on five textual datasets of
varying sizes, rewriting them at different pri-
vacy guarantees and evaluating the rewritten
texts on downstream text classification tasks.
Finally, we thoroughly discuss the privatized
text rewriting approach and its limitations, in-
cluding the problem of the strict text adjacency
constraint in the LDP paradigm that leads to
the high noise requirement.1

1 Introduction

Protection of privacy is increasingly gaining atten-
tion in today’s world, both among the general pub-
lic and within the fields of machine learning and
NLP. One very common methodology for apply-
ing privacy to an algorithm is Differential Privacy
(DP) (Dwork and Roth, 2013). In simple terms,
DP provides a formal guarantee that any individ-
ual’s contribution to a query applied on a dataset is
bounded. In other words, no individual can influ-
ence this query ‘too much’.

One particular method of applying DP to the
domain of NLP is differentially private text rewrit-
ing, in which an entire document is rewritten with

1Our code is available at https://github.com/
trusthlt/dp-bart-private-rewriting.

DP guarantees by perturbing the original text rep-
resentations. For instance, given a document “I
would like to fly from Denver to Los Angeles this
Thursday”, the system may rewrite it as “Show me
flights to cities in California this week”. If one is
training a model on intent classification for airline
travel inquiry systems, either document would be a
useful data point. In this way, we avoid using the
original text that has uniquely identifiable qualities
of a specific author, and instead create a privatized
‘synthetic’ example. This is in fact a form of local
differential privacy (LDP), which is a stronger form
of DP that is not limited to a specific dataset.

The benefits of an LDP text rewriting system
are immense, where the output privatized dataset
can be used for any downstream analysis. We also
avoid the problem of having to manually determine
what specific tokens in a document are private, ap-
plying LDP to the entire document. However, there
is a significant difficulty in creating such a sys-
tem, with a lot of perturbation required to achieve
any reasonable privacy guarantees, leading to poor
downstream utility. In addition, there are several
issues in existing DP text rewriting systems, such
as formal flaws having been discovered in their
methodology (Habernal, 2021), older types of mod-
els used (e.g. single-layer LSTM, as in Krishna
et al. (2021)), high privacy budgets, as well as a
lack of transparency in the claimed privacy guaran-
tees, outlined in Igamberdiev et al. (2022).

To address these issues, we propose DP-BART,
a DP text rewriting system under the local DP
paradigm that improves upon existing baselines and
consists of several techniques that can be directly
applied to a pre-trained BART model (Lewis et al.,
2020), without having to design and train such a
model from scratch. Despite being a large trans-
former architecture, it can be easily used for data
privatization, not requiring many resources. Our
methodology consists of a novel clipping method
for the BART model’s internal encoder representa-

13914

www.trusthlt.org
https://github.com/trusthlt/dp-bart-private-rewriting
https://github.com/trusthlt/dp-bart-private-rewriting

tions, as well as a pruning and additional training
mechanism that reduces the amount of DP noise
that needs to be added to the data during the priva-
tization process.

We summarize our contributions as follows.
First, we present our DP-BART model and its re-
lated methodologies, aimed at reducing DP noise
and reaching a better privacy/utility trade-off. For
comparison, we use a reimplementation of the cur-
rent primary baseline for this task, the ADePT
model. Second, we run experiments to investigate
the privacy/utility trade-off of these models, using
five unique datasets that gradually increase in size,
evaluating rewritten texts on downstream text clas-
sification tasks. Finally, we thoroughly examine
the feasibility of the LDP text rewriting setting,
investigating issues of the high noise requirement
due to the strict text adjacency constraint, trade-offs
between privacy and dataset size, what exactly is
the object of privatization, required computational
resources, as well as limitations of the approach as
a whole and possible alternatives.

2 Related Work

We present a theoretical background on differential
privacy, the BART model, and pruning for neural
networks in Appendix A.

Applying differential privacy to neural network
training and model publishing has converged to us-
ing a mainstream method, namely DP-SGD (Abadi
et al., 2016). However, the task of text privatization
is still broadly unexplored, with many unanswered
questions remaining, such as dealing with the un-
structured nature of text and explainability of the
privacy guarantees provided to textual data (Kly-
menko et al., 2022). Mattern et al. (2022a) explored
text rewriting with global differential privacy, sam-
pling from a generative language model trained
with DP.

There are only a few approaches that directly
tackle the problem of differentially private text
rewriting with LDP. Krishna et al. (2021) developed
the ADePT system, which is an RNN-based text au-
toencoder that incorporates DP noise to its encoder
output hidden state. As described by Habernal
(2021), ADePT had a formal error in calculating
the Laplace noise scale, which resulted in it violat-
ing differential privacy.

A more recent text rewriting system is DP-VAE
(Weggenmann et al., 2022), which added con-
straints to the vanilla VAE model latent space

(Kingma and Welling, 2014) to obtain a bounded
sensitivity on its mean and variance parameters.
Despite the high difficulties of the task, the pa-
per reports surprisingly high performance for high
privacy standards. Since their experimental descrip-
tion lacks some key details and the code base is not
public, we cannot reproduce their approach.

In addition, there are a number of word-level DP
systems (Feyisetan et al., 2019; Xu et al., 2020; Bo
et al., 2021), where individual word embeddings
are perturbed with DP, with new words then sam-
pled close to these privatized vectors. As Mattern
et al. (2022b) point out, there are several short-
comings of such approaches, including a lack of
obfuscating syntactic information and the inability
to provide proper anonymization. In essence, these
methods do not privatize a full utterance, but only
single words.

3 Methods

We outline this section as follows. First, we briefly
describe the baseline method we use, being a modi-
fied version of the ADePT system by Krishna et al.
(2021). Next, we investigate two main issues with
applying a local DP system such as ADePT to
a transformer model, namely extreme sensitivity
and computational infeasibility, described in Sec-
tions 3.2.1 and 3.2.2, respectively.

We then demonstrate several novel mechanisms
which tackle these issues and provide numerous
benefits in the privacy/utility trade-off for the lo-
cal DP setting. Section 3.3 describes the clipping
by value module, with an additional analysis on
determining optimal settings for it provided in Ap-
pendix B. Sections 3.4 and 3.5 then describe the
neuron-based pruning methods which significantly
reduce the amount of noise that needs to be added
to the model for a given privacy budget and in-
crease model robustness to noise through further
noisy training. Low-level specifics on the pruning
methods are further provided in Appendix F.

3.1 Baseline (ADePT)
ADePT starts out with a standard autoencoder ar-
chitecture. Given an input document x, an encoder
function ENC calculates a latent vector represen-
tation z. This representation is then sent to a de-
coder function DEC, which reconstructs the orig-
inal text ŷ. ADePT uses a single-layer, unidirec-
tional LSTM for both the encoder and decoder.

z = ENC(x) and ŷ = DEC(z) (1)

13915

To incorporate differential privacy into this
model, the unbounded latent vector z ∈ Rn (where
n is the size of the autoencoder’s hidden dimen-
sion) is bounded by its norm and the clipping con-
stant C ∈ R. Laplace or Gaussian noise (η) is
then added to the resulting vector, from which the
decoder reconstructs the original sequence, ŷ. For
comparison with our primary methodologies below,
we refer to this as the clipping by norm module,
outlined in equation 2.

z′ = z ·min

(
1,

C

||z||2

)
+ η (2)

In our experiments, we make three adjustments
to this system. First, we fix a theoretical issue in
the sensitivity calculation for equation 2, outlined
in Habernal (2021). Instead of using the sensitivity
of 2C for the Laplace noise scale, outlined in The-
orem 1 of Krishna et al. (2021), we instead use the
corrected sensitivity of 2C

√
n from Theorem 5.1

of Habernal (2021). Second, the ‘classical’ Gaus-
sian mechanism guarantees privacy only for ε < 1
(Dwork and Roth, 2013, p. 262). We therefore
utilize the Analytic Gaussian mechanism (Balle
and Wang, 2018) instead, which allows us to use
ε ≥ 1. Finally, we fix an issue with the pre-training
procedure of the model. In Krishna et al. (2021),
ADePT was pre-trained on the downstream datasets
with clipping, but without the added DP noise from
equation 2. Igamberdiev et al. (2022) demonstrated
that this results in significant memorization by the
model of the input documents, even after adding
DP noise during the rewriting process. In order
to remedy this, we therefore pre-train the autoen-
coder model on a public corpus, unrelated to the
downstream datasets.

3.2 Applying LDP to Transformers

There are two main issues in applying a transformer
model to a local DP setting similar to ADePT, out-
lined below.

3.2.1 Using LDP in pre-trained transformers
suffers from extreme sensitivity

First, we need a significantly larger amount of noise
to be added to the model, due to the increased size
of the encoder output vector. Due to the cross-
attention mechanism typical of transformer models,
the full output vector for the BART encoder is of
size dtok × l, where dtok is the hidden size for a
particular token, while l is the sequence length. For

the smaller bart-base model, using a short se-
quence length of 20, this results in a dimensionality
of 768 × 20 = 15360. In comparison, ADePT’s
encoder output vector dimensionality is only 1024
in our configuration.

