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Abstract

Answering complex queries on knowledge
graphs is important but particularly challenging
because of the data incompleteness. Query em-
bedding methods address this issue by learning-
based models and simulating logical reasoning
with set operators. Previous works focus on
specific forms of embeddings, but scoring func-
tions between embeddings are underexplored.
In contrast to existing scoring functions mo-
tivated by local comparison or global trans-
port, this work investigates the local and global
trade-off with unbalanced optimal transport the-
ory. Specifically, we embed sets as bounded
measures in R endowed with a scoring func-
tion motivated by the Wasserstein-Fisher-Rao
metric. Such a design also facilitates closed-
form set operators in the embedding space.
Moreover, we introduce a convolution-based
algorithm for linear time computation and a
block-diagonal kernel to enforce the trade-off.
Results show that WFRE can outperform ex-
isting query embedding methods on standard
datasets, evaluation sets with combinatorially
complex queries, and hierarchical knowledge
graphs. Ablation study shows that finding a
better local and global trade-off is essential for
performance improvement.1

1 Introduction

Knowledge graphs (KGs) store real-world fac-
tual knowledge as entity nodes and relational
edges (Miller, 1995; Bollacker et al., 2008; Vran-
dečić and Krötzsch, 2014). And they facilitate
many downstream tasks (Xiong et al., 2017a; Wang
et al., 2019; Lin et al., 2020). Notably, answer-
ing complex logical queries is an essential way
to exploit the knowledge stored in knowledge
graphs (Ren et al., 2020, 2021).

Formally speaking, complex logic queries can
be expressed via first-order logic (Ren et al., 2020;

∗ Equal Contribution
1Our implementation can be found at https://github.

com/HKUST-KnowComp/WFRE.

Marker, 2002). Specific groups of queries, whose
predicates and logical connectives can be converted
as set operatiors (Wang et al., 2021), are of particu-
lar interest due to their clear semantics. Therefore,
the logical reasoning process to answering complex
queries is transformed to execute set projections
and operations in an operator tree (Ren et al., 2020;
Wang et al., 2021). Figure 1 shows the operator tree
for the query "Who is the non-American director
that has won Golden Globes or Oscar".

What makes this task difficult is the data incom-
pleteness of knowledge graphs. Modern large-scale
KGs are naturally incomplete because they are con-
structed by crowdsource (Bollacker et al., 2008;
Vrandečić and Krötzsch, 2014) or automatic infor-
mation extraction pipelines (Carlson et al., 2010).
This issue is acknowledged as the Open World As-
sumption (Libkin and Sirangelo, 2009) (OWA). It
leads to the fact that applying query answering al-
gorithms for complete databases will not result in
complete answers because of the data incomplete-
ness. Also, it is not able to prune the search space
with the observed incomplete knowledge graph,
which results in a large computational cost (Ren
et al., 2020). It makes the problem even harder
when answering logical queries on large knowledge
graphs with billions of edges (Ren et al., 2022).
We refer readers to recent surveys for more about
logical queries on knowledge graphs (Wang et al.,
2022b; Ren et al., 2023).

Query embedding methods (Hamilton et al.,
2018; Ren et al., 2020) in fixed dimensional spaces
are proposed to overcome the above difficulties.
The data incompleteness is addressed by general-
izing learnable set embeddings and operators to
unseen data (Ren et al., 2020; Ren and Leskovec,
2020). And the computation cost does not grow
with the Developing efficient forms of set em-
beddings and operators is one of the recent fo-
cuses (Choudhary et al., 2021a; Zhang et al., 2021;
Alivanistos et al., 2022; Bai et al., 2022; Chen
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Natural Language: Find non-American directors whose movie won Golden Globes or Oscar?
Logical Formula: 𝑞 = 𝑉?∃	𝑉". (Won 𝑉", GoldenGlobes ∨ Won(𝑉", Oscar)) ∧ ¬BornIn 𝑉?, America ∧ Direct(V?, V")
Set Operator Tree: DirectorOf(WinnerOf GoldenGlobes ∪WinnerOf Oscar ) ∩ BornIn America #
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Figure 1: Answering logical queries on knowledge graphs. Natural language sentences can be interpreted as logical
formulas and then converted to set operator trees (Wang et al., 2021).

