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Abstract

In this study, we analyze the model intrinsic
features of a summarization model by varying
the fine-tuning objectives and datasets. We fine-
tune BART models combining three fine-tuning
objectives (negative log-likelihood, unlikeli-
hood, and contrastive loss) and two datasets
(CNN/DailyMail and XSum) and provide shuf-
fled or aligned documents to observe changes
in the model predictions and intrinsic features.
We find that (i) the inductive bias for factual
consistency during the fine-tuning procedure
depends on both the objectives and datasets,
and (ii) summarization models with relatively
low factual consistency are more likely to
model summaries that are not conditional to
the documents. We demonstrate that splitting
data based on the unconditional and conditional
summary modeling difficulty affects the factual
consistency and intrinsic features of the summa-
rization models. Our experimental results high-
light the importance of studying the inductive
bias during fine-tuning for factual consistency.

1 Introduction

Factual consistency in summarization denotes
whether the facts in the generated summary are
consistent with those of the given document. Fac-
tual consistency is essential but remains challeng-
ing, particularly in abstractive summarization (Cao
et al., 2018; Dong et al., 2020; Huang et al., 2020).
Recently, the fine-tuning of pre-trained language
models has resulted in an excellent performance
with improved factual consistency (Zhang et al.,
2020; Cao and Wang, 2021; Wan and Bansal,
2022).

In fine-tuning based summarization, fine-tuning
objectives such as contrastive loss (CL) are com-
bined with cross-entropy loss to improve informa-
tiveness or factual consistency (Liu and Liu, 2021;
Cao and Wang, 2021; Wan and Bansal, 2022). They
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Document
LudoSport has opened its first academy teaching seven
forms of combat from the Star Wars world using flexible
blades mounted on weighted hilts. The sport began eight
years ago in Italy but has only just come to England with
the first classes in Cheltenham. Instructor Jordan Court
said people were already "hooked". ... So far there are six
pupils, but this number is expected to increase. ... The sport
is so new to England that there have only been a handful
of classes so far ... Lightsaber Combat Academy There are
several ranks for those wishing to become a fully-fledged
Jedi Knight:
Summary
High LU − LC : A lightsaber-wielding martial artist has
opened an academy in Cheltenham to teach people how to
"fight like a Jedi".
High LU : A new martial art inspired by the Star Wars
franchise has come to the UK for the first time.
Low LU : Hundreds of people are taking part in the UK’s
first lightsaber combat class.
Low LU − LC : If you’re a fan of Star Wars, you might
want to think twice before taking up lightsaber combat.

Table 1: Output summaries from BART fine-tuned using
XSum split in half (high or low) divided by LU or LU −
LC . LU and LC indicate unconditional and conditional
training losses of summary (see Section 6), respectively.
Contents that are not supported by the given document
are highlighted.

focus on improving the informativeness and factual
consistency aspects of the generated summaries.

Factual consistency also depends on the fine-
tuning datasets. In particular, models trained with
XSum (Narayan et al., 2018), where the reference
summaries are highly abstractive, are known to
show degenerated factual consistency (Kryscinski
et al., 2020; Maynez et al., 2020; Xie et al., 2021).

There have been several studies on the proper-
ties of datasets in this context (Kryscinski et al.,
2019; Kang and Hashimoto, 2020; Bommasani and
Cardie, 2020; Wan and Bansal, 2022; Liu et al.
(2022); Cao and Wang, 2021). For instance, Lin
et al. (2022) and Wan and Bansal (2022) report that
models trained using XSum are more likely to gen-
erate hallucinated words, which is critical to the
factual consistency. Liu et al. (2022) inspect the dis-
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tribution of predicted hallucinations in terms of the
probability and entropy of model predictions. Kang
and Hashimoto (2020) propose a loss truncation
approach based on the observation that samples
with hallucinations have higher losses than other
samples. Previous works have focused on dataset
intrinsic features or model predictions, but the in-
ductive bias from the datasets and model intrinsic
features with respect to the factual consistency has
not been fully explored.

In this paper, we propose a unified view of the
intrinsic features of a fine-tuning based summa-
rization model by integrating the aspects of fine-
tuning objectives and datasets. We utilize BART
(Lewis et al., 2020), which has recently been used
in fine-tuning based summarization models for fac-
tual consistency. We compare three training ob-
jectives: negative log-likelihood (NLL), unlikeli-
hood (UL, Welleck et al., 2020; Li et al., 2020),
and contrastive loss (Cao and Wang, 2021), and
two datasets: CNN/DailyMail (CNNDM, Hermann
et al., 2015) and XSum, to fine-tune BART.

