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Abstract

Pre-trained vision-language models (VLMs)
have achieved impressive results in a range
of vision-language tasks. However, popular
VLMs usually consist of hundreds of millions
of parameters which brings challenges for fine-
tuning and deployment in real-world applica-
tions due to space, memory, and latency con-
straints. In this work, we introduce a distill-
ing then pruning framework to compress large
vision-language models into smaller, faster, and
more accurate ones. We first shrink the size of
a pre-trained large VLM and apply knowledge
distillation in the vision-language pre-training
stage to obtain a task-agnostic compact VLM.
Then we propose a modal-adaptive pruning al-
gorithm to automatically infer the importance
of vision and language modalities for differ-
ent downstream tasks and adaptively remove
redundant structures and neurons in different
encoders with controllable target sparsity.

We apply our framework to train EfficientVLM,
a fast and accurate vision-language model con-
sisting of 6 vision layers, 3 text layers, and
3 cross-modal fusion layers, accounting for
only 93 million parameters in total, which is
44.3% of the teacher model. EfficientVLM re-
tains 98.4% performance of the teacher model
and accelerates its inference speed by 2.2×.
EfficientVLM achieves a large absolute im-
provement over previous SoTA efficient VLMs
of similar sizes by a large margin on vari-
ous vision-language tasks, including VQAv2
(+4.9%), NLVR2 (+5.6%), ITR (R@1 on TR
+17.2%, on IR + 15.6% ) and COCO caption
generation (CIDEr +6.5), demonstrating a large
potential on training lightweight VLMs. 1

∗Equal contribution, work done during internship at
Bytedance AI Lab

† Correspondence to: wangchunshu.zhou@inf.ethz.ch
1Our code and pretrained checkpoints are available at

https://github.com/swaggy-TN/EfficientVLM.

1 Introduction

Inspired by the success of large pre-trained lan-
guage models (Devlin et al., 2019; Radford et al.,
2018) in the field of natural language processing
(NLP), recent studies (Su et al., 2019; Li et al.,
2020a; Radford et al., 2021a; Kim et al., 2021;
Li et al., 2021b) in vision-language pretraining
(VLP) have advanced the state-of-the-art on vari-
ous vision-language tasks such as image captioning,
visual question answering, and image-text retrieval.

However, in both NLP and vision-language do-
mains, large Transformer-based pre-trained mod-
els often consist of hundreds of millions, if not
billions, of parameters, bringing various practi-
cal challenges for deployment. As summarized
in Schwartz et al. (2020a) and Xu et al. (2021d),
large pre-trained models require large amounts of
space (in terms of GPU memory and disk storage)
and heavy computing for fine-tuning and inference,
which is both costly and may lead to negative en-
vironmental impact. Furthermore, large models
inevitably lead to low latency, which poses a chal-
lenge for the production environment.

Recent literature revealed that BERT (Devlin
et al., 2019), a popular Transformer-based pre-
trained language model, can be effectively com-
pressed and accelerated via knowledge distilla-
tion (Sanh et al., 2019; Jiao et al., 2019; Xu
et al., 2020; Wang et al., 2020b). However, only
a few prior works investigated building efficient
VLMs. For instance, Wang et al. (2020a) intro-
duced MiniVLM which combines a lighter ob-
ject detector with MiniLM (Wang et al., 2020b).
Fang et al. (2021) further proposed DistilVLM,
which uses knowledge distillation to pre-train a
compact VLM with the guidance of a large pre-
trained VLM. However, their approach is limited
to object-feature-based VLMs. As such, the vision
feature extractor cannot be distilled together with
the Transformer model in an end-to-end manner,
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which limits the potential of knowledge distillation.
As a result, existing compact VLMs are generally
falling short compared to regular-size VLMs.

In this work, we investigate strategies for VLM
compression and introduce a distilling then prun-
ing framework for compressing fully Transformer-
based VLMs. Specifically, in the first stage, we use
knowledge distillation for task-agnostic compres-
sion of a pre-trained VLM by aligning the logits,
attention distribution, and hidden representations
between the student model and the teacher model.
This results in a task-agnostic compact VLM that
achieves competitive results on many downstream
vision-language tasks by simply fine-tuning. The
general distillation stage reduces the size of all
modules (i.e., vision encoder, text encoder, cross-
modal encoder) equally so that the compressed
model can be versatile to different downstream
tasks. However, our preliminary study, which is
described in detail in section 3.3, shows that not all
modules are created equal in a VLM and their im-
portance drastically varies on different downstream
vision-language tasks requiring different levels of
understanding on either vision and text modalities.
This indicates that compressing a VLM requires
modal- and task-specific designs. Therefore, in
the second stage, we propose to prune the compact
VLM when fine-tuning on different downstream
tasks to flexibly adjust the model size/latency ac-
cording to modal importance. Concretely, we pro-
pose a modal-adaptive pruning strategy that regular-
izes the model with a differentiable approximation
to the L0-norm regularization (Louizos et al., 2017)
to automatically infer the importance of vision and
language modalities with controllable target spar-
sity. In this way, our method can adaptively prune
different modules in the VLM in the fine-tuning
stage according to the relative importance of vision-
language modalities on different downstream tasks.