et al., 2022; Yang et al., 2022). However, the scor-
ing function between sets, though it also charac-
terizes set embeddings and plays a vital role in
training models, is underexplored in the existing
literature. Existing scoring functions are chosen
from two categories that emphasize either local
comparisons (Ren and Leskovec, 2020; Amayue-
las et al., 2022) or global transport between geo-
metric regions (Ren et al., 2020; Choudhary et al.,
2021b; Zhang et al., 2021). The following exam-
ple motivated us to develop scoring functions for
embeddings with both local and global trade-off.
Example 1.1. Consider four "one-hot" vectors
with dimension d = 100:

A = [1, 0, 0, ..., 0], (1)

B = [0, 1, 0, ..., 0], (2)

C = [0, 0, 1, 0, ..., 0], (3)

D = [0, . . . , 0, 1]. (4)

We observe that:
• Local function (e.g., Euclidean distance)
L CANNOT discriminate different similar-
ities between A, B, C, and D. Specifi-
cally, L(A,B) = L(A,C) = L(A,D) =
L(B,C) = L(B,D) = L(C,D) = 1.

• Global function (e.g. Wasserstein metric) G
CAN discriminate. Specifically, G(A,B) =
1 < G(A,C) = 2 < G(A,D) = 99. How-
ever, G is risky for optimization. For example,
if G(A,D) + G(A,B) appears in the objec-
tive function of a batch, G(A,D) will domi-
nate G(A,B) because it is 100 times larger,
making the optimization ineffective.

• Local and global trade-off function (such as
the WFR scoring function proposed in this
paper) harnesses this risk by constraining
the transport within a window size. Our pa-
per finds that the proper window size is 5,

which truncated the transport distances be-
tween faraway samples like A and D. Then,
WFR(A,D) = 5, and the optimization is
stabilized.

In this paper, we develop a more effective scor-
ing function motivated by the Wasserstein-Fisher-
Rao (WFR) metric (Chizat et al., 2018a), which
introduces the local and global trade-off. We pro-
pose to embed sets as Bounded Measures in R,
where each set embedding can be discretized as a
bounded histogram on uniform grids of size d. This
set embedding can be interpreted locally so that the
set intersection, union, and negation can be easily
defined by element-wise fuzzy logic t-norms (Há-
jek, 1998). We propose an efficient convolution-
based algorithm to realize the computation of en-
tropic WFR in O(d) time, and a block diagonal
kernel to enforce the local and global trade-off. We
conduct extensive experiments on large number of
datasets: (1) standard complex query answering
datasets over three KGs (Ren and Leskovec, 2020),
(2) large-scale evaluation set emphasizing the com-
binatorial generalizability of models in terms of
compositional complex queries (Wang et al., 2021),
and (3) complex queries on a hierarchical knowl-
edge graph (Huang et al., 2022). Ablation studies
show that the performance of complex query an-
swering can be significantly improved by choosing
a better trade-off between local comparison and
global transport.

2 Related Works

We discuss other query embedding methods in
fixed dimensions and optimal transport in this sec-
tion. Other methods for complex query answering
are discussed in Appendix A,
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Figure 2: Illustration of different scoring functions. Left: global transport, where the difference is measured by how
to move mass from one place to another (purple arrows); Right: local comparison, where the difference is measured
by in-place comparison (yellow arrows); Mid: local and global trade-off, where we first move mass in the transport
radius η, then compare the unfilled mass.