3.2.2 High requirement of computational
resources for pre-training

We experimented with clipping by norm for BART,
similarly to ADePT, but found that it destroys any
useful representations of the model (even prior to
adding the DP noise). Additional pre-training of
BART that would incorporate clipping by norm
turned out to be ineffective.

The remaining option to learn a model with clip-
ping by norm would be to pre-train the model from
scratch. Unlike the small ADePT model, which is
a unidirectional, single-layer LSTM, pre-training
a BART transformer from scratch is computation-
ally infeasible on an academic budget. While the
details of BART’s computational requirements are
not described in Lewis et al. (2020), we can es-
timate this for the relatively small bart-base
model of 139M parameters that was released by the
original authors,2 by comparison with other similar-
sized models. For instance, the BERT model (De-
vlin et al., 2019), with less parameters (110M for
bert-base), was pre-trained for 4 days on up
to 16 TPUs, as described on the authors’ Github
repository.3

3.3 DP-BART-CLV (Clipping by Value)
To address the issues with clipping by norm, we
developed the DP-BART-CLV model, shown in
Figure 1. We analyzed the internal representations
of a pre-trained BART model’s encoder output vec-
tor values, using a public dataset. We found that
these are mostly bounded within a couple of stan-
dard deviations from their mean. We present this
analysis in detail in Appendix B.

To avoid significantly altering these representa-
tions, we can therefore use clipping by value (CLV),
as in equation 3.

z̄i = min(max(zi, Cmin), Cmax) (3)

for any dimension i in the encoder output vec-
tor z, a set minimum threshold Cmin and maxi-
mum threshold Cmax. The bulk of values centered

2https://github.com/facebookresearch/
fairseq/tree/main/examples/bart

3https://github.com/google-research/
bert

13916

https://github.com/facebookresearch/fairseq/tree/main/examples/bart
https://github.com/facebookresearch/fairseq/tree/main/examples/bart
https://github.com/google-research/bert
https://github.com/google-research/bert

Encoder Outputs

Private Encoder
Outputs

Input Doc.

Output Doc.

Encoder Decoder

Private

Public

Runs locally for each
individual

Figure 1: DP-BART-CLV

around the mean of z are thus left the same, without
being rescaled as in equation 2. Since these values
were also found to be symmetrically distributed,
we modify equation 3 to set C = Cmax = −Cmin,
as in equation 4.

z̄i = min(max(zi,−C), C) (4)

The pipeline for DP-BART-CLV is as follows.
We first initialize a BART model using a pre-trained
checkpoint, where pre-training was again done on
a public dataset, separate from the downstream
datasets that are to be privatized.

For a given document, we put it through the
encoder of the model at inference time, obtaining
the encoder output vector z, as in equation 5.

z = ENC(x) (5)

where x is the input sequence and ENC is the
encoder of the BART model. While the BART
model outputs the encoder’s last hidden state as
z ∈ Rl×dtok for each mini-batch, we flatten this
vector to be z ∈ Rn, where n = l · dtok. Clipping
is then performed as in equation 6,

z̄ = CLIP(z) (6)

where CLIP is carried out for every dimension of
the vector, according to equation 4.

With this clipping mechanism in place, we can
now calculate its sensitivity, in order to determine
the scale of noise to add in the DP setting. This is
outlined in Theorems 3.1 and 3.2 below.

Theorem 3.1. Let f : Rn → Rn be a function
as in equation 6. The ℓ1 sensitivity ∆1f of this

function is calculated as in equation 7, where C ∈
R : C > 0 is the clipping constant and n ∈ N is
the dimensionality of the vector.

∆1f = 2Cn (7)

Proof. See Appendix C.

Theorem 3.2. Let f : Rn → Rn be a function
as in equation 6. The ℓ2 sensitivity ∆2f of this
function is calculated as in equation 8, where C ∈
R : C > 0 is the clipping constant and n ∈ N is
the dimensionality of the vector.

∆2f = 2C
√
n (8)

Proof. See Appendix D.

We then add noise to this clipped vector, as in
equation 9.

ż = z̄ + (Y1, . . . , Yn) (9)

where each Yi is drawn i.i.d. from Lap(∆1
ε) for

the Laplace mechanism (Dwork and Roth, 2013)
or N (0, (α∆2√

2ε
)2) for the Analytic Gaussian mecha-

nism, where α is calculated according to Algorithm
1 of Balle and Wang (2018).

Decoding is then performed auto-regressively
(e.g. using beam search), as usual, using this per-
turbed ż encoder output vector, instead of the origi-
nal z vector, as in equation 10.

ŷ = DEC(ż) (10)

where ŷ is the model’s output prediction of the
reconstructed input sequence x. By standard argu-
ments, the DP-BART-CLV model satisfies (ε, 0)-
DP for the Laplace mechanism and (ε, δ)-DP for
the Analytic Gaussian mechanism, as outlined in
equation 9 (Dwork and Roth, 2013; Balle and
Wang, 2018).

3.4 DP-BART-PR (Pruning)
We develop the DP-BART-PR model in order to
address the remaining issue of dimensionality, out-
lined in Section 3.2.1. The DP-BART-CLV model,
while being resource-efficient, still has the issue
of a large dimensionality for the encoder output
vectors, since in equations 7 and 8, the sensitivity
is multiplied by a factor of n and

√
n, respectively,

which in turn results in a larger noise scale.
DP-BART-PR, addressing both the resource and

dimensionality issues, is an extension to the above

13917

DP-BART-CLV, with an additional iterative prun-
ing/training mechanism applied to it. The proce-
dure is outlined in Figure 2 and Algorithm 1 of
Appendix E.

Prune and train further

Prune and train further

Figure 2: Pruning and re-training procedure for the DP-
BART-PR model, illustrated for one document. Each ith

neuron from a set of indices is set to 0 for all tokens of
the encoder output vectors z ∈ Rl×dtok . These neuron
indices are the same for any document. This process is
repeated iteratively until performance starts to degrade.

As for DP-BART-CLV, we first load a pre-
trained BART model checkpoint. Each input token
will have an encoder output representation of di-
mensionality dtok. For every token in the sequence,
we prune a certain percentage of these neurons by
setting them to 0. Importantly, these pruned neu-
rons are the same for every single input document.
The criteria for selecting these pruned neurons is
discussed in more detail in Appendix F.

Following this pruning step, we train the model
for k iterations to compensate for possible lost per-
formance from pruning. This step is performed on
an external public dataset, unrelated to any down-
stream texts that are to be privatized. During this
process, we also clip each dimension of the BART
encoder output vector zi according to equation 4, to
encourage representations to be constrained within
the ranges −C and C to reduce potential negative
performance impacts of clipping during the rewrit-
ing phase.

We note that only a few data points are necessary

for this additional training step, maintaining the
low-resource setting, outlined in Appendix I. We
then continue this two-step process iteratively, until
a desired dimensionality reduction of the encoder
output vector is reached. At the end of this process,
the resulting model weights are frozen and the final
pruned indices of the encoder output vector z are
saved. The model is then used for text rewriting
at inference time, just like in DP-BART-CLV, but
with the additional pruning step, using the saved
indices.

As a result of this process, we can significantly
reduce n in Equations 7 and 8, which in turn re-
duces the resulting noise scale used in equation 9.
With less noise added to the encoder output vectors
for any given ε value, we can thus expect a better
privacy/utility trade-off.

This pruning procedure can thus be seen as a
privacy/utility tuning knob. With more pruning, we
reduce the size of n, therefore requiring less added
noise for a given ε value in the DP setting. At the
same time, more pruning reduces the model’s ex-
pressivity with less dimensions, which will result
in an inevitable performance drop after reaching a
certain pruning threshold. We noticed that pruning
a few dimensions (e.g. 25% of neurons) can recover
basically all of the performance of the model with
some additional training steps, but after a certain
point this starts to degrade. The ‘sweet spot’ we
found is at approximately 75% of neurons. Ad-
ditional discussions on these points can be found
in Appendix F. We would like to stress again that
these pruning adjustments are made just once and
using public data only, after which the final model
can be used locally by any individual for their own
data privatization.

3.4.1 Proof that DP-BART-PR is differentially
private

Theorem 3.3. The DP-BART-PR model, combin-
ing Algorithm 1 and the above DP-BART-CLV pro-
cedure, summarized in equation 9, satisfies (ε, 0)-
DP when using the Laplace mechanism and (ε, δ)-
DP when using the Analytic Gaussian mechanism.

Proof. See Appendix G.

3.5 DP-BART-PR+

We further augment the above DP-BART-PR
model by incorporating additional training steps
with added DP noise. This model follows the same
procedure for iterative pruning and additional train-

13918

ing, as outlined in algorithm 1, but we add further
training iterations on the pruned model with added
DP noise to the clipped encoder output represen-
tations, as in equation 9. For example, using the
Analytic Gaussian mechanism at ε = 500, at each
iteration we clip the encoder output vectors z from
equation 5 and add the appropriate amount of Gaus-
sian noise based on the sensitivity from equation 8.

The idea behind this additional training is to help
the model to better decode from the noisified en-
coder representations. As with DP-BART-PR, for
DP-BART-PR+ we perform these additional train-
ing iterations on a public dataset, unrelated to the
downstream datasets for privatized text rewriting.
A separate model is prepared for each individual
privacy budget ε.