We hypothesize that summarization models with
low factual consistency are prone to generating
summaries less conditioned on the document and
perform unconditional summary modeling based
on the inductive bias originating from both the train-
ing objectives and datasets. To verify our hypothe-
sis, we conduct a shuffle test, in which a summary
prefix and an aligned (relevant) or shuffled (irrel-
evant) document are fed to the model to observe
the changes in the model intrinsic features. Specif-
ically, we inspect the conditional summary likeli-
hood, summary prefix saliency, and per decoding
step entropy during the shuffle test to determine
the document sensitivity of summarization mod-
els with respect to the probability, saliency, and
entropy, respectively.

For the dataset aspect, we further hypothesize
that the (un)conditional summary modeling diffi-
culty (LU and LC in Table 1) of data is one of the
causes of the inductive bias related to the factual
consistency. We fine-tune GPT-2 (Radford et al.,
2019) with summaries of the training set using the
NLL, then we measure the NLL of each summary
as a proxy for unconditional summary modeling
difficulty. Similarly, we fine-tune BART with doc-
ument/summary pairs of the training set using the
NLL, then we measure the NLL of each summary
as a proxy for conditional summary modeling dif-
ficulty. We split the training samples based on the

(un)conditional summary modeling difficulty and
fine-tune BART models using the subset to inspect
the relationship between the (un)conditional sum-
mary modeling difficulty of the fine-tuning subset
and the factual consistency of the fine-tuned BART.

Based on XSum, we empirically show that a sum-
marization model fine-tuned using a subset with
high unconditional and low conditional summary
modeling difficulty results in an improved factual
consistency relative to a subset with low uncon-
ditional and high conditional summary modeling
difficulty. Table 1 shows an example summary
from the models fine-tuned using different training
subsets as split by the (un)conditional training loss.
We observe that summaries from models fine-tuned
with low LU or LU −LC are factually inconsistent
containing errors or unrelated information.

Our findings can be summarized as follows:

• Both the UL and CL based models output
decreased summary likelihood and summary
prefix saliency given the shuffled document
compared to NLL based models.

• BART fine-tuned with XSum is less affected
by the information in the documents and tends
to unconditionally model the summary.

• In XSum, summaries have a distribution that
is easily fine-tuned compared to CNNDM,
and samples with low unconditional summary
modeling difficulty provide an inductive bias
that degrades the factual consistency.

We separate the experiments on the model in-
trinsic features into those for fine-tuning objectives
(Section 5.1) and fine-tuning datasets (Section 5.2)
to validate that our methods can be used to diagnose
the factual consistency of summarization models.
In Section 6, we empirically show that both hal-
lucinations in datasets and unconditional training
loss cause an inductive bias that the affects factual
consistency.

2 Background

We use BART for all experiments and assume that
the summarization model consists of a bidirectional
encoder and unidirectional decoder, and that the
fine-tuned BART follows an autoregressive decod-
ing scheme. At decoding step t, the summarization
model generates a t-th token ŷt conditioned to doc-
ument D = {d1, d2, ..., dM} where the length is
M and the previously decoded sequence ŷ<t.
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Document Summary SPS
The space agency has set out a three part plan, which

it hopes will eventually lead to humans living on Mars
by the 2030s. Unlike the Moon, humans have never
physically set foot on Mars, we’ve only ever used
robots like the Curiosity Rover ...

(Aligned) Nasa has revealed its plans to try to get humans
living on Mars in the next few decades.

0.088

(Shuffled) Microsoft has unveiled Xbox SmartGlass: a
service to allow tablet computers and smartphones to com-
municate with its video games consoles.

0.294

Estimated figures from its Federal Statistical Office
said gross domestic product was 1.9% higher last year
than in 2015. The annual figure is based on an early
estimated ... Household spending grew by 2%, while
government spending was up by 4.2%, partly because
of an increase in spending ...

(Aligned) Germany’s economy stepped up its pace of
growth in 2016, thanks to higher household and govern-
ment spending.

0.156

(Shuffled) Police in Edinburgh are investigating a series of
thefts and attempted thefts where men have impersonated
police officers.