2.1 Query Embeddings

As a predominant way to answer logical queries,
query embeddings (Hamilton et al., 2018) embed
answer sets into continuous spaces and models set
operations with neural networks. The scope of
logical queries that query embedding methods can
solve is expanded from conjunctive queries (Hamil-
ton et al., 2018), to Existential Positive First-Order
(EPFO) queries (Ren et al., 2020; Choudhary et al.,
2021a,b), and First-Order (FO) queries (Ren and
Leskovec, 2020; Zhang et al., 2021; Amayuelas
et al., 2022; Bai et al., 2022; Yang et al., 2022;
Wang et al., 2023; Yin et al., 2023; Bai et al., 2023).

Set embeddings of various forms have been
heavily investigated, such as vectors (Amayue-
las et al., 2022; Chen et al., 2022; Huang et al.,
2022), geometric regions (Ren et al., 2020; Zhang
et al., 2021; Choudhary et al., 2021b), and prob-
abilistic distributions (Ren and Leskovec, 2020;
Choudhary et al., 2021a; Yang et al., 2022). De-
spite of the various forms of the embeddings, their
scoring function captures either local compari-
son, such as Euclidean distance (Amayuelas et al.,
2022), inner product (Chen et al., 2022), and KL-
divergence (Ren and Leskovec, 2020; Yang et al.,
2022), or global transport, such as heuristic dis-
tance between geometric regions (Ren et al., 2020;
Choudhary et al., 2021b; Zhang et al., 2021), Maha-
lanobis distance (Choudhary et al., 2021a), or the
similarity between target particle and the closest
particle of a point cloud (Bai et al., 2022).

In this work, we establish a novel scoring func-
tion motivated by unbalanced optimal transport
theory (Chizat et al., 2018a). As a variant of the
optimal transport, it inherits the advantages and bal-

ances the local comparison and global transport.

2.2 Optimal Transport for Embeddings

Optimal transport (OT) (Peyré et al., 2019) intro-
duces the power metric between probabilistic dis-
tributions and facilitates many applications in lan-
guage and graph data (Alvarez-Melis and Jaakkola,
2018; Zhao et al., 2020a; Xu et al., 2021; Li et al.,
2021; Tang et al., 2022; Wang et al., 2022a; Li
et al., 2022; Tan et al., 2023). It is particularly ef-
ficient when embedding graph vertices and words
as probabilistic distributions in the Wasserstein
space (Muzellec and Cuturi, 2018; Frogner et al.,
2018).

Wasserstein-Fisher-Rao (WFR) metric (Chizat
et al., 2018a) generalizes the OT between distribu-
tions to the measures by balancing local compari-
son and global transport with a transport radius η.
Existing investigations (Zhao et al., 2020b) demon-
strated that the WFR metric is a robust and effective
measurement for embedding alignment. Previous
work measures pretrained embeddings in the WFR
space (Wang et al., 2020), while this work is the
first to learn embeddings in the WFR space. More-
over, we validate the advantage of WFR space in
the context of query embedding.

3 Preliminaries

3.1 Knowledge Graph and Complex Queries

A knowledge grpahKG = {(h, r, t) ∈ V×R×V}
is a collections of triples where h, t ∈ V are entity
nodes and r ∈ R is the relation.

Complex queries over knowledge graphs can be
defined by first-order formulas. Following previous
works (Ren and Leskovec, 2020), we consider a
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query Q with one free variable node V? and quan-
tified nodes Vi, 1 ≤ i ≤ n, an arbitrary logical
formula can be converted to prenex and DNF forms
as follows (Marker, 2002).

Q[V?] = □V1 · · ·□Vn.c1 ∨ · · · ∨ cl, (5)

where each quantifier □ is either ∃ or ∀, each
ci, 1 ≤ i ≤ l is a conjunctive clause such that
ci = yi1 ∧ · · · ∧ yimi , and each yij , 1 ≤ j ≤ mi

represents an atomic formula or its negation. That
is, yij = r(a, b) or ¬r(a, b), where r ∈ R, a and b
can be either a variable V· or an entity in V .