4 Experiments

4.1 Datasets

We perform experiments on five English-language
textual datasets, each gradually increasing in size
(Table 1). For comparison with Krishna et al.
(2021), we use ATIS (Dahl et al., 1994) and Snips
(Coucke et al., 2018) as our ‘small’ datasets, with
the task of multi-class intent classification. We
use the same train/validation/test split as in Goo
et al. (2018). For a medium-sized dataset, we use
the popular IMDb dataset (Maas et al., 2011), on
the binary classification task of movie review senti-
ment analysis. For this, as well as the following two
datasets, we use a validation partition by randomly
selecting 20% of the training set.

For a large dataset, we use the dataset from
Gräßer et al. (2018), which is a collection of drug
reviews from the website Drugs.com, also with the
task of binary sentiment analysis as in Shiju and
He (2022). This dataset, although publicly avail-
able, closely simulates a sensitive dataset in need
of privacy protection, with detailed descriptions by
users of their medical conditions and experiences
with different treatments.

Our final dataset is the much larger Amazon Cus-
tomer Reviews dataset (He and McAuley, 2016), of
which we take a 2M subset of reviews from various
categories (e.g. electronics, office products), from
the full 144M. As with Drugs.com, we modify the
original five-star sentiment score to a binary clas-
sification task, with four or more stars being the
‘positive’ class, while the rest are ‘negative’. We
refer to Appendix H for more details.

Dataset Classes # Trn.+Vld. # Test
ATIS 26 4,978 893
Snips 7 13,774 700
IMDb 2 25,000 25,000
Drugs.com 2 161,297 53,766
Amazon 2 1,904,197 211,605

Table 1: Dataset statistics. Trn.: Train, Vld.: Validation.
Size represents number of documents.

4.2 Experimental Setup

We have three main experimental configurations.
The first is the original setting, where we run
experiments on our downstream datasets without
any rewriting or DP. The second configuration is
rewrite-no-dp, where we utilize each of the four
models outlined in Section 3 at ε = ∞ (ADePT,
DP-BART-CLV, DP-BART-PR, DP-BART-PR+).
Finally, the third and main configuration is rewrite-
dp, where we compare the above four models, this
time at various privacy settings (ε ∈ [10, 2500],
Laplace and Analytic Gaussian mechanisms).

For rewrite-no-dp and rewrite-dp, our experi-
mental pipeline consists of the following four steps,
depending on the specific model used:
Pre-training: The model is pre-trained on a large

public corpus. For ADePT, we use 50% of the
Openwebtext corpus (Gokaslan and Cohen,
2019). For all our BART experiments, we
load a pre-trained facebook/bart-base
model.4

Further training: Only for DP-BART-PR and DP-
BART-PR+, again performed using the Open-
webtext corpus. It helps the model adjust to
pruning and DP noise, respectively (as out-
lined in Sections 3.4 and 3.5). More details on
the amount of further training in Appendix I.

Rewriting: We take a pre-trained model and
rewrite one of the downstream datasets.

Downstream: We take the rewritten dataset (train-
ing and validation partitions) and run down-
stream experiments on it using a pre-trained
BERT model with a classification head on top.
We use the rewritten validation set for hyperpa-
rameter optimization (see Appendix I) and the
original test set for final evaluations. See Ap-
pendix J for details on the downstream model.

In the original setting, we use the same down-
stream model as above, using the original datasets

4Available from https://huggingface.co/
facebook/bart-base

13919

https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base

instead of the rewritten ones.

Evaluation We perform two types of evaluations
for the above experimental settings: intrinsic and
extrinsic. For our extrinsic evaluation we measure
the test F1 scores on the downstream task perfor-
mance. This is the primary utility metric of the
rewritten texts, with privacy correspondingly quan-
tified with the ε value. We expect that even if a
text may be rewritten to look very different from
the original input, it could still have enough down-
stream task-specific information remaining to prop-
erly train a model on this task (e.g. the sentiment
of a document in the case of sentiment analysis).
This is in fact the ‘sweet spot’ we are looking for,
removing identifying elements of the author, but
still retaining some key features from the input for
good downstream performance.

We also measure BLEU scores (Papineni et al.,
2002) for our intrinsic evaluation, discussed in
more detail in Appendix K.

5 Results

Figure 3 shows our downstream test F1 results for
all datasets, at varying values of ε. We report re-
sults for the Analytic Gaussian mechanism, which
nearly always outperformed those of the Laplace
mechanism. We present results in tabular form
with mean and standard deviations in Appendix K.
Additionally, we present sample rewritten texts in
Appendix L. We outline the main patterns as fol-
lows.

DP-BART-PR+ performs best DP-BART-PR+
reaches the best privacy/utility trade-off for the ma-
jority of datasets, having the highest scores at the
lower ε values. DP-BART-PR results are second-
best for most datasets, performing better than DP-
BART-CLV and ADePT, which are low for the
majority of configurations. The overall results hi-
erarchy can be clearly seen in the Snips dataset,
where at ε = 500, DP-BART-PR+ reaches F1 0.65,
DP-BART-PR at 0.39, while both DP-BART-CLV
and ADePT are below F1 0.15.

Original vs. rewritten Results for the origi-
nal setting are generally on-par with those of the
rewrite-no-dp setting. For instance, Snips original
F1 is 0.98, and ε =∞ with rewriting is also at F1

of 0.98 for DP-BART-PR, being very similar for the
other three models. One exception to this is IMDb,
which has a drop from original F1 0.86 to 0.72 for
all models. This can be explained by the fact that

the original settings use longer sequence lengths,
while both rewrite-no-dp and rewrite-dp settings
are limited to a sequence length of 20. This is not a
problem for datasets such as ATIS and Snips, since
their documents are generally very short, mostly
limited to brief user inquiries. For a dataset such as
IMDb, however, which consists of detailed reviews
by individuals, limiting the sequence length results
in a loss of valuable information.

Epsilon vs. dataset size Regardless of dataset
size, we can see a drop in results for all models
as ε is decreased. With the models incorporating
pruning, this drop appears at later ε values, such
as DP-BART-PR+ on the Amazon dataset moving
down from F1 0.82 at ε = 250 to F1 0.33 at ε =
100, and DP-BART-PR from F1 0.79 at ε = 500
to F1 0.33 at ε = 250. A similar pattern can be
seen for the Snips dataset, despite being far smaller
than Amazon, while the Drugs.com dataset shows
low results throughout, for all model types. The
smallest dataset, ATIS, also performs poorly, which
can be explained by the large number of classes
and few data points for learning the task in the
noisy setting. We can generally see that a larger
dataset size does not necessarily mean better results
at lower ε values, although the significantly larger
Amazon dataset does show the best results.

6 Discussion

Reducing noise for text rewriting with LDP
We have shown that it is possible to reduce the
amount of noise in the LDP setting of privatized
rewriting, in order to obtain more useful rewritten
texts for downstream tasks. To compare DP-BART-
CLV vs. DP-BART-PR, we can examine the result-
ing ℓ2 sensitivity from equation 8 (∆2f = 2C

√
n).

Setting sequence length l = 20 and C = 0.1, as
in our experiments, without pruning we have a di-
mensionality of n = 768 · 20 = 15360, hence
∆2f = 2 ·0.1 ·

√
15360 ≈ 24.79. With pruning we

are able to remove 76.30% of those n neurons, with
only n = 182 ·20 = 3640 remaining. The ℓ2 sensi-
tivity thus becomes ∆2f = 2·0.1·

√
3640 ≈ 12.07.

Plugging this into the Analytic Gaussian mecha-
nism’s noise scale calculation from Balle and Wang
(2018), with δ = 10−5 and ε = 500, we have
σ2 = 0.8958 without pruning and σ2 = 0.4362
with pruning. We can therefore see that, with DP-
BART-PR, we are able to reduce the noise scale
by more than half.

13920

10 50 100 250 500 750 1K 2.5K ∞
Privacy budget ε

0.2

0.4

0.6

0.8

1.0

T
es

t
F

1
ATIS

Original

ADePT

DP-BART-CLV

DP-BART-PR

DP-BART-PR+

10 50 100 250 500 750 1K 2.5K ∞
Privacy budget ε

Snips

10 50 100 250 500 750 1K 2.5K ∞
Privacy budget ε

IMDb

10 50 100 250 500 750 1K 2.5K ∞
Privacy budget ε

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
F

1

Drugs.com

10 50 100 250 500 750 1K 2.5K ∞
Privacy budget ε

Amazon

Figure 3: Downstream test F1 results (macro-averaged) for each dataset, using the four model types. Lower ε
corresponds to better privacy. Both original and rewrite-no-dp results can be seen on the right of each graph at
ε =∞. The rest of the results represent the rewrite-dp setting at different ε values.

Pre-training and computational resources Ul-
timately, a very effective way to prepare a model
for privatized text rewriting would be to pre-train it
from scratch, being fully in control of hyperparam-
eters such as the dimensionality n of the encoder
output vectors z, which determines the ℓ1 and ℓ2
sensitivities from equations 7 and 8, respectively.
In addition, the whole model could be pre-trained
with added noise and clipping mechanisms, poten-
tially being even more robust than our approach
in DP-BART-PR+, where we incorporate further
noisy training. We noticed for DP-BART-PR+ that
the lower the ε value we use, the more additional
training iterations the model needs to properly re-
duce the validation loss.