0.488

Table 2: Examples of summary prefix saliency when the document and summary are aligned or shuffled. Note that
we shuffle the document-summary pairs in a summary side for readability.

2.1 Fine-tuning Objectives for Factual
Consistency

The negative log-likelihood, which is the baseline
objective for our experiments, aims to maximize
the probability of the reference summary. NLL loss
function is defined as follows:

LNLL = − 1

N

N∑

n=1

log pn(yn|y<n, D), (1)

where Y = {y1, y2, ..., yN} denotes the reference
summary where the length is N and pn denotes
the probability distribution at position n. The NLL
does not explicitly guide the model to discrimi-
nate factually consistent summaries from factually
inconsistent summaries.

Recent studies have proposed training objectives
such as UL and CL that exploit well-designed, fac-
tually inconsistent summaries (negative samples)
during training (Cao and Wang, 2021; Wan and
Bansal, 2022). The unlikelihood is augmented with
NLL to minimize the likelihood of a negative sam-
ple Y ′ = {y′1, y′2, ..., y′N} as follows:

LUL = − 1

N

N∑

n=1

log(1− pn(y
′
n|y′<n, D)). (2)

The contrastive loss in summarization maximizes
the similarity between factually consistent and se-
mantically equivalent summaries (positive samples)
while minimizing the similarity between positive
and negative samples.

The performances of UL and CL highly depend
on the discrimination difficulty of the negative sam-
ples, and there are various positive and negative
sample construction techniques (Kryscinski et al.,
2020; Zhang et al., 2021; Cao and Wang, 2021;
Wan and Bansal, 2022; Liu et al., 2022).

2.2 Summarization Datasets

We use CNNDM and XSum for the fine-tuning
datasets because their characteristics are different.
A reference summary in XSum is designed to be
more abstractive than a summary in CNNDM. Con-
sequently, multiple studies have shown that models
fine-tuned using XSum generate factually incon-
sistent summaries more frequently than those fine-
tuned using CNNDM (Maynez et al., 2020; Xie
et al., 2021). Recent studies have shown the pres-
ence of hallucinated words (i.e. the words that
cannot be fully inferred from the given document)
in reference summaries lead the model to be factu-
ally inconsistent (Lin et al., 2022; Wan and Bansal,
2022).

We also use the Newsroom (Grusky et al., 2018)
dataset to compare two BART models fine-tuned
using CNNDM and XSum. The reference sum-
mary of Newsroom is annotated with the extrac-
tiveness according to the degree to which words
or phrases are included in the document. By uti-
lizing Newsroom, we intend to compare the two
models fixing the extractiveness and length distri-
bution of the evaluation data as much as possible.
We use samples labeled with Extractive and Ab-
stractive (samples with Mixed are excluded) for
further analyses.

3 Methodology

We analyze the changes in the model intrinsic fea-
tures when a document and its summary are factu-
ally consistent. We control the factual consistency
with document-level perturbation by providing an
aligned or shuffled document-summary pairs to the
model.

We choose document-level perturbation to (i)
maximize the difference in the model intrinsic fea-
tures and (ii) examine whether the model tends to
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predict a summary conditioned on the document
even if the document is irrelevant. In this section,
we explain the intrinsic features of the model.

3.1 Conditional Summary Likelihood
Inspired by Xie et al. (2021), we investigate how
the (ir)relevant document affects the conditional
likelihood of the summary. Given an aligned or
shuffled document D and summary y, we define the
conditional summary likelihood (CSL) as follows:

CSL =
1

N

N∑

n=1

pn(yn|y<n, D). (3)

By calculating the difference in the CSL between
the aligned and shuffled cases, we aim to measure
the document-sensitiveness of the summarization
models when relevant or irrelevant documents are
given, respectively.

3.2 Summary Prefix Saliency
We quantify the summary prefix saliency (SPS) to
observe whether the model focuses on the docu-
ment to decode the rest of the summary when the
document is irrelevant to the given summary prefix.

The gradient-based input saliency (Li et al.,
2016; Sundararajan et al., 2017; Arrieta et al.,
2020; Atanasova et al., 2020) is used to explain
the prediction in the input space. We aggregate the
element-wise multiplication of the input embed-
ding and its gradient using the L2-norm, according
to Atanasova et al. (2020).