We apply our framework to compress X-
VLM (Zeng et al., 2021), a recent Transformer-
based VLM and train EfficientVLM, a fast and
accurate vision-language model. EfficientVLM
consists of 6 vision layers, 3 text layers, and 3 cross-
modal fusion layers, accounting for only 93 million
parameters in total, which is 44.3% of the X-VLM
model. EfficientVLM recovers 98.4% performance
of X-VLM and accelerates its inference speed by
2.2×. Experimental results show that despite being
trained with fewer image-text pairs, EfficientVLM
achieves a large absolute improvement over Distil-

VLM, the previous best-performing efficient VLM
with similar size and inference speed, on various
vision-language tasks, including VQAv2 (Goyal
et al., 2017) (+6.7%), NLVR2 (Suhr et al., 2018)
(+7.8%), ITR-COCO (Lin et al., 2014) (R@1 on
TR +19.9%, R@1 on IR + 15.6% ) and COCO
caption generation (Chen et al., 2015) (CIDEr
+6.5), demonstrating a large potential on training
lightweight VLMs.

To the best of our knowledge, our work is the
first attempt to (1) compress a fully Transformer-
based vision-language model, and (2) combine
knowledge distillation with (modal-adaptive) prun-
ing for vision-language model compression.

2 Related Work

Vision-Language Pre-training The existing
work on vision language pre-training typically falls
into two categories. Most methods rely on object
detection (Tan and Bansal, 2019; Lu et al., 2019;
Li et al., 2019; Su et al., 2019; Li et al., 2020a;
Chen et al., 2020; Li et al., 2020b; Gan et al., 2020;
Li et al., 2021b; Xu et al., 2021c; Liu et al., 2021;
Li et al., 2022; Zhou et al., 2022b), where an im-
age is represented by dozens of object-centric fea-
tures. However, the object detection process re-
quires high-resolution images as model input and
is very time-consuming. Moreover, most works
under this category utilize pre-trained object detec-
tors (Ren et al., 2015; Anderson et al., 2018), and
do not optimize the model in an end-to-end man-
ner, yielding sub-optimal performance. Therefore,
recent works turn to encoding images by convo-
lutional network (Jiang et al., 2020; Huang et al.,
2020, 2021; Wang et al., 2022) or vision trans-
former (Kim et al., 2021; Li et al., 2021a), largely
improving the inference speed. Nevertheless, some
recent work (Zhang et al., 2021; Zeng et al., 2021,
2022) shows that understanding fine-grained vision
language alignments (e.g. object-level) is critical
for some downstream tasks such as visual reason-
ing and visual grounding.

Pre-trained Model Compression Prior work has
shown that BERT (Devlin et al., 2019), a popu-
lar encoder-only pre-trained Transformer (Vaswani
et al., 2017), can be effectively compressed and ac-
celerated. As summarized in Xu et al. (2021d) and
Xu et al. (2021a), popular BERT compression tech-
niques include knowledge distillation (Hinton et al.,
2015; Sanh et al., 2019; Sun et al., 2019; Jiao et al.,
2019; Wang et al., 2020b; Zhou et al., 2022a; Xu
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Figure 1: The distilling then pruning framework for training EfficientVLM. In the pre-training stage, we apply
knowledge distillation with a pre-trained X-VLM model as the teacher. During fine-tuning, we use a modal-adaptive
pruning method to adaptively prune encoders of different modalities.

et al., 2021b) which trains a compact student net-
work to mimic the behavior of the original teacher
model, pruning (LeCun et al., 1989; Michel et al.,
2019; Gordon et al., 2020; Sanh et al., 2020; Lagu-
nas et al., 2021; Wang et al., 2019; Xia et al., 2022)
which prunes redundant neurons or structures in
the original model, module replacing (Xu et al.,
2020) which train compact successor sub-modules
to replace that in the original model, and quanti-
zation (Shen et al., 2020; Zafrir et al., 2019) that
compresses a neural network by reducing the num-
ber of bits used to represent its parameters. On the
other hand, a number of work also investigated ef-
ficient inference with BERT-like models with early
exit (Teerapittayanon et al., 2016; Xin et al., 2020;
Liu et al., 2020; Schwartz et al., 2020b; Zhou et al.,
2020) or adaptive computation time (Graves, 2016;
Eyzaguirre et al., 2021; Zhou et al., 2023).