This demonstrates that, also in the setting of
pre-training from scratch, we would need to train
for more iterations in order to reach lower ε val-
ues. This can pose serious challenges, however, for
reasons of computational demand discussed in Sec-
tion 3.2.2. DP-BART-PR+ can therefore be seen as
a sweet spot approach, where we only need a few
additional training iterations and can still achieve a
significant dimensionality reduction through prun-
ing, as well as additional robustness to noise.

What is being privatized It is very important to
be clear on exactly what information is being pri-
vatized when performing text rewriting with LDP.
Since we are working with DP at the document
level, the entire document is a ‘data point’, hence

any choice and combination of words for a given
sequence would be a unique identifier. We thus
avoid the problem of having to choose what spe-
cific tokens are ‘private’ within the document. This
is crucial, since stylistic aspects of an author can be
very abstract, with subtle syntactic and vocabulary
choices.

Another significant benefit of such an approach,
is that we are not limiting ourselves to any spe-
cific downstream analysis (e.g. sentiment of a doc-
ument), being task agnostic. However, this also
means that, for any given document, any other doc-
ument is neighboring, since we are in the LDP
setting. This leads us to a serious discussion on the
limitations of such an approach in Section 8.

An additional question arises of whether one
dataset may have multiple documents associated
with one individual. There are several ways to go
about dealing with this. One standard approach
in differential privacy is to linearly scale the ε pa-
rameter. Thus, if there are k documents associated
with a given individual, then a privacy budget of
kε is accounted in total (Dwork and Roth, 2013).
Another option would be to simply append all texts
associated with one individual into a single ‘docu-
ment’, rewriting this using just a single ε privacy
budget.

13921

7 Conclusion

We have proposed DP-BART, a novel methodol-
ogy for LDP-based privatized text rewriting, which
outperforms existing methods. We have demon-
strated our method’s privacy/utility trade-off, the
relations between the privacy budget and dataset
size, and discussed limitations of the privatized text
rewriting approach as a whole. Future research di-
rections include utilizing large-scale pre-training to
potentially reach a better privacy/utility trade-off,
as well as investigating domain specific text rewrit-
ing for relaxing the strict requirements of the LDP
approach.

8 Limitations

Domain of public training texts In preparing
the DP-BART models, it is important to take into
account the domain of the public data that is used to
(1) pre-train the original BART model, and (2) per-
form additional training iterations (DP-BART-PR
and DP-BART-PR+). This will ultimately have an
impact on the model’s effectiveness for text privati-
zation, depending on the nature of the downstream
texts. For example, if this training data is restricted
to news articles, then there may be limited perfor-
mance for rewriting texts that are further from this
domain, such as internet comments. Another ob-
vious limitation is the language of the public data.
If the model is trained on a monolingual English
corpus, then it would not be possible to use it for
rewriting texts from other languages.

The public data used for our experiments con-
sists of news, web text, stories and books (Lewis
et al., 2020; Gokaslan and Cohen, 2019). We ex-
pect that expanding this to include more data and
more varied domains will lead to better perfor-
mance in a greater diversity of texts and down-
stream tasks.

LDP for text rewriting For every output doc-
ument, any two inputs, no matter how similar or
distinct, are considered neighboring. If we have
a small sequence length of 20 tokens, with a rel-
atively small vocabulary of 1000 words, then the
total number of possible combinations is 100020,
which is 1060! While we compress these docu-
ments into a latent vector with a limited range and
dimensionality, the strict adjacency constraints are
still present. We can therefore expect an inevitable
utility drop when using more reasonable ε values
(e.g. ε = 1).

With more sophisticated architectures, we have
shown that it is possible to push this ε value down
to some extent. However, our lowest ε is still too
high to carry over into real-world applications of
privacy preservation. As outlined by Hsu et al.
(2014), values of ε for different applications in the
DP literature can range from 0.01 to 10. Choosing
the right ε value depends on the specific queries
that are computed and the nature of the data (Lee
and Clifton, 2011).

For our case, the value of ε can be interpreted in
the following manner. The ε-LDP mechanism that
we are applying to our data makes any two input
texts rewritten to be indistinguishable up to a factor
of eε. More formally, for any two input texts x and
y to our LDP modelM:

Pr[M(x) = z]

Pr[M(y) = z]
≤ eε, (11)

where z is a given output text rewritten by the
model.

This means that, when we set ε = 250, then
any two texts will remain indistinguishable up to
a factor of e250. This is a very weak bound and,
while it could provide some empirical privacy guar-
antees, on a theoretical level the privacy protection
is not very strong. We can also see how this bound
becomes exponentially stronger, as we decrease ε.

It may therefore make sense to take a slightly
less strict approach to text adjacency, for instance
moving into domain specific text rewriting. For ex-
ample, text rewriting could be carried out for a spe-
cific dataset, with the notion of adjacency restricted
to any two individuals within that dataset, hence
requiring much less perturbation. The strength of
the privacy guarantee, in this case, would then be
very dependent on the size of the dataset (Mehner
et al., 2021).

Acknowledgements

This project was supported by the National Re-
search Center for Applied Cybersecurity ATHENE
and by the PrivaLingo research grant (Hessisches
Ministerium des Innern und für Sport). The in-
dependent research group TrustHLT is supported
by the Hessian Ministry of Higher Education, Re-
search, Science and the Arts. Thanks to Lena Held
and Luke Bates for their helpful feedback and to
Antti Honkela for very helpful hints regarding the
limitations of the ‘classical’ Gaussian mechanism.

13922

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308–318.

Borja Balle and Yu-Xiang Wang. 2018. Improving the
gaussian mechanism for differential privacy: Ana-
lytical calibration and optimal denoising. In Inter-
national Conference on Machine Learning, pages
394–403. PMLR.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state
of neural network pruning? Proceedings of machine
learning and systems, 2:129–146.

Haohan Bo, Steven H. H. Ding, Benjamin C. M. Fung,
and Farkhund Iqbal. 2021. ER-AE: Differentially
private text generation for authorship anonymization.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3997–4007, Online. Association for Computa-
tional Linguistics.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of bleu in ma-
chine translation research. In 11th conference of
the european chapter of the association for computa-
tional linguistics, pages 249–256.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Deborah A Dahl, Madeleine Bates, Michael K Brown,
William M Fisher, Kate Hunicke-Smith, David S
Pallett, Christine Pao, Alexander Rudnicky, and Eliz-
abeth Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. 2006a. Our data,
ourselves: Privacy via distributed noise generation.
In Annual international conference on the theory and

applications of cryptographic techniques, pages 486–
503. Springer.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006b. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography
conference, pages 265–284. Springer.

Cynthia Dwork and Aaron Roth. 2013. The Algorithmic
Foundations of Differential Privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3-
4):211–407.

Oluwaseyi Feyisetan, Tom Diethe, and Thomas Drake.
2019. Leveraging hierarchical representations for
preserving privacy and utility in text. In 2019 IEEE
International Conference on Data Mining (ICDM),
pages 210–219. IEEE.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext
corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung
Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 753–757.

Felix Gräßer, Surya Kallumadi, Hagen Malberg, and
Sebastian Zaunseder. 2018. Aspect-based sentiment
analysis of drug reviews applying cross-domain and
cross-data learning. In Proceedings of the 2018 In-
ternational Conference on Digital Health, pages 121–
125.

Ivan Habernal. 2021. When differential privacy meets
NLP: The devil is in the detail. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1522–1528, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ivan Habernal. 2022. How reparametrization trick broke
differentially-private text representation learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 771–777, Dublin, Ireland. As-
sociation for Computational Linguistics.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural
networks, pages 293–299. IEEE.

13923

https://doi.org/10.18653/v1/2021.naacl-main.314
https://doi.org/10.18653/v1/2021.naacl-main.314
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/2021.emnlp-main.114
https://doi.org/10.18653/v1/2021.emnlp-main.114
https://doi.org/10.18653/v1/2022.acl-short.87
https://doi.org/10.18653/v1/2022.acl-short.87

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Proceedings of
the 25th international conference on world wide web,
pages 507–517.

Justin Hsu, Marco Gaboardi, Andreas Haeberlen, San-
jeev Khanna, Arjun Narayan, Benjamin C Pierce,
and Aaron Roth. 2014. Differential privacy: An
economic method for choosing epsilon. In 2014
IEEE 27th Computer Security Foundations Sympo-
sium, pages 398–410. IEEE.

Timour Igamberdiev, Thomas Arnold, and Ivan Haber-
nal. 2022. DP-rewrite: Towards reproducibility and
transparency in differentially private text rewriting.
In Proceedings of the 29th International Conference
on Computational Linguistics, pages 2927–2933,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Timour Igamberdiev and Ivan Habernal. 2022. Privacy-
Preserving Graph Convolutional Networks for Text
Classification. In Proceedings of the Language Re-
sources and Evaluation Conference, pages 338–350,
Marseille, France. European Language Resources
Association.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. 2nd International Con-
ference on Learning Representations, ICLR.