We first calculate the cross-entropy loss L from
the summarization model φ and then derive the
gradient with respect to each input embedding. No-
tably, the loss is calculated using a teacher forcing
scheme. We define the saliency of the input token
x as follows:

Saliencyx = ||e(x)⊙∇e(x)Lφ(D,Y )||2, (4)

where e(x) is the embedding vector of the token
x and ⊙ is the element-wise vector multiplication
operator.

Based on the input saliency, we calculate the
SPS, the input saliency ratio of the summary prefix
in the concatenated document and summary, as
follows:

SPS =

∑
y∈Y Saliencyy∑

x∈D∪Y Saliencyx
. (5)

For each target summary token yn, the SPS quan-
tifies the saliency of the summary prefix y<n.

3.3 Per Decoding Step Entropy
Motivated by the study conducted by King et al.
(2022) where the entropy of a model is used as a
proxy of the uncertainty, we measure the entropy
difference between the aligned and shuffled cases.
The entropy difference is used to investigate de-
coding dynamics and approximate the document-
sensitiveness, in terms of the uncertainty of the
models.

We measure the entropy of the predicted prob-
ability distribution at each decoding step n in the
teacher forcing scheme as follows:

Entropyn = −
|V |∑

i=1

pn(vi) log pn(vi), (6)

where V = {v1, v2, ..., v|V |} is the vocabulary of
the model. For brevity, we omit the document (D)
and summary prefix (y<n) conditions in Equation
6. When a shuffled document is given, a relatively
low entropy at the decoding step n implies that the
model attempts to generate a summarization even
if the relevant information does not exist.

By utilizing per decoding step entropy, we focus
on analyzing the unconditional summary modeling
characteristics of BART fine-tuned with XSum and
CNN/DailyMail to investigate inductive bias from
the fine-tuning datasets.

4 Experimental Setup

We use BART fine-tuned using the NLL objec-
tive provided by fairseq1 (Ott et al., 2019). We
refer to the github repository of CLIFF2 (Cao and
Wang, 2021) for the fine-tuned models using the
CL and scripts for UL based fine-tuning. For the
negative sample construction methods, we choose
SysLowCon for the CL and MaskEnt for the UL
as proposed by Cao and Wang (2021).

During the CSL and SPS measurements, we cal-
culate the log-probability or cross-entropy loss only
for important words. Motivated by Xie et al. (2021),
we filter out tokens of specific categories by apply-
ing part-of-speech tagging using spaCy (Honnibal
et al., 2020). We select nouns, verbs, numbers, and
proper nouns for the measurements which are more
likely to contain factual information. In addition,
we filter out the first 30% of the tokens during the
loss calculation of the SPS to provide a sufficient
summary prefix during the likelihood estimation.

1https://github.com/pytorch/fairseq
2https://github.com/ShuyangCao/cliff_summ
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Figure 1: CSL and SPS of BART fine-tuned with three objectives on CNN/DailyMail and XSum test set.

Based on the human evaluation and automatic
factual consistency assessment results reported by
Cao and Wang (2021), we assume that BART, fine-
tuned using CL, UL, and NLL, shows the highest
factual consistency in that order, regardless of the
fine-tuning datasets.

In the remainder of this paper, we refer to the
BART fine-tuned using NLL, UL, and CL as BART-
NLL, BART-UL, and BART-CL, respectively. In
the same way, we refer to BART fine-tuned using
CNNDM and XSum as BART-CNN and BART-
XSum, respectively.

5 Fine-tuned Model Analysis

5.1 Fine-tuning Objectives: Conditional
Summary Likelihood and Summary
Prefix Saliency

Analysis on CSL The results of the CSL and SPS
analyses are shown in Figure 1. For both fine-
tuning objectives and datasets, the CSL of the shuf-
fled documents is lower than that of the aligned
documents.

From a fine-tuning objective perspective, BART-
UL and BART-CL show lower CSL values than
BART-NLL in the shuffled case, and BART-UL
shows the lowest CSL values in both the aligned
and shuffled cases. The results imply that factual
consistency is negatively related to CSL when an
irrelevant document is given; however, preserving
a high CSL in aligned cases is also needed.