In contrast, only a few prior works investigated
methods to compress a pre-trained vision-language
model. Fang et al. (2021) explored distilling a pre-
trained vision-language model into a more compact
student model and proposed a teacher adaptation
method that aligns object feature proposal. How-
ever, their approach is limited to the use of ob-
ject detection based vision-language model, which
makes end-to-end distillation infeasible and results
in unsatisfactory performance compared to the re-
cent state-of-the-art. Wang et al. (2021) explored
distilling a vision-language model with a cross-
modal fusion module to a dual-encoder model for
efficient retrieval. Moreover, Gan et al. (2021) ex-
plored the lottery ticket hypothesis (Frankle and
Carbin, 2018) in vision-language models and find
that sparse winning tickets exist in pre-trained

VLMs. However, the process of finding and re-
training winning tickets is less efficient compared
to other compression methods.

3 EfficientVLM

In this section, we present EfficientVLM, a fast and
accurate vision-language model trained with our
distilling then pruning framework. We choose X-
VLM (Zeng et al., 2021), one of the state-of-the-art
vision-language models, as the teacher model. 2

3.1 Model Overview

EfficientVLM is a compressed version of X-VLM,
a fully Transformer-based VLM. X-VLM has the
same architecture as ALBEF (Li et al., 2021a),
which consists of an image encoder, a text encoder,
and a cross-modal encoder. The image encoder
contains 12 transformer layers, while the text en-
coder and the cross-modal encoder each consist
of 6 transformer layers. The cross-modal encoder
fuses the vision features with the text features by
cross-attention at each layer. EfficientVLM shrinks
the size of X-VLM by half, thus consisting of 6 vi-
sion layers, 3 text layers, and 3 cross-modal layers,
accounting for only 92 million parameters in total,
which is 43.6% of the X-VLM model.

The teacher model is optimized by: 1) aligning
the texts and visual concepts, where the alignments
are in multi-granularity using a contrastive loss
LITC, a matching loss LITM, and a masked lan-
guage modeling loss LMLM; 2) in the meantime

2In practice, our proposed method suits any VLMs that are
equipped with modal-specific modules such as VLMo (Bao
et al., 2022) or ALBEF (Li et al., 2021a).
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locating visual concepts in the image given the cor-
responding texts by bounding box prediction loss
LBBOX. Overall, the vision language pre-training
loss is:

LVLP = LITC + LITM + LMLM + LBBOX (1)

3.2 Pre-training with Knowledge Distillation
We initialize EfficientVLM with a pre-trained X-
VLM and shrink its size by half by only retain-
ing the even-numbered layers. Then we pre-train
EfficientVLM on image-text pairs with both the
original vision-language pre-training objectives of
X-VLM and knowledge distillation objective with
the pre-trained X-VLM as the teacher model. The
knowledge distillation objective consists of atten-
tion distillation, hidden states distillation, and logits
distillation.

Attention Distillation Prior work (Jiao et al.,
2019) on BERT distillation has shown the effec-
tiveness of transferring the latent knowledge in
self-attention matrices:

A = softmax(Q ·K/
√
dk). (2)

where Q and K denote the query and key matrix in
the attention layer of a transformer block. dk is the
dimension of the key matrix as a scaling factor. We
formulate attention distillation loss by minimizing
the mean square error between the self-attention
matrices of the teacher and the student:

Lattn =
1

h

∑L

j=1

∑h

i=1
MSE(AS

i,j ,A
T
i,2j) (3)

where L denotes the number of layers in each en-
coder of the student, h is the number of attention
heads, Ai refers to the normalized attention matrix
corresponding to the i-th head in j-th layer of the
student and in 2j-th layer of the teacher. The atten-
tion matrix is in the shape of A ∈ Rl×p. l and p
are the length of query and key, respectively3.

Hidden States Distillation Following Trans-
former distillation in TinyBERT (Jiao et al., 2019),
we also adopt the hidden states distillation to better
utilize the information from the teacher model. The
loss function is defined as follows:

Lhid =
∑L

i=1
MSE(HS

i ,H
T
2i), (4)

HS ∈ Rl×d′ and HT ∈ Rl×d refer to the hid-
den states of student and teacher networks in the
corresponding layer.

3In the cross-attention module of cross-modal encoder,
p represents the length of patch sequence of vision encoder
otherwise l and p are equal
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Figure 2: Empirical study of modal-encoders impor-
tance on NLVR2 and ITR-COCO tasks.