3.2 Answer Queries with Set Operator Trees
Queries that can be answered by set operators are of
particular interest (Ren and Leskovec, 2020). The
answers can be derived by executing set operators
in bottom-up order. The leaves of each operator
tree are known entities, which are regarded as sets
with a single element. The input and the output of
each set operator are all sets. We note that queries
solvable by set operators are only a fragment of the
first-order queries due to their additional assump-
tions that guarantee their conversion to operation
trees (Wang et al., 2021). Moreover, the choice of
set operators is not unique to representing the en-
tire class. In this work, we focus on the following
operators:
Set Projections Derived from the relations.
Set Operations :

Set Intersection Derived from conjunction.
Set Union Derived from disjunction.
Set Complement Derived from negation.

3.3 Wasserstein-Fisher-Rao (WFR) Metric
Wasserstein-Fisher-Rao metric defines the dis-
tances between two measures (Chizat et al., 2018a).
Consider two discrete measures in Rd, i.e., µ =∑M

i=1 uiδxi and ν =
∑N

j=1 viδyj , where δ is the
Dirac function, ui, vj ≥ 0, and xi, yj ∈ Rd are
the corresponding coordinates for 1 ≤ i ≤M and
1 ≤ j ≤ N . For short hand, u = [u1, ..., uM ]⊤

and v = [v1, ..., vN ]⊤ denote column mass vectors.
Then the WFR metric is defined by solving the
following minimization problem.

WFR(µ, ν; η) = min
P∈RM×N

+

J(P ;µ, ν, η), (6)

where P ∈ RM×N is the transport plan and Pij

indicates the mass transported from xi to yj . We
denote the global minima P ∗ of the Problem (6)

as the WFR optimal transport plan. The objective
function reads,

J(P ;µ, ν, η) =
M∑

i=1

N∑

j=1

CijPij (7)

+D(P1N∥u) +D(P⊤
1M∥v),

where 1N is the column vector in RN of all one
elements, and D(·∥·) is the KL divergence. C ∈
RM×N
+ is the cost matrix and Cij indicates the cost

from xi to yj ,

Cij = −2 log
(
cos+

(
π

2

∥xi − yj∥
η

))
. (8)

where cos+(x) = cos(x) if |x| < π/2, otherwise
cos+(x) = 0. η is the hyperparameter for the
transport radius.

One of the key properties of the WFR metric
could be understood by the geodesics in WFR
space, as stated in Theorem 4.1 by Chizat et al.
(2018a). Specifically, for two mass points at po-
sitions x and y, the transport only applies when
∥x − y∥ < η, such as place 1 and 2 in Figure 2,
otherwise, only local comparison is counted. We
see that the η controls the scope of the transport
process.

3.4 Entropic Regularized WFR Solution
The WFR metric in Equation (6) can be computed
by the Sinkhorn algorithm with an additional en-
tropic regularization term (Chizat et al., 2018b).
Specifically, one could estimate WFR with the fol-
lowing entropic regularized optimization problem,

min
P∈RM×N

+

J(P ;µ, ν, η) +

Entropic Regularization︷ ︸︸ ︷
ϵ
∑

ij

Pij logPij . (9)

The generalized Sinkhorn algorithm (Chizat et al.,
2018b) solves the unconstraint dual problem of
Problem (9), which maximizes the objective

Dϵ(ϕ, ψ;u,v,Kϵ) =⟨1− ϕ,u⟩+ ⟨1− ψ,v⟩
(10)

+ ϵ⟨1− (ϕ⊗ ψ) 1
ϵ ,Kϵ⟩,

where Kϵ = e−
C
ϵ is the kernal matrix, ϕ ∈ RM

and ψ ∈ RN are dual variables. The update pro-
cedure of the (l + 1)-th step of the j-th Sinkhorn
iteration is

ϕ(l+1) ←
[
u⊘

(
Kϵψ

(l)
)] 1

1+ϵ
, (11)

ψ(l+1) ←
[
v ⊘

(
K⊤

ϵ ϕ
(l+1)