Analysis on SPS In all shuffled cases, the SPS is
higher than that in aligned cases, as shown in Fig-
ures 1(c) and (d). This is equivalent to the fact that
the model can specify the related context, which is
the model intrinsic feature positive to the factual
consistency. Both the UL and CL regulate the incre-
ment of the SPS in the shuffled case from the SPS
in the aligned case. We conclude that the flexibility

Extractive Abstractive
Align Shuffle ∆ Align Shuffle ∆

Negative log-likelihood
BART-CNN 0.775 0.085 0.690 0.222 0.058 0.164
BART-XSum 0.600 0.083 0.517 0.198 0.057 0.141

Unlikelihood
BART-CNN 0.339 0.016 0.323 0.101 0.017 0.085
BART-XSum 0.391 0.024 0.368 0.108 0.021 0.086

Contrastive loss
BART-CNN 0.762 0.068 0.695 0.213 0.046 0.167
BART-XSum 0.549 0.073 0.476 0.187 0.051 0.136

Table 3: CSL of BART-CNN and BART-XSum on
Newsroom test set subsets (Extractive, Abstractive).

of the SPS conditioned on the document is a crucial
factor in the factual consistency, and that regula-
tion of the SPS in the shuffled case is required for
further improvement of the factual consistency.

Comparison between Fine-tuning Datasets
We evaluate the CSL of BART-CNN and BART-
XSum on the Newsroom dataset to investigate the
model intrinsic features caused by the fine-tuning
dataset. As shown in Table 3, the CSL differences
between the aligned and shuffled cases of BART-
XSum are less than those of BART-CNN regardless
of the extractiveness of the summary, except for
the unlikelihood objective. We hypothesize that
BART-XSum is less conditioned on the informa-
tion in the document, which is the negative model
intrinsic feature for factual consistency. We con-
duct a further comparison (as discussed in Section
5.2) to validate our hypothesis.

5.2 Fine-tuning Datasets: Per Decoding Step
Entropy

We further analyze the dataset aspect because the
factual consistency of fine-tuned models largely
varies with the dataset characteristics. Figure 2
depicts a graph of the per decoding step entropy av-
eraged over the samples in the Newsroom dataset.

We plot the entropies in the first 100 decoding
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Figure 2: Per decoding step entropy averaged over samples of BART-CNN and BART-XSum on Newsroom test
set subsets (Extractive, Abstractive) and two document-summary alignment cases (Align, Shuffle). The entropies
averaged over 10–100 decoding steps and their differences between the aligned and shuffled cases are shown on
each plot.
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Figure 3: Examples of top-5 predictions on the decoding steps corresponding to the underlined tokens, given the
shuffled document and summary prefix. The emboldened tokens in the document/summary are related to the tokens
in the summary/document, respectively.

steps, considering that the maximum summary to-
ken length of the XSum test set is approximately
100. Unlike BART-XSum, the average entropy
of BART-CNN slightly decreases after 50 decod-
ing steps. One possible explanation is that BART
models fine-tuned with longer summaries are able
to better predict the next summary tokens. For
a quantitative analysis, we calculate the average
entropy over the decoding steps 10 to 100. In
both the Extractive and Abstractive subsets, BART-
CNN shows higher entropy differences between
the aligned and shuffled cases, as shown in Figure
2 (b) and (d). Combined with the results in Table 3,
we conclude that BART fine-tuned with XSum is
less sensitive to a given document.

We hypothesize that the characteristics of the
unconditional summary modeling of BART-XSum
originate from the inductive bias, which occurs
during the fine-tuning phase and degrades the fac-
tual consistency of the summarization model. In
Section 6, we provide the experimental results re-
garding the inductive bias of the factual consistency
originating from the fine-tuning datasets.

In Figure 3, we visualize the top-5 predictions,

assuming that the shuffled document and summary
prefix are provided. We gather the top-5 predictions
for all the decoding positions simultaneously by
following the teacher forcing scheme. First, we
identify the cases where the top-5 predictions are
strongly conditioned on the summary prefix rather
than on the document (e.g., the second and first
top-5 predictions in BART-XSum and BART-CNN
in Figure 3, respectively). In BART-XSum, there
are some predictions weakly related to the words
in the document (e.g., summer and bee). However,
the predictions are not factually consistent and are
not similar to the other predictions (e.g., bread,
tea, coffee, and money). In contrast, the top-5
predictions in BART-CNN are more similar to each
other or are factually consistent.