Oleksandra Klymenko, Stephen Meisenbacher, and Flo-
rian Matthes. 2022. Differential privacy in natural
language processing the story so far. In Proceedings
of the Fourth Workshop on Privacy in Natural Lan-
guage Processing, pages 1–11, Seattle, United States.
Association for Computational Linguistics.

Satyapriya Krishna, Rahul Gupta, and Christophe
Dupuy. 2021. ADePT: Auto-encoder based differ-
entially private text transformation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2435–2439, Online. Association for
Computational Linguistics.

John K Kruschke and Javier R Movellan. 1991. Benefits
of gain: Speeded learning and minimal hidden layers
in back-propagation networks. IEEE Transactions
on systems, Man, and Cybernetics, 21(1):273–280.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Jaewoo Lee and Chris Clifton. 2011. How much is
enough? choosing ε for differential privacy. In Inter-
national Conference on Information Security, pages
325–340. Springer.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142–150.

Justus Mattern, Zhijing Jin, Benjamin Weggenmann,
Bernhard Schoelkopf, and Mrinmaya Sachan. 2022a.
Differentially private language models for secure data
sharing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 4860–4873, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Justus Mattern, Benjamin Weggenmann, and Florian
Kerschbaum. 2022b. The limits of word level dif-
ferential privacy. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 867–
881.

Luise Mehner, Saskia Nuñez von Voigt, and Florian
Tschorsch. 2021. Towards explaining epsilon: A
worst-case study of differential privacy risks. In 2021
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 328–331. IEEE.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318. PMLR.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Manuel Senge, Timour Igamberdiev, and Ivan Habernal.
2022. One size does not fit all: Investigating strate-
gies for differentially-private learning across NLP
tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
Abu Dhabi, UAE.

13924

https://aclanthology.org/2022.coling-1.258
https://aclanthology.org/2022.coling-1.258
https://aclanthology.org/2022.lrec-1.36
https://aclanthology.org/2022.lrec-1.36
https://aclanthology.org/2022.lrec-1.36
https://doi.org/10.18653/v1/2022.privatenlp-1.1
https://doi.org/10.18653/v1/2022.privatenlp-1.1
https://doi.org/10.18653/v1/2021.eacl-main.207
https://doi.org/10.18653/v1/2021.eacl-main.207
https://aclanthology.org/2022.emnlp-main.323
https://aclanthology.org/2022.emnlp-main.323
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Akhil Shiju and Zhe He. 2022. Classifying drug ratings
using user reviews with transformer-based language
models. In 2022 IEEE 10th International Conference
on Healthcare Informatics (ICHI), pages 163–169.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Teng Wang, Xuefeng Zhang, Jingyu Feng, and Xinyu
Yang. 2020. A comprehensive survey on local dif-
ferential privacy toward data statistics and analysis.
Sensors, 20(24):7030.

Benjamin Weggenmann, Valentin Rublack, Michael An-
drejczuk, Justus Mattern, and Florian Kerschbaum.
2022. DP-VAE: Human-Readable Text Anonymiza-
tion for Online Reviews with Differentially Private
Variational Autoencoders. In Proceedings of the
ACM Web Conference 2022, pages 721–731, Virtual
Event. ACM.

Zekun Xu, Abhinav Aggarwal, Oluwaseyi Feyisetan,
and Nathanael Teissier. 2020. A differentially pri-
vate text perturbation method using regularized ma-
halanobis metric. In Proceedings of the Second Work-
shop on Privacy in NLP, pages 7–17, Online. Associ-
ation for Computational Linguistics.

A Background

Differential Privacy Differential privacy (DP),
originally proposed by Dwork et al. (2006b), is a
formal guarantee that the output of some analysis
on a given dataset is nearly indistinguishable when
one data point is modified. In other words, no
individual can stand out as a result of this analysis,
preserving their privacy.

To define this more formally, we first outline the
notion of neighboring datasets.

Definition A.1. Two datasets D and D′ are con-
sidered neighboring if they differ in at most one
record, i.e., one individual’s data point. This means
that either D′ = D ± 1, or D′ = D with the i-th
data point replaced.

In DP, we typically refer to a query on a dataset,
as defined below.

Definition A.2. A query is a function f : D → Rk

that we evaluate on a dataset D.

This can range from simpler queries, such as taking
the average length of a document, to more complex
queries, e.g. a deep learning model predicting the
sentiment of a document.

In order to provide a formal privacy guarantee,
we add randomness to this query by perturbing

f(D). We refer to this randomized function as a
randomized mechanismM(D; f).

The formal definition of differential privacy can
now be described as follows.

Definition A.3. For ε ≥ 0 and δ ∈ [0, 1], a mech-
anismM is (ε, δ)-differentially private if, for all
S ⊆ Range(M), and for any two neighboring
datasets D and D′, the following holds true:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (12)

Importantly, ε is the privacy budget. The lower
it is, the more private the mechanism is, since the
two output distributions ofM(D) andM(D′) are
constrained to be more similar. While the origi-
nal definition of DP only included this term, the
additional additive term δ was later introduced in
Dwork et al. (2006a) and represents the ‘crypto-
graphically small’ probability that pure ε-DP is
broken. In the case where δ = 0, we return to the
original, or pure differential privacy setting.

In order to make a query differentially private,
random noise is added based on the query’s sensi-
tivity, or the maximum amount that the output of
the query can change. This represents the degree
to which one individual can affect f in the worst
case. In turn, this is also the amount of noise that
has to be introduced to f in order to obscure one
individual’s contribution.

Finally, there are two primary settings for dif-
ferential privacy: global DP and local DP (LDP),
depicted in Figure 4. In the former case, the query
f(D) is first evaluated, and then perturbed by a
trusted data aggregator. In contrast, in LDP each
individual data holder perturbs his/her own data
point, prior to data collection and without replying
on a third-party. As noted by Wang et al. (2020), in
LDP any two data points are considered neighbor-
ing, in contrast to the global DP definition of two
datasets differing in one record.

Since each individual is fully in control of the
privatization process, this makes LDP a particularly
attractive setting for providing a privacy guarantee.
The difficulty, however, is that we typically require
orders of magnitude more perturbation for f than
we otherwise would need in the global DP setting.
Refer to Igamberdiev and Habernal (2022); Senge
et al. (2022); Habernal (2022) for further use-case
examples in NLP.

Overview of the BART Model The BART
model is a sequence-to-sequence Transformer ar-

13925

https://doi.org/10.1109/ICHI54592.2022.00035
https://doi.org/10.1109/ICHI54592.2022.00035
https://doi.org/10.1109/ICHI54592.2022.00035
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.1145/3485447.3512232
https://doi.org/10.18653/v1/2020.privatenlp-1.2
https://doi.org/10.18653/v1/2020.privatenlp-1.2
https://doi.org/10.18653/v1/2020.privatenlp-1.2

Doc. Doc. Doc.

Noise Noise Noise

Private

Doc. Doc. Doc.
Private

NoiseAggregator

Aggregator

AnalysisAnalysis

Figure 4: Local DP (left) vs. global DP (right). In the local framework, the aggregator does not have access to
the original data, with each individual applying DP to their own private data point. In the global framework, the
aggregator adds DP noise to the original data, given a specific query from an analyst.

chitecture (Vaswani et al., 2017), acting as a de-
noising autoencoder. It combines the BERT-like
bidirectional encoder (Devlin et al., 2019) with
the GPT-like left-to-right autoregressive decoder
(Radford et al., 2018). The base model contains
6 layers for the encoder and decoder, with cross-
attention performed over the final encoder layer.
BART is pre-trained through a number of noise
transformations of the input document, including
token masking, token deletion, and sentence permu-
tation, optimizing a cross-entropy reconstruction
loss. One strong benefit of BART for differen-
tially private text rewriting is that, by design, it is
well-equipped for the autoencoding task of recon-
structing corrupted documents.

Overview of pruning for neural networks The
more popular technique is weight pruning (e.g. Le-
Cun et al. (1989), Hassibi et al. (1993), Frankle and
Carbin (2018)), reducing the size of a model and its
computation time, but minimizing any negative im-
pact to its performance. More distinct is structured
pruning, such as neuron pruning (e.g. Kruschke
and Movellan (1991)), where the architecture of a
network is reduced by eliminating full structures
of the network, which is more in line with our ap-
proach. Regardless of the specific method used, a
very common pipeline is to iteratively prune and
further train a model, to help it recover from poten-
tially lost performance (Han et al., 2015). Overall,
pruning tends to be highly effective, with substan-
tial compression possible for models (Blalock et al.,
2020).

In contrast to the above goals of size and compu-
tational efficiency, we use pruning with the primary
objective of dimensionality reduction on a specific
hidden layer. This dimensionality is directly related
to privacy concerns, with a lower dimension result-
ing in less added noise to the model, which allows

us to use lower privacy budgets while maintain-
ing better performance. Our neuron-based pruning
approach is outlined in Section 3.4.