Logits Distillation In addition to imitating the be-
haviors of intermediate layers, we also use knowl-
edge distillation to fit the predictions of teacher
model as in (Hinton et al., 2015). We adopt KL
divergence as the optimization objective:

Pre-training We formulate the final loss by
combing the original vision-language pre-training
loss with general distillation loss.

LKD = αLattn + βLhid + γLlogits

Lpretrain = λLVLP + (1− λ)LKD

where α, β, γ and λ are the weights of the loss
terms. We only adjust the weights to scale the
losses to similar values so that the optimization
process can perform more robustly.

3.3 Fine-tuning with Pruning

To flexibly adjust the efficiency-performance trade-
off of EfficientVLM on different downstream tasks
according to varying resource constraints, we pro-
pose a modal-adaptive pruning method to further
compress EfficientVLM to a desired size in the
fine-tuning stage.

Are All Modalities Created Equal in VLMs?
Unlike prior work (Lagunas et al., 2021) on BERT
pruning where there is only one Transformer en-
coder, pruning VLMs are more challenging be-
cause the importance of vision and language clues
may not be equally important (Cao et al., 2020).
This is also verified by our preliminary experiments
where we prune 40% attention heads in each en-
coder and find that the performance drops drasti-
cally, which is contrary to prior findings on pruning
BERT (Michel et al., 2019).

To this end, we conduct an empirical study to
investigate whether encoders for vision/language
modalities have similar importance across differ-
ent vision-language tasks. We prune each encoder
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in a fine-tuned teacher model at one time while
leaving other encoders untouched. From Figure
2, we observe that: (1) the encoders of different
modalities have different sensitivity with respect to
head pruning, and (2) the difference in sensitivity
varies on different downstream tasks. Specifically,
on the ITR-COCO task, pruning 40% heads in the
text encoder and the cross-modal encoder does not
significantly impact performance while pruning the
vision encoder causes a large performance drop.
However, the results on NLVR2 show that the text
encoder is as important as the image encoder in
this task while cross-modal encoders are not very
sensitive to head pruning. These results suggest
that encoders of different modalities are not cre-
ated equal in a vision-language model, motivating
us to explore modal-specific pruning methods for
VLMs.

Modal-adaptive pruning A naive way to
achieve modal-specific pruning is to manually ad-
just the pruning percentage of different encoders
based on the prior observation. Specifically, we
consider a baseline that prunes 30% parameters
out of each encoder as the baseline. Then for ITR-
COCO, we prune 10% parameters in the vision en-
coder while pruning 40% parameters in the text and
the cross-modal encoder. For NLVR2, we set this
percentage to 10%, 10%, and 60% for image, text,
and cross-modal encoders, respectively. These per-
centages are heuristically adjusted according to the
previous findings and the empirical performance.
Moreover, the relative sparsity is set to ensure the
overall sparsity of the model is similar.

sparsity Text Retrieval Image Retrieval NLVR2
R@1 R@5 R@10 R@1 R@5 R@10 val test

.3/.3/.3 76.4 93.4 96.8 58.6 83.2 90.0 78.9 77.9

.1/.4/.4 78.1 94.2 97.1 60.2 84.1 90.5 - -

.1/.1/.6 - - - - - - 80.9 80.9

Table 1: Modal-specific pruning results on NLVR2 and
ITR-COCO. All models are trained with pruning and
knowledge distillation.

The results are shown in Table 4. We find that
manually specifying sparsity levels for different en-
coders according to their "importance" leads to sub-
stantial improvements, demonstrating the effective-
ness of modal-specific pruning. However, manu-
ally determining the sparsity for different encoders
could be laborious and sub-optimal. Therefore, we
propose modal-adaptive pruning, an end-to-end
pruning algorithm using a differentiable approxi-
mation of L0 regularization (Louizos et al., 2017)

to automatically infer the importance of vision and
language modalities and adaptively remove redun-
dant structures and neurons in different encoders
with controllable target sparsity.

Consider a given neural network model f(·;θ)
parameterized by θ = {θj}nj=1, where each θj rep-
resents an individual parameter weight or a block
of weights (e.g. a column of a weight matrix) and
n denotes the number of blocks. By introducing
additional binary variables z = {zj}nj=1 such that
zj ∈ {0, 1}, we can formulate the optimization
objective as below

minEz

[
1

D

D∑

i=1

L
(
xi,yi; θ̃

)
+ λ∥θ̃∥0

]
(5)

where θ̃ = {θ̃j} denotes the set of model pa-
rameters after pruning and its L0 norm, ∥θ̃∥0 =∑n

j=1 zj , measures the effective size of the pruned
model. {xi,yi}Di=1 are training examples, L is the
training loss function and λ > 0 is a constant hyper-
parameter. The masking variables z are learned
during training as real numbers in the range [0,
1]. In contrast, during inference, all the variables
that are below a threshold are set to 0 so that our
pruned model can achieve the expected sparsity.
See Appendix A for more details.