6 Modeling Difficulty based Data
Splitting and Inductive Bias

To clarify one of the causes of the unconditional
summary modeling property of BART-XSum, we
fine-tune the GPT-2 model (Radford et al., 2019)
using the summaries in the training sets of CN-
NDM and XSum, and plot the training loss curve
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Figure 4: Training loss curves of GPT-2 during fine-
tuning using the summaries in CNNDM (GPT-2-CNN)
and XSum (GPT-2-XSum).

in Figure 4. We use a pre-trained GPT-2 from Hug-
gingFace3 (Wolf et al., 2020). Based on the results
in Figure 4, we conclude that the unconditional
language model fine-tuned with the summaries in
XSum converges faster than that fine-tuned with
CNNDM. This demonstrates our hypothesis in Sec-
tion 5.2, i.e., that the low unconditional summary
modeling difficulty of XSum results in an induc-
tive bias for the unconditional summary modeling
property of the fine-tuned summarization model.

6.1 Definition

We use unconditional and conditional training loss
as proxies of unconditional and conditional sum-
mary modeling difficulty, respectively. We define
the unconditional training loss (denoted as LU ) of
the summary as the NLL of the language model
fine-tuned with the summary given only the sum-
mary. We utilize the fine-tuned GPT-2 to calculate
the unconditional training loss. Similarly, we de-
fine the conditional training loss (denoted as LC) of
the summary as the NLL of the fine-tuned summa-
rization model given the document and summary.
We utilize the fine-tuned BART to calculate the
conditional training loss. Additionally, we denote
a difference between the unconditional and condi-
tional training loss (i.e. LU − LC) as L∆.

6.2 Setup

We design experiments to observe the relationship
between (un)conditional summary modeling diffi-
culty and model intrinsic features.

We split the training set into two subsets based
on three standards (LU , LC , and L∆), resulting in
six fine-tuning subsets in total. We expect that the

3https://huggingface.co/gpt2

XSum CNNDM
High Low High Low

−LC 21.24± 0.09 21.05± 0.06 46.08± 0.24 46.21± 0.23
LU 21.24± 0.06 20.86± 0.06 46.30± 0.15 45.94± 0.08
L∆ 21.40± 0.09 20.77± 0.05 46.21± 0.24 46.15± 0.16

Table 4: QEval scores of BART-XSum and BART-CNN
fine-tuned with the subset of training set based on three
standards (−LC , LU , L∆) and two categories (high,
low).

samples with high LC prevent unconditional sum-
mary modeling properties and that those with low
LC assist in the conditional summary modeling.

Our goal is to analyze the six summarization
models with respect to factual consistency, CSL,
and SPS. For the factual consistency evaluation,
we leverage the QuestEval (QEval in short) score
(Scialom et al., 2021), a question-answering based
automated evaluation method.

Some studies have controlled training samples
during summarization model training to improve
the factual consistency (Kang and Hashimoto,
2020; Wan and Bansal, 2022; Goyal and Durrett,
2021). For instance, Kang and Hashimoto (2020)
adaptively eliminate samples with high loss and
Goyal and Durrett (2021) propose identifying non-
factual words in a reference summary and modi-
fying the objective function for the factual consis-
tency. Unlike previous works, we fine-tune both
conditional and unconditional language models to
calculate the difficulty and analyze the inductive
bias during fine-tuning.

6.3 Results

Factual Consistency Analysis We measure the
QEval scores of BART fine-tuned using the six
categories of training subsets. Table 4 presents
the means (with a 99% confidence interval) of 8
different seeds.

In XSum, subsets with low LC or high LU

achieve higher factual consistency compared to
their counterparts. The difference in the QEval
scores between the high and low subsets of LU is
larger than those of LC , implying that a low LU

causes the inductive bias of the factual consistency
degradation in BART-XSum. Furthermore, collect-
ing samples with a high L∆ maximizes the factual
consistency. Documents with high L∆ vastly de-
crease the conditional summary modeling difficulty
by using the related information in the document;
simultaneously, they roughly filter out the halluci-
nated samples.
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Figure 5: CSL and SPS of BART fine-tuned with the subset of XSum training set based on two standards considering
unconditional training loss (LU , L∆).

In CNNDM, data splitting based on LC and LU

affects the factual consistency less, than that in the
case of the XSum results. One possible explanation
is that the negative inductive bias for the factual
consistency from the dataset is less dominant than
the inductive bias from other factors, such as the
fine-tuning objectives.

Model Intrinsic Feature Analysis We further
analyze BART-XSum with regards to the CSL and
SPS to determine the correlation between LU and
resulting model intrinsic features. In Figure 5, we
visualize the CSL and SPS based on LU and L∆,
because we assume that LU is the major factor in
the unconditional summary modeling characteris-
tics of the models fine-tuned using XSum.