B Selecting Clipping Value for DP-BART

When clipping encoder outputs by value for the
DP-BART model, we want to choose left and right
values Cmin and Cmax that capture the most in-
formation from the original vector. One way to
go about this, is to estimate the distribution of the
encoder output vectors z ∈ Rn (see equation 5)
of a pre-trained BART model checkpoint, given
several documents from an external public dataset,
and then clip a certain number of standard devi-
ations from the estimated mean. Performing an
exploratory data analysis on these encoder output
vectors, we noticed that they fairly closely match
a Gaussian distribution, although with far more
outliers.

In order to look into this more closely, we can
perform Maximum Likelihood Estimation (MLE)
to estimate the µ and σ2 parameters, assuming the
data follows a Gaussian distribution. For Gaus-
sians, the MLE of these two parameters is simply
the mean and variance of the existing data, respec-
tively, in our case of the values of z, given an input
document x. Based on multiple documents, we
find that µ ≈ 0.00 and σ ≈ 0.2. Hence, using the
66-95-99.7 rule for normal distributions, we can
clip two standard deviations to the left and right
and retain 95% of the original values.

We therefore initially set C = Cmax = −Cmin,
where C = µ + σ · 2 = 0 + 0.2 · 2 = 0.4. Since
µ is found to be 0, we are able to simplify the
calculation to only have the C and σ parameters.
In practice, we found that clipping only half of
one standard deviation was enough to retain good
performance, despite clipping away more informa-

13926

tion than what we estimate above. Hence, we set
C = σ/2 = 0.1.

C Proof of Theorem 3.1

Proof. The ℓ1 sensitivity of a function f : Rn →
Rn is defined as: ∆1f = max

x,y
||f(x) − f(y)||1,

where ||x−y||1 = 1. Since in our case f clips every
value to be in the range [−C,C], the following
inequality must be true.

||f(x)− f(y)||1 = |f(x1)− f(y1)|+ . . .

+ |f(xn)− f(yn)|
≤ |C − (−C)|+ . . .

+ |C − (−C)|
= |2C|+ · · ·+ |2C|
= 2Cn (13)

This inequality also holds true when the C values
are reversed for any summand, due to the absolute
value: |C − (−C)| = | − C − C|.

D Proof of Theorem 3.2

Proof. The ℓ2 sensitivity of a function f : Rn →
Rn is defined as: ∆2f = max

x,y
||f(x) − f(y)||2,

where ||x−y||1 = 1. As for the ℓ1 sensitivity above,
f clips every value to be in the range [−C,C], so
the following inequality must be true.

||f(x)− f(y)||2 =

√√√√(f(x1)− f(y1))
2 + . . .

+ (f(xn)− f(yn))
2

≤

√√√√(C − (−C))2 + . . .

+ (C − (−C))2

=
√
(2C)2 + · · ·+ (2C)2

= 2C
√
n (14)

This inequality also holds true when we reverse the
position of the C values for any summand, (C −
(−C))2 = (−C − C)2.

E Pruning algorithm for DP-BART-PR

We present the procedure for pruning neurons in
DP-BART-PR in Algorithm 1.

Algorithm 1 DP-BART Pruning

Input: Encoder: ENCθ0 , Decoder: DECθ0 , Public
dataset: D, Encoder output dimension per to-
ken: dtok, Number of epochs to additionally
train: E

Output: Pruned model: ENCθE , DECθE ; Array of
neuron indices to prune P of size dtok

1: function PRUNE(z, P)
2: ▷ z ∈ Rl×dtok , where l is the seq. length
3: for j in 1 to dtok do
4: if j in P then
5: ▷ Set that neuron to 0 for all tokens
6: z[:, j]← 0

7: return z

8: function ITER_PR(D, ENCθ, DECθ, P)
9: ▷ Iterate with pruning

10: for each document x in D do
11: Compute encoder outputs, z ← ENCθ(x)
12: Prune, zpr ← PRUNE(z, P)
13: Decode, ŷ ← DECθ(zpr)
14: Compute loss on ŷ and optimize
15: function ADD_P_IDXS(P)
16: new_idxs← select k values in [1, dtok)
17: Append new_idxs to P
18: return P

19:

20: P ← new Array
21: for epoch e in 1 to E do
22: P ← ADD_P_IDXS(P)
23: ITER_PR(D, ENCθe , DECθe , P)
24: return ENCθE , DECθE , P

F Selecting Neurons for Pruning

At each pruning/training iteration for preparing the
DP-BART-PR model, we need some criteria for
selecting the next set of neuron indices that will be
set to 0. Our method for selecting these is generally
in line with previous work on pruning (Blalock
et al., 2020), using weight magnitudes to determine
relative importance of those weights.

In the cross-attention module of the decoder of
a transformer model such as BART, there are three
initial projections of the input or target represen-
tations: Key (K), Query (Q), and Value (V). The
K and V projections come directly from the en-
coder output vectors multiplied by a weight matrix
for each, while the Q projection comes from the
decoder’s intermediate representations multiplied
by a weight matrix. We can therefore choose the

13927

weight matrix of either the K or V projection from
the cross-attention module of one of the decoder’s
layers. For this weight matrix, we take the sum
of absolute values of all weights associated with a
particular neuron, to give a general indication of
its importance. Given the distribution of these val-
ues associated with each neuron, we take the 25%
quantile as the threshold. Any neuron with a value
below this threshold is selected for pruning and set
to 0.

At the next pruning iteration, after further train-
ing, we repeat the above process, this time only
taking into account neurons that have not already
been set to 0. We again calculate each neuron’s
relative importance value, taking the 25% quantile
of these new values as the next threshold, and se-
lecting any neurons with an associated importance
value below it for pruning.

We found that taking the weight matrix of the
K projection from the initial decoder layer out-
performed all other configurations, such as using
subsequent layers, or the V projection. Addition-
ally, we found the above method to outperform
randomly pruning neurons.

We perform two additional tweaks to this pro-
cess to improve results further. First, we include the
clipping by value procedure, with C = 0.2, when
further training the model at each pruning iteration.
We found that, without this step, the encoder out-
put representations tend to shift to a distribution
of values with a greater standard deviation. This
then requires a larger C value when determining
the mechanism’s sensitivity in equations 7 and 8,
which in turn requires a greater noise scale in equa-
tion 9. By including this clipping, we encourage
encoder output representations to continue to pri-
marily stay within the range (−C,C).

The other tweak that we found to further improve
results is to prune and further train the BART model
for k iterations, but then use the neuron indices for
pruning from the k − 1 iteration. Performing this
full pruning pipeline on a public dataset, we found
that the best BLEU scores for rewriting at various
ε values are after pruning/training the model for
6 iterations, then using the pruning indices from
the 5th iteration for actual rewriting of downstream
datasets. This amounts to a total of 586 out of 768
(76.30%) neurons pruned for each token.

In theory, this pruning procedure could be re-
placed with another dimensionality reduction tech-
nique for the last hidden state of the encoder out-

puts (e.g. a bottleneck layer and its inverse). In
our experiments, however, the above pruning proce-
dure produced superior results when trying various
options for such a bottleneck layer. This includes
architectures such as a feedforward neural network
and CNN (LeCun et al., 1998), as well as various
training methods (e.g. training these layers sepa-
rately and reinserting them into the final full model,
or training the full model together with these lay-
ers).

G Proof of Theorem 3.3

Proof. The procedure outlined in Algorithm 1 is
performed on a public dataset, unrelated to the
downstream data that is considered sensitive, hence
no privacy budget is used up.

The remaining rewriting procedure with the
pruned indices is exactly the same as for DP-
BART-CLV, just at a lower dimension. The neu-
ron indices that are set to 0 are the same for any
input document. This means that no information
from the input is encoded in these neuron indices.
From the DP point of view, these zeroed neurons
are the same for any two neighboring data points.
Therefore, these neurons have no contribution to
the DP sensitivity and do not require any privati-
zation. The same proofs are therefore valid as for
Theorems 3.1 and 3.2 for the Laplace and Analytic
Gaussian mechanisms, respectively.

H Preparation of Larger Datasets

H.1 Drugs.com reviews dataset

We present additional statistics on the Drugs.com
dataset in Table 2. We note the class imbalance
of the original dataset, where the majority class
was the highest rating 9, from a score of 0 to 9,
which accounted for approximately 17% of the
total training set. This contributes to the relative
imbalance of the positive and negative classes in
our binary class version of the dataset.

Train # Test
Positive 97,410 32,349
Negative 63,887 21,417
Total 161,297 53,766

Table 2: Class distributions and total documents for
the Drugs.com reviews dataset. Original classes 8 and
9 converted to the positive class, while the rest to the
negative class for our experiments.

13928

H.2 Amazon reviews dataset

For the Amazon dataset, since using the full 144M
reviews is too computationally expensive, we re-
duce this to a more practical size, while still being
comparatively larger than the other downstream
datasets. To prepare a subset of the full Amazon
dataset, we first select several product categories
based on four criteria. (1) The category is large
enough (e.g. > 2M reviews). (2) Label 5 for the
star rating is not too dominant (e.g. < 60%), see
general imbalance outlined in Table 3. (3) Label
4 for the star rating is also not too dominant (e.g.
< 60%), since we are merging labels 5 and 4 into
the positive class. (4) Label 1 for the star rating has
enough representation (e.g. > 10%).