)] 1
1+ϵ

. (12)
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Let ϕ∗ and ψ∗ be the optimal dual variables ob-
tained from a converged Sinkhorn algorithm. The
optimal transport plan is recovered by

P ∗ = diag(ϕ∗)Kϵdiag(ψ
∗). (13)

We could see that the Sinkhorn algorithm em-
ploys the matrix-vector multiplication that costs
O(MN) time. In contrast to the Wasserstein
metric that can be approximated by 1D sliced-
Wasserstein (Carriere et al., 2017; Kolouri et al.,
2019) under O((M +N) log(M +N)) time, there
is no known sub-quadratic time algorithm for even
approximated WFR metric, which hinders its large-
scale application. In the next section, we restrict
set embeddings to bounded measures in R. We
further develop an O(d) algorithm by leveraging
the sparse structure of kernel matrix Kϵ.

4 Wasserstein-Fisher-Rao Embedding

The goal of this section is to present how to
solve complex queries with set embeddings as the
Bounded Measure in R. Let the S be an arbitrary
set, including the singleton set {e} with a single en-
tity e, its embedding is m[S]. We denote the collec-
tion for all bounded measures as BM(R). Our dis-
cussion begins with the discretization of measure
m[S] ∈ BM(R) to histogram mS ∈ BMd, where
BMd is the collection of bounded histograms with
d bars. Then we discuss how to parameterize set
operators with embeddings in the BMd and ef-
ficiently compute the scoring function in BMd.
Finally, we introduce how to learn set embeddings
and operators.

4.1 Discretize BM1Ds into Histograms
We discretize eachm[S] ∈ BM(R) as a histogram
on a uniform mesh on R. Without loss of general-
ity, the maximum length of bars in the histogram
is one, and the mesh spacing is ∆. In this way,
each m[S] =

∑d
i=1m

S
i δi∆, where mS

i ∈ [0, 1] for
1 ≤ i ≤ d. Therefore, it is sufficient to store the
discretized mass vector mS = [mS

1 , . . . ,m
S
d ] ∈

BMd because the support set {i∆}di=1 is fixed for
allm[S] ∈ BM(R). Then we discuss set operators
on BMd

4.2 Set Operators on BMd

Non-parametric Set Operations It should be
stressed that the mass vector mS ∈ BMd can be
interpreted locally, where each element of mS is
regarded the continuous truth value in fuzzy logic.

Therefore, set operations intersection ∩, union ∪,
and complement on the BMd are modeled by the
element-wise t-norm on the mass vector mS . For
the i-th element of the mass vector, 1 ≤ i ≤ d,

Intersection mS1∩S2
i = mS1

i ⊤mS2
i , (14)

Union mS1∪S2
i = mS1

i ⊥mS2
i , (15)

Complement mSC

i = 1−mS
i , (16)

where ⊤ is a t-norm and ⊥ is the corresponding
t-conorm.

Neural Set Projections Each set projection is
modeled as functions from one mass vector to
another given a relation r. We adopt base de-
composition (Schlichtkrull et al., 2018) to define
a Multi-Layer Perceptron (MLP) from [0, 1]d to
[0, 1]d. For each fully-connected layer with input
mS,(l) ∈ [0, 1]dl , the output mS,(l+1) ∈ [0, 1]dl+1

through relation r is computed by

mS,(l+1) = σ(W (l)
r mS,(l) + b(l)r ), (17)

where σ is an activation function, andW (l)
r and b(l)r

are the weight matrix and bias vector for relation r
at the l-th layer. Specifically,

W (l)
r =

K∑

j=1

V
(l)
j rj , b(l)r =

K∑

j=1

a
(l)
j rj . (18)

K is the number of bases, r ∈ RK is the relation
embedding. V (l)

j ∈ Rdl+1×dl and a(l)j ∈ Rdl+1 the
are the base weight matrices and base bias vectors
at the l-th layer, respectively.