It is observed that the models fine-tuned with
XSum subsets of the high group show lower CSL
and SPS in the shuffle case than the models of the
low group. When comparing LU and L∆, it is ob-
served that the gap in the CSL between the models
in the high and low groups is larger in L∆. The
regulated CSL and SPS of the models of the high
group in the shuffle case indicate that LU is related
to the inductive bias of unconditional summary
modeling and factual consistency.

7 Related Work

7.1 Fine-tuning Methods for Factual
Consistency Enhancement

Sequence-to-sequence models, widely used in text
generation tasks such as language modeling (De-
vlin et al., 2019; Radford et al., 2019) and summa-
rization (Lewis et al., 2020; Zhang et al., 2020) are
commonly trained under the NLL.

Despite their powerful modeling performance,
language models trained to optimize the NLL of-
ten encounter the text degeneration problem where

the generated texts contain repetitive words or in-
consistent contexts (Holtzman et al., 2020). UL
was proposed to prevent such problems by penal-
izing the modeling probability of unwanted tokens
(Welleck et al., 2020; Li et al., 2020).

CL was also proposed to enhance factual con-
sistency in the summarization models. Cao and
Wang (2021) fine-tune pre-trained language mod-
els with a contrastive loss to learn distinguishable
representations of the factually erroneous summa-
rization outputs from the sound ones. Wan and
Bansal (2022) propose factual consistency enhanc-
ing methods with pre-training objectives and fine-
tuning modules.

In this paper, we compare the fine-tuning ob-
jectives for factual consistency with respect to the
conditional summary likelihood and summary pre-
fix saliency to find the relationship between the
fine-tuning objectives and the model intrinsic fea-
tures.

7.2 Analysis of Summarization Datasets and
Models

There have been several studies analyzing the prop-
erties of summarization datasets (Kryscinski et al.,
2019; Maynez et al., 2020; Bommasani and Cardie,
2020). For instance, Maynez et al. (2020) in-
spect intrinsic/extrinsic hallucinations in model-
generated summaries on the XSum dataset, and
Bommasani and Cardie (2020) quantify the intrin-
sic features of datasets, such as their topic similarity
and abstractivity. In this paper, we focus on the in-
ductive bias from the datasets and resultant model
intrinsic features rather than the characteristics of
the dataset itself.

On the other hand, the characteristics of the ab-
stractive summarization model have also been stud-
ied (Kang and Hashimoto, 2020; Pagnoni et al.,
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2021; Xu et al., 2020; Cao and Wang, 2021; Liu
et al., 2022; West et al., 2022). Xu et al. (2020) re-
late model intrinsic features such as entropy and at-
tention to a model prediction. Liu et al. (2022) and
Cao and Wang (2021) analyze the characteristics
of the predicted hallucinated words with respect
to model intrinsic features such as probability and
entropy. West et al. (2022) conduct factual ablation
studies to observe the probability differences when
essential information is ablated from a document.

In this paper, we analyze the model with respect
to the datasets and fine-tuning objectives and focus
on the intrinsic features of the fine-tuned model,
such as the SPS and unconditional summary model-
ing property. Unlike West et al. (2022), we provide
aligned and shuffled documents to maximize the
CSL, SPS, and entropy differences.

Kang and Hashimoto (2020) report that the
losses of samples containing hallucinations are
higher than those of others. We also exploit the
loss during the data splitting experiments, but we
additionally utilize the unconditional modeling loss
of the summary. Furthermore, we integrate the loss
with the inductive bias of the fine-tuned models.

8 Conclusion

In this work, we analyze the model intrinsic fea-
tures that contribute to factual consistency enhance-
ment of the summarization model. With the as-
sumption that summarization models with low fac-
tual consistency tend to ignore information from
the given documents, we conduct shuffle tests and
propose a unified view of the intrinsic features on
the fine-tuning objectives and datasets. We measure
the CSL, SPS, and per decoding step entropy of
BART models to clarify the model intrinsic features
related to factual consistency. We also correlate the
unconditional and conditional summary modeling
difficulty with the inductive bias for factual consis-
tency through data splitting experiments. Based on
the analyses, we anticipate that our method can be
used as an indicator of the factual consistency of
summarization models.