We also adopt knowledge distillation at fine-
tuning with pruning stage to help the student model
better preserve capacity on downstream tasks. The
final training objective is as follows:

Lft = λLVL + (1− λ)LKD + LLgr (6)

where LVL represents the task-specific fine-tuning
loss brought by the re-parameterized student model,
the LKD is the task-specific knowledge distillation
loss and LLgr infers to the lagrangian loss.

4 Experiments

4.1 Baselines

We mainly compare EfficientVLM with two base-
lines: MiniVLM (Wang et al., 2020a), a com-
pact VLM consists of a lightweight object de-
tection model and a compact Transformers-based
vision-language encoder, which is initialized by
MiniLM (Wang et al., 2020b), a compressed pre-
trained language model; and DistillVLM(Fang
et al., 2021), which adopts the same model archi-
tecture with MiniVLM and apply knowledge dis-
tillation for further boosting model’s performance.
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Method Input Length End-to-End Vision Module Text(and)Fusion Module
image/text Time(ms) Para(M) Time(ms) FLOPs(B) Para(M) Time(ms) FLOPs(B)

X-VLMclip 196/35 17.8 86.1 9.0 18.9 123 8.8(14.2) 4.2
- CPU - 395.5 - 355.1 - - 40.4(56.8) -

OSCARB 50/35 135.2 63.8 121.9 767.0 109 13.3 8.2
- CPU - 12347.1 - 12300 - - 47.1 -

MiniVLM 50/35 23.6 7.5 12.2 4.4 34.5 11.4 2.3
- CPU - 418.2 - 393.9 - - 24.3 -

ViLT 200/40 21 2.4 0.7 0.6 109 20.3 22.8
- CPU - 69.1 - 0.8 - - 68.3 -

EfficientVLM 196/35 9.7 42.0 5.0 8.3 50.3 8.5 1.3
- CPU - 180.8 - 171.5 - - 17.1 -

Table 2: Model size and actual inference time for visual feature extractor and vision-language fusion model of
compared models. DistilVLM is of the same size and speed as MiniVLM. Actual Inference time is reported on both
GPU and CPU.

For reference, we also include the performance of
DistilDualEnc (Wang et al., 2021), ViLT (Kim
et al., 2021) and X-VLMsmall in our comparison.
DistillDualEnc is a dual-encoder VLM distilled
from a fusion-based VLM. ViLT is a single-stream
VLM that feeds vision features without using re-
gion features nor deep convolutional visual embed-
ders and X-VLMsmall use the same initialization
as EfficientVLM but trained without knowledge
distillation or pruning.

To better illustrate our comparison, Table 2
shows the model size and inference speed of the
models compared. We test model inference time4

on both GPU and CPU devices which are Nvidia
Tesla V100 GPU and Intel(R) Xeon(R) Platinum
8260 CPU @2.40GHz, respectively. Since the num-
ber of FLOPs is affected by the input sequence
length, we show the input image token length and
average text length of each model in their set-
tings in the table. We can see that despite the
fully Transformer-based visual feature extractor
being heavier on model size, it consumes much
less time during inference than MiniVLM. As for
the Transformer-based text/fusion module, Effi-
cientVLM is slightly larger than MiniVLM and
DistilVLM while much faster thanks to the parallel
nature of image and text encoders in its architecture.
Despite the extremely efficient vision module of
ViLT, it consumes more time because of its heavy
text and fusion encoder. Specifically, when compar-
ing with their corresponding teacher model, Distil-
VLM only reduces the inference time of the Trans-
former encoder by around 15% on GPU, while
EfficientVLM achieves a speed-up ratio of 1.9× on

4In practice, the text encoder can be run in parallel with
the image encoder while being much faster. Therefore, the
inference time of text encoders does not actually contribute to
the overall actual inference time of the model.

GPU and 2.2× on CPU.