We selected a total of 7 product categories,
which matched at least three out of four of these
criteria. From these reviews, we then filtered to
include only those with 20 tokens or less, to fit
our experimental scenario of shorter documents
(outlined in more detail in Appendix I). We then
reduced this further by balancing positive and neg-
ative classes, with uniform probability selecting
only Nneg positive label reviews, where Nneg is
the number of negative labels in our current subset.
Finally, we uniformly selected two-thirds of the
resulting balanced dataset to reach the final size of
approximately 2M reviews. We present each prod-
uct category and its corresponding size in Table 3.

Importantly, we have a well-defined train-test
split, taking 10% of the processed dataset and set-
ting it aside for final downstream test evaluations.
We release the specific document indices of our
subset from the original large Amazon reviews
dataset.5 We present the final dataset statistics in
Table 4.

I Hyperparameter Configuration

For all our model configurations, we use a sequence
length of 20 tokens. This limits the sensitivity in
equations 7 and 8 for our three BART models. For
the ADePT model, we found that it is generally in-
effective at the autoencoding task when using larger
sequence lengths, presumably due to the problem
of vanishing gradients for RNN-based models (Pas-
canu et al., 2013). Our search space for learning

5Original full dataset available on Huggingface at
https://huggingface.co/datasets/amazon_
us_reviews, our subset available at https://github.
com/trusthlt/dp-bart-private-rewriting/
tree/main/assets/amazon_reviews_subset.

rates is in the range [10−6, 0.01]. We use batch
sizes of either 32 or 64.

When pre-training ADePT, we include the clip-
ping procedure from equation 2, otherwise the
model is unable to properly rewrite a given input
document, since the clipping significantly alters
the encoder output representations. Additional hy-
perparameters for ADePT include an embedding
size of 300 with pre-trained GloVe embeddings6

(Pennington et al., 2014) and a hidden size of 512.
Combining the LSTM cell and hidden state sizes,
the ADePT encoder output vectors have a dimen-
sionality of 512 · 2 = 1024.

For rewriting using the Analytic Gaussian mech-
anism, we always keep the δ value below 1/N ,
where N is the total number of documents for a
given dataset. This is based on the idea that using a
δ value that is overly large in relation to the dataset
size can lead to potential privacy leaks, hence main-
taining δ ≪ 1/N is a good guideline to follow
(Abadi et al., 2016). We therefore use a δ value of
10−5 for the ATIS, Snips and IMDb datasets, 10−6

for the Drugs.com dataset, and 10−7 for Amazon
reviews. We perform rewriting with beam search,
using a beam size of 10.

When performing additional training for the DP-
BART-PR model, we again use the Openwebtext
corpus. At each stage of pruning, we train the
model for 500 iterations at a batch size of 32. In
the case of further training for the DP-BART-PR+
model, we again use the Openwebtext corpus, with
the same number of iterations and batch size, but
performed over multiple epochs. The number of
epochs ranges from 100 to 500, for the different ε
values from 2500 down to 10, based on the predic-
tion loss and intermediate model outputs. We ap-
plied these further training steps to the DP-BART-
CLV model as well to account for the potential
effects of this training alone, but we did not find
any improvements. This is in line with the high
dimensionality issue of DP-BART-CLV destroying
input representations in the private setting, which
this additional training does not resolve without
the pruning adjustments of the DP-BART-PR(+)
models.

Regarding downstream text classification experi-
ments, we run each configuration for a maximum
of 50 epochs with three random seeds and report
the mean. We use an early stopping patience of 5

6Downloaded from https://nlp.stanford.edu/
data/glove.6B.zip

13929

https://huggingface.co/datasets/amazon_us_reviews
https://huggingface.co/datasets/amazon_us_reviews
https://github.com/trusthlt/dp-bart-private-rewriting/tree/main/assets/amazon_reviews_subset
https://github.com/trusthlt/dp-bart-private-rewriting/tree/main/assets/amazon_reviews_subset
https://github.com/trusthlt/dp-bart-private-rewriting/tree/main/assets/amazon_reviews_subset
https://nlp.stanford.edu/data/glove.6B.zip
https://nlp.stanford.edu/data/glove.6B.zip

Product Cat. # Docs. (original) # Docs. (subset)
Digital_Video_Games_v1_00 145,341 11,375
Electronics_v1_00 3,093,869 201,708
Lawn_and_Garden_v1_00 2,557,288 202,226
Major_Appliances_v1_00 96,901 4,940
Mobile_Apps_v1_00 5,033,376 536,550
Office_Products_v1_00 2,642,434 182,202
Wireless_v1_00 9,002,021 976,801
Total 22,571,320 2,115,802

Table 3: Product categories and corresponding number of documents from the full Amazon reviews dataset (mid),
as well as from our prepared subset (right).

Train # Test
Positive 952,153 105,797
Negative 952,044 105,808
Total 1,904,197 211,605

Table 4: Final class distributions and total reviews for
our Amazon reviews subset.

epochs. We also report the standard deviation in
Appendix K. We outline our choice of the clipping
by value constant C in Appendix B and amount of
pruning in Appendix F.

Finally, our computational runtimes are under 1
hour for each configuration that does not use the
Amazon dataset. The only exception to this is the
Drugs.com reviews dataset, which reaches up to 2
hours 10 minutes for rewriting with the DP-BART
models. The Amazon dataset takes significantly
longer, with approximately 24 hours for rewriting
with ADePT, 47 hours rewriting with DP-BART
models, as well as up to 18 hours for downstream
experiments, depending on when the early stopping
condition is reached. We run experiments on a
32GB NVIDIA V100 Tensor Core GPU.

J Downstream Experimental Setup

We use a pre-trained BERT model (Devlin et al.,
2019) for running downstream experiments on the
rewritten texts. We add a feedforward layer on top
of the BERT model, taking as input the mean of its
last hidden states. The model predicts the output
label for text classification. For training the model
and running validation, we use the rewritten train-
ing and validation partitions for each downstream
dataset, at a given privacy configuration. For final
evaluation, we run the model on the original test
set of each dataset.

K Intrinsic evaluations and detailed
downstream results

For intrinsic evaluation, we use BLEU scores to
measure how close the input and rewritten output
texts are to one another. Despite some criticisms of
BLEU as a general-purpose evaluation metric for
text generation (e.g. Callison-Burch et al. (2006)),
it perfectly fits our scenario. Being a metric of n-
gram overlap, it allows us to compare how similar
the inputs and outputs are. In a way, a very high
BLEU score points to privacy leakage, since it is
showing how much of the original text remains in
the output. We would therefore expect well priva-
tized texts to have a relatively low BLEU score.

Our results can be seen in Table 5 for rewrit-
ing the training partition of each dataset with the
Analytic Gaussian mechanism, together with the
detailed downstream test F1 results.

We can see that the BLEU scores for the training
partition of each dataset show a largely positive cor-
relation with the test F1 downstream results, where
a decrease in the former also indicates a decrease
in the latter. For instance, the Snips dataset shows
a BLEU score of 0.31 at ε = 2500 for DP-BART-
PR+, with a test F1 score of 85%. At ε = 750, this
drops down to 0.23 BLEU score and 73% test F1.
By ε = 250, the BLEU score is at 0.07, with the
test F1 score at 60%. Interestingly, despite lower
BLEU scores, the downstream model is still able
to sometimes learn the task successfully, obtaining
a good F1 score on the original test set.

Another example of this can be seen for the
DP-BART-PR model on the Amazon dataset at
ε = 1000, with a BLEU score of 0.17, reaching a
test F1 of 82%. A similar instance is DP-BART-
PR+ rewriting Amazon at ε = 250, with a BLEU
score of 0.15 and a test F1 of 82%, compared to
the non-private F1 of 91%. This is in line with

13930

the goals of text privatization, where original iden-
tifying elements of the text are removed, but key
features from the input are retained for good down-
stream performance.

L Sample rewritten texts

L.1 Comparing rewritten texts across privacy
budgets

Original It slows the game performance a bit, but
it’s totally worth it!
ε = 2500 The performance of the game is a bit
sluggish, but it’s worth it
ε = 1000 It’s that time of year again. But if you
slow down your
ε = 750 It’s that time of year again when we talk
about kitty racing
ε = 500 We’ve all been talking about the game,
but this is a bit of
ε = 250 12 years ago today morning morning
morning, a 12-
Sample rewritten texts for varying privacy budgets,
using DP-BART-PR+ for the Amazon dataset.

Original i want to hear something eclectic
ε = 2500 The following is a list of interesting
things to hear from the eclectic, eclectic, and
ε = 1000 i want to hear something different from
what everyone else has been hearing about this
week.
ε = 750 i want to hear something different about
this mod. It’s simple, but
ε = 500 i want to hear something like this. If you
want to listen to music
ε = 250 In the last three year in the last time it
seems to have an area of the
Sample rewritten texts for varying privacy budgets,
using DP-BART-PR+ for the Snips dataset.