Dropout on Set Complement Inspired by the
dropout for neural networks that improves the gen-
eralizability, we propose to apply dropout to the
set complement operation. The idea is to randomly
alter the elements in mass vectors before the com-
plement operation by randomly setting their values
to 1

2 . In this way, the complemented elements are
also 1

2 . This technique improves the generalizabil-
ity of the set complement operator.

4.3 Scoring function for BMd

Consider mS1 ,mS2 ∈ BMd. It is straight for-
ward to score this pair by WFR(mS1 ,mS2 ; η).
However, direct applying the Sinkhorn algorithm
requires a O(d2) time, which hinders the large-
scale computation of the WFR metric. In this part,
we introduce (1) convolution-based Sinkhorn to
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reduce the complexity within O(d) time and (2)
block diagonal transport as an additional mecha-
nism for the local and global tradeoff besides the
transport radius η. We note that our contribution
does not coincide with the recent linear-time “fast”
Sinkhorn algorithms (Liao et al., 2022a,b), which
do not apply to unbalanced optimal transport in
BMd.

Convolution-based Sinkhorn The computa-
tional bottleneck for the Sinkhorn update shown
in Equation (11) and (12) is the matrix-vector mul-
tiplication. When comparing the discretized mea-
sures in BMd, Kϵ exhibits a symmetric and diago-
nal structure.

Kϵ,ij =





cos
(
π
2
|i−j|
η/∆

) 2
ϵ |i− j| < η

∆

0 o.w.
(19)

Let ω = ⌊ η∆⌋ be the window size, the matrix-vector
multiplication Kϵv = K⊤

ϵ v could be simplified as
a discrete convolution H(β, ω) ∗ v, where the ker-
nel [H(β, ω)]k = cos

(
πβ
2ω k

)
,−ω ≤ k ≤ ω and

β := ⌊ η∆⌋/
η
∆ ∈ (1 − 1

ω+1 , 1] is another hyperpa-
rameter. Specifically, the i-th element of H ∗ v
is

[H(β, ω) ∗ v]i =
+ω∑

k=−ω

Hkvi+k11≤i+k≤d, (20)

where 11≤i+k≤d = 1 if and only if 1 ≤ i+ k ≤ d.
Then the Sinkhorn algorithm could be simplified
as

ϕ(l+1) ←
[
u⊘

(
H(β, ω) ∗ ψ(l)

)] 1
1+ϵ

, (21)

ψ(l+1) ←
[
v ⊘

(
H(β, ω) ∗ ϕ(l+1)

)] 1
1+ϵ

. (22)

Hence, the time complexity of the Sinkhorn algo-
rithm could be reduced to O(ωd). In our setting,
ω is the window size that interpolates the global
transport and local comparison, and β is chosen to
be 1 in every setting.

Once the convolution-based Sinkhorn algorithm
converged, we could approximate the WFR met-
ric via the Dϵ with optimal ϕ∗ and ψ∗. For com-
plex query-answering, the final answers are ranked
by their distances (the smaller, the better). This
process could be accelerated by the primal-dual
pruning for WFR-based k-nearest neighbors (Wang
et al., 2020) or the Wasserstein Dictionary Learn-
ing (Schmitz et al., 2018).

𝑎 = 4𝜔 = 3

Figure 3: Example of 16× 16 transport plan matrices
by two mechanisms. The zero elements are indicated
by white blocks while the (possible) non-zero elements
are colored. The transport scope of a sample mass point
(green block) is illustrated by the arrows. Left: Relative
scope by the WFR transport of window size ω = 3;
Right: Absolute scope by the block diagonal kernel of
block size a = 4.

Block Diagonal Transport Besides the window
size ω that controls the scope of transport relative
to each mass point, we provide another mechanism
to restrict the scope of the transport by the abso-
lute position of each mass point. Specifically, we
consider the block diagonal kernel matrix Kb

ϵ of b
blocks, and a = d/b is the size of each diagonal
block. We could see from Equation (13) that the
block diagonal kernel leads to the block diagonal
transport plan. Figure 3 illustrates the differences
between the two mechanisms for restricting global
transport in terms of possible transport plans.