4.2 Datasets and Tasks
Pre-training datasets We construct our pre-
training dataset following (Zeng et al., 2021) 4M-
setting using two in-domain datasets, COCO (Lin
et al., 2014) and Visual Genome (VG) (Krishna
et al., 2017), and two out-of-domain datasets, SBU
Captions (Ordonez et al., 2011) and Conceptual
Captions (CC) (Sharma et al., 2018). Note that we
have cleaned the pre-training datasets to avoid data
leaks since downstream V+L tasks have overlaps
in images with COCO and Visual Genome. The
statistics of our pre-training dataset are presented
in Appendix B.
Image-Text Retrieval There are two subtasks: text
retrieval (TR) and image retrieval (IR). We evalu-
ate X-VLM on MSCOCO datasets. We adopt the
widely used Karpathy split (Karpathy and Li, 2015)
datasets. Following ALBEF and X-VLM, we op-
timize LITC and LITM and fine-tune the model
for 10 epochs. During inference, we first com-
pute s(I, T ) for all images and texts, and then
take the top-k candidates and calculate pmatch(I, T )
for ranking. k is set to 256 for MSCOCO follow-
ing Zeng et al. (2021).
Visual Question Answering (VQA 2.0) (Goyal
et al., 2017) It requires the model to predict an an-
swer given an image and a question. Following
ALBEF and X-VLM, we use a three-layer Trans-
former decoder initialized by the cross-modal en-
coder of EfficientVLM to generate answers based
on the outputs of the cross-modal encoder. We fine-
tune the model for 10 epochs. During inference,
we constrain the decoder to only generate from
the 3,129 candidate answers following Zeng et al.
(2021); Li et al. (2021a).
Natural Language for Visual Reasoning
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Method ITR-TR ITR-IR NLVR2 VQA 2.0 COCO-Caption
R@1 R@5 R@10 R@1 R@5 R@10 val test test-dev test-std B@4 M C S

X-VLMclip 79.0 94.5 97.9 61.5 84.6 90.8 83.15 83.48 76.92 77.02 39.4 30.5 131.0 23.6
–98% 77.4 92.6 95.9 60.3 82.9 89.0 81.49 81.81 75.38 75.48 38.6 29.9 128.4 23.1
OSCARB 70.0 91.1 95.5 54.0 80.8 88.5 78.07 78.36 73.4 73.2 36.5 30.3 123.7 23.1
–98% 68.6 89.3 93.6 52.9 79.2 86.7 76.51 76.79 71.93 71.74 35.8 29.7 121.2 22.6

DistilDualEnc - - - - - - 74.16 74.30 68.05 - - - - -
ViLT 61.5 86.3 92.7 42.7 72.9 83.1 75.7 76.1 71.3 - - - - -
MiniVLM 58.8 85.1 91.7 45.0 74.1 84.0 73.71 73.93 69.1 69.4 35.6 28.6 119.8 21.6
DistillVLM 58.3 84.1 91.3 43.9 73.7 83.3 - - 69.8 69.6 35.6 28.7 120.8 22.1
X-VLMsmall 74.5 92.3 96.0 56.1 81.6 88.7 79.34 79.26 73.7 73.93 37.2 29.4 123.4 22.4
EfficientVLM 78.7 94.5 97.5 60.6 84.4 90.5 81.83 81.72 76.2 76.28 38.1 30.1 127.3 23.1

Table 3: Main results on various downstream vision-language tasks. The top groups are teacher models and
their 98% performance, which is used for reference. The bottom group contains previous efficient VLMs and the
X-VLMsmall baseline.

(NLVR2 (Suhr et al., 2018)) The task prescribes
the model to predict whether a text describes the
relations between two images. Following ALBEF
and X-VLM, we extend the cross-modal encoder
to enable reasoning over two images and perform a
domain pre-training step for two epochs. We then
fine-tune the model for 10 epochs.
Image Captioning The task requires a model
to generate textual descriptions of input images.
We evaluate X-VLM on the COCO Captioning
dataset (Chen et al., 2015). We report BLEU-
4 (Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2014), SPICE (Anderson et al., 2016)
and CIDEr (Vedantam et al., 2015) scores on the
Karparthy test split. Following Zeng et al. (2021),
we simply adapt EfficientVLM to a multi-modal
decoder for caption generation. We train Effi-
cientVLM with language modeling loss for two
epochs on 4M data. Then, we fine-tune it on the
COCO Captioning dataset for 10 epochs.

4.3 Experiment Setup

Teacher Models We initialized the teacher X-VLM
model with a pre-trained CLIP ViT (Radford et al.,
2021b) and a pre-trained BERT. We pre-train the
X-VLM on 4 million image-text pairs for 200k
steps. Then we fine-tune the teacher model on
downstream tasks following Zeng et al. (2021).
Pre-training We pre-train EfficientVLM on the
aforementioned 4 million image-text pairs for
400k steps with 16× V100 32G GPU. We adopt
AdamW (Loshchilov and Hutter, 2019) optimizer
and set the learning rate and weight decay as 1e-4
and 0.01 respectively. The batch size is set to 1024.
Fine-tuning We combine the modal-adaptive prun-
ing algorithm with knowledge distillation from the
fine-tuned teacher models. We set pruning sparsity

at 25%. Other fine-tuning hyper-parameters are
presented in the Appendix C.