Limitations

In this paper, we use a pre-trained BART to ob-
serve the changes in the model intrinsic features
by varying the fine-tuning objectives and datasets.
However, our methods can be made significantly
more generalizable when the range of summariza-
tion models (e.g., PEGASUS (Zhang et al., 2020))

and datasets (e.g., FRANK benchmark (Pagnoni
et al., 2021)) are broadened. Additionally, we can
try using other evaluation methods, such as FactCC
(Kryscinski et al., 2020), reported to have a high
correlation with human judgment (Pagnoni et al.,
2021) to interpret the model intrinsic behavior dur-
ing the shuffle tests.

We leave the research on methods to optimize
the inductive bias during the fine-tuning process
to improve the factual consistency as future work.
Our experimental results can also be integrated
with those of previous studies focusing on halluci-
nations in datasets (Kryscinski et al., 2020; Wan
and Bansal, 2022).
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Train Validation Test
XSum 204,045 11,332 11,334

CNN/DailyMail 287,227 13,368 11,490
Newsroom (Ext) 332,131 36,372 36,165
Newsroom (Abs) 333,350 36,480 36,595

Table 5: Dataset statistics of XSum, CNN/DailyMail,
Newsroom of Abstractive summary (Abs), and News-
room of Extractive summary (Ext).

FT Steps FT Time GPU(s)
BART-CNN 20k 6 hours Tesla V100×4
BART-XSum 15k 4 hours Tesla V100×4
GPT-2-CNN 12k 9 hours Tesla V100×2
GPT-2-XSum 9k 7 hours Tesla V100×2

Table 6: Fine-tuning (FT) steps, time, and GPUs for the
models used in our experiments.

A Fine-tuning Language Model for
Dataset Split

To split the fine-tuning datasets based on the mod-
eling difficulties, we fine-tune the pre-trained GPT-
2-base model (Radford et al., 2019) from Hugging-
Face4 (Wolf et al., 2020) using the reference sum-
mary set from each dataset. We re-train the byte-
pair encoding tokenizer of the GPT-2 model with
XSum (or CNN/DailyMail) subset for better adap-
tation on the summarization domain. The final lan-
guage models using CNN/DailyMail and XSum are
fine-tuned for 12,000 and 9,000 steps, respectively,
using early stopping with the validation loss. We
split the fine-tuning dataset to a block size of 1024,
use a batch size of 32, and set an initial learning
rate of 5e-5.

B Decoding Details

We follow the same decoding scheme, i.e., beam
search decoding, as Cao and Wang (2021). We
also use the same hyperparameters of decoding:
fairseq5 (Ott et al., 2019) and CLIFF6 (Cao and
Wang, 2021).

For CNN/DailyMail, we set the beam width to 4
and the minimum length to 55. For XSum, we set
the beam width to 6 and the minimum length to 10.

4https://huggingface.co/gpt2
5https://github.com/facebookresearch/fairseq/

blob/main/examples/bart/summarize.py
6https://github.com/ShuyangCao/cliff_summ/

tree/main/scripts/bart

NLL CL
CNNDM (Align) 0.4485 0.3382

CNNDM (Shuffle) 0.0819 0.0354
XSum (Align) 0.4239 0.3779

XSum (Shuffle) 0.1076 0.0885

Table 7: CSL of PEGASUS fine-tuned with NLL and
CL objectives on CNN/DailyMail and XSum test set.

C Dataset Statistics

Statistics of XSum, CNN/DailyMail, and News-
room are shown in Table 5. Note that we only use
the test set of Newsroom because we use News-
room during the evaluation of BART-CNN and
BART-XSum.

D Model Size and Training Time

We fine-tune BART-large which consists of 400M
parameters for the experiments. To calculate un-
conditional training loss of summary, we fine-tune
GPT-2 which consists of 117M parameters. De-
tailed fine-tuning times for the models are shown
in Table 6.

E License of Repositories and Datasets

The repository of fairseq is under the MIT li-
cense, and the repository of huggingface is un-
der the Apache-2.0 license. The repositories of
CNN/DailyMail and Newsroom are under the
Apache-2.0 license, and the repository of XSum is
under the MIT license.

F Conditional Summary Likelihood on
PEGASUS

We compare the CSL of fine-tuned PEGASUS
(Zhang et al., 2020) with respect to fine-tuning
objective following hyperparameters as Cao and
Wang (2021). Table 7 shows results similar to
BART: in the shuffle case, PEGASUS fine-tuned
using the CL shows less CSL compared to its NLL
counterpart.
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