We provide sample rewritten texts from the DP-
BART-PR+ model, comparing the difference in
output across ε values on the Snips and Amazon
datasets. We can see that, for different values
of ε, parts of the original input sequence reap-
pear in the rewritten output to varying degrees.
For example, the first five tokens of the original
Snips sample reappear in the rewritten texts at
ε = 500, 750, 1000. At the lower ε value of 250,
while the output is still in part coherent, it is no
longer recognizable from the original. At the low-
est ε values, there is so much noise added to the
model that the output primarily consists of ‘start

of sequence’ and ‘end of sequence’ tokens, result-
ing in an overall empty output. For the Amazon
example, most rewritten tokens are different from
the input, with some resemblance at ε = 500, but
a more coherent and related output primarily at the
larger ε = 2500.

Interestingly for these examples, while the
rewritten documents are very altered from the orig-
inal documents throughout, it is enough in the
case of DP-BART-PR+ to achieve a relatively good
downstream performance, such as an F1 score of
0.65 for Snips at ε = 500 and 0.82 for Amazon at
ε = 250. This is more of what we would expect
from a text rewriting system, since if the original
text is clearly noticeable in the rewritten output, we
would strongly suspect a privacy leak.

L.2 Comparing rewritten texts across models
Original The product doesn’t work at all.
ADePT has ! low phone unauthorised and 1
awesome 5th whatsoever pickle my canna kindle
just flowed phones signup
DP-BART-CLV """. @...???)!).. W @. W???)
DP-BART-PR Technical precisely anticipate
work-touch to enhance Resources Resources
ARE/and and Science Matters/
DP-BART-PR+ "The product doesn’t work at all."
That is the sentiment of
Sample rewritten texts for each model type, at
ε = 750 for the Amazon dataset.

We additionally provide sample rewritten texts
from each model, at the same ε value and on the
same dataset (Amazon at ε = 750). Here we
can see that the DP-BART-PR+ model output is
the most similar to the original document, being
rewritten verbatim, followed by some additional
output. The output sequence for DP-BART-PR is
less coherent, but still with recognizable sequences
for some token pairs, while DP-BART-CLV and
ADePT have output that is seemingly random.

13931

Dataset ε Original ADePT DP-BART-CLV DP-BART-PR DP-BART-PR+
Test F1 BLEU Test F1 BLEU Test F1 BLEU Test F1 BLEU Test F1

Snips ∞ 0.98 (0.00) 6.34 0.92 (0.00) 98.41 0.98 (0.00) 54.39 0.98 (0.00) N/A N/A
2, 500 0.16 0.24 (0.13) 0.02 0.22 (0.14) 2.19 0.88 (0.03) 0.31 0.85 (0.02)
1, 000 0.03 0.13 (0.09) 0.00 0.12 (0.10) 0.07 0.50 (0.07) 0.30 0.80 (0.02)
750 0.02 0.16 (0.08) 0.00 0.11 (0.07) 0.02 0.44 (0.11) 0.23 0.73 (0.04)
500 0.01 0.14 (0.08) 0.00 0.11 (0.06) 0.01 0.39 (0.10) 0.22 0.65 (0.01)
250 0.01 0.10 (0.09) 0.00 0.11 (0.07) 0.00 0.08 (0.02) 0.07 0.60 (0.03)
100 0.01 0.08 (0.02) 0.00 0.08 (0.02) 0.00 0.08 (0.02) 0.00 0.05 (0.02)
50 0.01 0.09 (0.05) 0.00 0.13 (0.06) 0.00 0.08 (0.03) 0.00 0.05 (0.02)
10 0.01 0.05 (0.01) 0.00 0.10 (0.04) 0.00 0.08 (0.03) 0.00 0.05 (0.01)

ATIS ∞ 0.89 (0.01) 16.04 0.32 (0.01) 97.45 0.80 (0.03) 69.26 0.85 (0.01) N/A N/A
2, 500 0.45 0.09 (0.00) 0.02 0.09 (0.00) 2.13 0.14 (0.07) 0.24 0.13 (0.07)
1, 000 0.06 0.09 (0.00) 0.01 0.09 (0.00) 0.06 0.08 (0.00) 0.25 0.13 (0.03)
750 0.05 0.08 (0.00) 0.00 0.08 (0.00) 0.03 0.08 (0.00) 0.24 0.11 (0.05)
500 0.03 0.09 (0.00) 0.00 0.08 (0.00) 0.01 0.08 (0.00) 0.11 0.08 (0.00)
250 0.01 0.08 (0.00) 0.00 0.09 (0.00) 0.01 0.08 (0.00) 0.08 0.08 (0.00)
100 0.01 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.06 (0.04)
50 0.01 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.06 (0.04)
10 0.01 0.09 (0.00) 0.00 0.08 (0.00) 0.00 0.08 (0.00) 0.00 0.07 (0.02)

IMDb ∞ 0.86 (0.00) 95.00 0.72 (0.00) 93.49 0.72 (0.00) 89.05 0.72 (0.00) N/A N/A
2, 500 1.74 0.49 (0.04) 0.22 0.42 (0.04) 7.08 0.64 (0.02) 1.69 0.63 (0.01)
1, 000 0.18 0.49 (0.06) 0.16 0.40 (0.05) 0.25 0.47 (0.04) 1.04 0.60 (0.02)
750 0.07 0.43 (0.08) 0.15 0.47 (0.03) 0.15 0.47 (0.05) 0.76 0.58 (0.02)
500 0.04 0.44 (0.02) 0.12 0.43 (0.03) 0.05 0.45 (0.05) 0.52 0.53 (0.04)
250 0.03 0.46 (0.02) 0.11 0.43 (0.02) 0.09 0.46 (0.02) 0.32 0.55 (0.03)
100 0.02 0.46 (0.03) 0.08 0.45 (0.03) 0.06 0.43 (0.06) 0.00 0.38 (0.03)
50 0.01 0.43 (0.01) 0.08 0.46 (0.08) 0.04 0.45 (0.05) 0.00 0.40 (0.06)
10 0.01 0.44 (0.07) 0.05 0.46 (0.04) 0.03 0.45 (0.07) 0.00 0.41 (0.06)

Drugs.com ∞ 0.78 (0.02) 92.41 0.74 (0.01) 93.46 0.77 (0.01) 88.47 0.76 (0.01) N/A N/A
2, 500 1.62 0.37 (0.00) 0.15 0.37 (0.00) 5.59 0.62 (0.02) 0.99 0.38 (0.00)
1, 000 0.12 0.37 (0.00) 0.08 0.37 (0.00) 0.15 0.37 (0.00) 0.46 0.39 (0.02)
750 0.05 0.37 (0.00) 0.07 0.37 (0.00) 0.08 0.37 (0.00) 0.38 0.37 (0.00)
500 0.03 0.37 (0.00) 0.06 0.37 (0.00) 0.05 0.37 (0.00) 0.28 0.37 (0.00)
250 0.02 0.37 (0.00) 0.06 0.37 (0.00) 0.05 0.37 (0.00) 0.20 0.37 (0.00)
100 0.01 0.37 (0.00) 0.05 0.37 (0.00) 0.04 0.37 (0.00) 0.00 0.37 (0.00)
50 0.01 0.37 (0.00) 0.04 0.37 (0.00) 0.03 0.37 (0.00) 0.00 0.37 (0.00)
10 0.01 0.37 (0.00) 0.04 0.37 (0.00) 0.03 0.37 (0.00) 0.00 0.37 (0.00)

Amazon ∞ 0.91 (0.00) 26.96 0.90 (0.00) 96.52 0.90 (0.00) 57.16 0.91 (0.00) N/A N/A
2, 500 0.57 0.70 (0.01) 0.24 0.81 (0.04) 3.44 0.87 (0.01) 0.87 0.87 (0.00)
1, 000 0.09 0.51 (0.01) 0.22 0.40 (0.12) 0.17 0.82 (0.01) 0.66 0.85 (0.00)
750 0.06 0.46 (0.15) 0.20 0.38 (0.09) 0.13 0.83 (0.01) 0.46 0.84 (0.01)
500 0.05 0.27 (0.05) 0.17 0.33 (0.00) 0.12 0.79 (0.04) 0.33 0.83 (0.00)
250 0.04 0.32 (0.02) 0.13 0.33 (0.00) 0.14 0.33 (0.00) 0.15 0.82 (0.01)
100 0.04 0.37 (0.08) 0.11 0.33 (0.00) 0.12 0.33 (0.01) 0.00 0.33 (0.00)
50 0.04 0.32 (0.02) 0.10 0.33 (0.00) 0.10 0.33 (0.00) 0.00 0.33 (0.00)
10 0.04 0.43 (0.16) 0.09 0.38 (0.09) 0.09 0.33 (0.00) 0.00 0.33 (0.00)

Table 5: BLEU scores for the training partition of each dataset and downstream macro-averaged test F1 performance,
with each of the four models using the Analytic Gaussian mechanism and the original test F1 results provided for
comparison. Test F1 scores shown as “mean (standard deviation)”, averaging over results using three random seeds.
‘N/A’ refers to configurations that we did not run for DP-BART-PR+, since there are no additional noisy training
steps at ε =∞. Higher BLEU corresponds to better performance of the rewriting model for intrinsic evaluation,
higher test F1 corresponds to better downstream performance using the rewritten dataset for training. Lower ε
corresponds to better privacy.

13932

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

13933

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

13934