4.4 Experimental Results

4.4.1 Main Results
We present the main results in Table 3. The top
group of models denotes the base-size VLMs used
as the teacher model for different compact VLMs.
We also list the 98% performance of these models
for better comparison. Specifically, X-VLMclip

5

is the teacher of EfficientVLM while OSCARB is
the teacher of DistillVLM. In the bottom group,
we compare EfficientVLM with other efficient
vision-language models as well as the X-VLMsmall
baseline. We can see that EfficientVLM substan-
tially outperforms all compared models by a large
margin despite DistilVLM and MiniVLM being
trained with 7 million image-text pairs while Effi-
cientVLM is only trained with 4 million image-text
pairs. Specifically, EfficientVLM achieves a R@1
of 78.7% and 60.6% on Image Retrieval and Text
Retrieval respectively, accounting for a large abso-
lute improvement of 17.2% and 15.6% compared
to the previous compact SoTA VLMs. We also
achieve 81.83% and 81.72% accuracy on the val-
idation set and test-P set of NLVR2, respectively,
surpassing prior efficient VLMs by a large mar-
gin. Similar observation can also be found on VQA
2.0 and COCO Captioning, where EfficientVLM
achieves 76.2% accuracy and 76.28 on the test-dev
set and test-std set, and 127.3 CIDEr score, respec-
tively. EfficientVLM also consistently outperforms
X-VLMsmall by a large margin on all datasets de-

5We adopted the first version of X-VLM model as teacher
instead of the latest one that uses Swin-Transformer as
its vision encoder because the model architecture of Swin-
Transformer makes the general distillation more difficult.
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Method ITR-TR ITR-IR NLVR2 VQA COCO-Caption
R@1 R@5 R@10 R@1 R@5 R@10 val test test-dev B@4 M C S

Ablation Study Results on Pre-train Distilltion Objectives

X-VLMsmall 73.0 91.8 96.0 55.3 81.1 88.6 78.68 78.39 73.39 35.7 29.0 117.9 21.8
+ Logits 76.6 93.4 96.8 58.7 82.9 89.4 81.16 80.97 74.91 36.4 29.5 121.5 22.2
+ Hidden 76.7 93.6 96.8 59.1 83.0 89.7 80.74 81.13 75.12 36.9 29.8 126.2 22.9
+ Attn 76.5 94.1 97.0 59.0 83.0 89.6 81.06 81.01 75.22 37.9 29.8 126.2 22.9

Ablation Study Results on Fine-tuning Objectives

EfficientVLM 78.7 94.5 97.5 60.6 84.4 90.5 81.83 81.72 76.2 38.1 30.1 127.3 23.1
- KD only 78.2 94.4 97.2 60.4 84.2 90.5 82.73 81.92 76.48 38.2 30.1 127.7 23.1
- Pruning only 77.9 94.3 97.3 59.7 83.8 90.1 80.71 80.47 74.87 6.9 10.9 8.2 3.5
- Fine-tune only 77.5 94.2 97.4 59.2 83.5 89.9 81.56 81.47 75.65 37.7 29.9 126.8 22.9

Table 4: Ablation study results. The top group shows the effects of gradually adding different distilled knowledge at
pre-training stage. We take checkpoints at 10w training steps for evaluation. The bottom group presents ablation
experiments of pruning and knowledge distillation at fine-tuning stage.

spite being more compact and efficient, demon-
strating the effectiveness of the proposed distilling
then pruning framework. Moreover, we find that
EfficientVLM surpasses 98% performance of the
teacher model on most datasets. In contrast, Distil-
lVLM underperforms the 98% OSCARB baseline
by a large margin. Actually, EfficientVLM recov-
ers 98.4% performance of X-VLMclip on average,
while DistilVLM only retains 89.3% performance
of OSCARB on average. This further confirms the
effectiveness of our method.

4.4.2 Ablation Study
We also conduct a series of ablation studies to better
understand the effectiveness of EfficientVLM.
Impact of Knowledge Distillation We first inves-
tigate the impact of different distillation objectives
by gradually adding logits distillation, hidden states
distillation, and attention distillation starting with
X-VLMsmall. The results are shown in the top group
of Table 4. We find that adding each component
improves the overall performance, demonstrating
the effectiveness of combing these components for
pre-train distillation.
Impact of Fine-tuning Objectives We then study
the effect of modal-adaptive pruning and knowl-
edge distillation in the fine-tuning stage. The re-
sults are shown in Table 4. First, by comparing the
results of EfficientVLM and that in Table 1, we can
see that modal-adaptive pruning with learned spar-
sity for encoders of each modality substantially out-
performs manually tuned sparsity. We also find that
EfficientVLM performs similarly to the KD-only
variant. These results confirm the effectiveness of
modal-adaptive pruning. We also find that pruning
without distillation results in worse results, demon-
strating the necessity of knowledge distillation dur-
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Figure 3: Results on NLVR2 and COCO Captioning
tasks with different sparsity ranging from 10% to 80% .

ing fine-tuning. Finally, we can see that simply
fine-tuning the compact task-agnostic pre-trained
EfficientVLM performs not as well. However, it
still outperforms existing baselines by a huge mar-
gin. This shows that EfficientVLM can also be
used as a good compact task-agnostic VLM.
Impact of Pruning Sparsity We also investigate
the performance of our modal-adaptive pruning
methods with different target sparsity ranging from
10% to 80%. The results are shown in Figure 3.
We can see that EfficientVLM retains over 95%
performance of the teacher model with a sparsity
of 50% and 40% on NLVR2 and COCO Caption-
ing, respectively. EfficientVLM also outperforms
the previous best results of compact VLMs with a
sparsity up to 70% and 60% on these tasks. This
shows EfficientVLM also performs well with larger
sparsity.

5 Conclusion

We introduce EfficientVLM, a fast and accurate
vision-language model trained with a distilling
then pruning framework. Empirical results show
that EfficientVLM retains 98.4% performance of
the base-size teacher model while only preserving
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44.3% parameters and achieving a speed-up ratio
of 2.2×. EfficientVLM also achieves a large ab-
solute improvement over previous efficient VLMs,
demonstrating a large potential towards lightweight
VLMs.

Limitations

EfficientVLM is applied on X-VLM. However,
there are also many recent fully Transformer
VLMs achieving comparable or better performance.
Therefore, applying our distilling then pruning
framework on other state-of-the-art VLMs can be
interesting. Also, we do not apply quantization or
matrix decomposition, which are prevalent model
compression techniques.

Ethics Statement

Our method is used to compress VLMs. Therefore,
ethical considerations of VLMs generally apply to
our method. We encourage users to assess potential
biases before deploying EfficientVLM.
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A Differentiable L0-Norm Regularization

The formulation of Equation 5 is still hard for
gradient-based optimization by the discrete nature
of masks, but the expectation provides some guid-
ance for empirically effective relaxations. Follow-
ing prior work (Louizos et al., 2017; Wang et al.,
2019; Guo et al., 2020), we apply Hard-Concrete
distribution (Maddison et al., 2017) to relax z into
continuous space [0, 1]d. Specifically, z is now de-
fined to be a deterministic and (sub)differentiable
function of a sample u from a uniform distribution,

u ∼ U(0, 1)

s = sigmoid(logu− log(1− u) +α)

s̄ = s× (r − l) + l

z = min(1,max(0, s̄))

Here l < 0 and r > 1 are two constants used to
stretch s into the interval (l, r)d before it is clamped
to [0, 1]d with the min(1,max(0, ·)) operation. In
this case we have a differentiable closed-form ex-
pression for the expected L0-norm,

E

[
∥θ̃∥0

]
=

n∑

j=1

E [zj > 0]

=
n∑

j=1

sigmoid
(
αj − log

−l

r

)
(7)

To better control the expected sparsity of the
student model, we follow Wang et al. (2019) to
replace the vanilla l0 objective with a Lagrangian
multiplier. Let t be the target model size and s(α)
be the constrained model size determined by the
Hard Concrete parameter α.

The Lagrangian method imposes an equality con-
straint s(α) = t by introducing a violation penalty,

LLgr = λ1 · (s(α)− t) + λ2 · (s(α)− t)2

where λ1, λ2 ∈ R are two Lagrangian multipliers
that will be jointly updated during training.

B Pre-train Datasets

Dataset # Images # Captions # Ann

COCO 0.11M 0.55M 0.45M
VG 0.10M - 5.7M
SBU 0.86M 0.86M -
CC-3M 2.9M 2.9M -

Table 5: Statistics of the pre-training datasets.

C Hyperparameters

The hyperparameters to reproduce fine-tuning re-
sults are in Table 6. Tasks with ∗ need two-stage
fine-tuning.

Tasks Learning Rate Batch Size Epoch

ITR-COCO 3e-5 384 10
NLVR∗ 3e-5 80 10
Captioning∗ 1e-5 256 5
VQA 5e-5 192 10

Table 6: Hyper-parameters for fine-tuning on down-
stream tasks.
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