Computing the Scoring Function We propose
to define the scoring function Dist computed by
a convolution-based Sinkhorn with a block diag-
onal kernel. It should be stressed that a Prob-
lem (9) of size d × d could be regarded as solv-
ing b independent problems of size a × a under
the block diagonal problem. This behavior encour-
ages a greater parallelization of the Sinkhorn iter-
ations (21) and (22). We assume a > ω to ensure
each block contains at least a window size of WFR
transport so that those two mechanisms could work
together. Given the parallel nature of 1D convolu-
tion, the entire distance can be highly parallelized
with GPU. Specifically, the scoring function Dist
is given in Algorithm 1.

4.4 Learning Embeddings in BMd

Let mQ ∈ BMd be a query embedding of query
Q[V?] and me ∈ BMd be the set embedding for
unitary set {e} with element e. We follow the prac-
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Algorithm 1 Scoring function on BMd (PyTorch-
like style)

Require: two bounded measures mS1 ,mS2 ∈
BMd, entropic regularization ϵ, window size
ω, number of blocks b such that the block size
a = d/b ≥ ω, number of iteration L.

1: procedure Dist(mS1 ,mS2 , ϵ, ω, a, b, L)
2: M1 ←mS1.reshape(1, b, a).
3: M2 ←mS2.reshape(1, b, a).
4: Initialize H ← H(1, ω).
5: Initialize ψ ← ones(1, b, a).
6: for l = 1, ..., L do
7: ϕ←M1/conv1d(ψ,H).
8: ψ ←M2/conv1d(ϕ,H).
9: end for

10: ϕ∗ ← ϕ.reshape(d))
11: ψ∗ ← ψ.reshape(d))
12: return Dϵ(ϕ

∗, ψ∗;mS1 ,mS2 ,Kb
ϵ ).

13: end procedure

tice in Ren and Leskovec (2020) to train the param-
eterized projections and embeddings with negative
sampling. For a query Q, we sample one answer a
and Kneg negative samples {vk}Kneg

k=1 . The objec-
tive function is

L =− log σ
(
γ − ρDist

(
ma,mQ

))
(23)

−
Kneg∑

k=1

1

Kneg
log σ

(
ρDist

(
mvk ,mQ

)
− γ

)
,

where γ is the margin, and ρ is the scale, and σ is
the sigmoid function.

5 Experiments

In this section, we evaluate the performance of
WFRE on complex query answering in three as-
pects: (1) we compare WFRE with other SOTA
query embedding methods over commonly used
datasets on three knowledge graphs (Ren and
Leskovec, 2020); (2) we evaluate WFRE on 301
query types to justify its combinatorial generaliz-
ability (Wang et al., 2021); (3) we train and evalu-
ate WFRE on a complex query answering datasets
on WordNet (Miller, 1995), a lexical KG whose
relations are typically hierarchical (Huang et al.,
2022). Aspects (2) and (3) emphasize on differ-
ent query types and the underlying KG, respec-
tively. These results provide empirical evidence for
WFRE’s strong capability for applying to various
query types and KGs. Moreover, we also investi-

gate the local and global tradeoff of WFRE on ω
and a in the ablation study. Other results are listed
in the Appendix.

5.1 Experimental Settings
For all experiments, we follow the practice of train-
ing and evaluation in Ren and Leskovec (2020). We
train query embeddings on train data, select hyper-
parameters on valid data, and report the scores on
test data. Details about the training and evaluation
protocol are described in Appendix B. For WFRE,
the hyperparameters are listed and discussed in Ap-
pendix C. All experiments are conducted on one
V100 GPU of 32G memory with PyTorch (Paszke
et al., 2019).

5.2 Benchmark Datasets
Datasets on FB15k-237 (Bordes et al., 2013a),
FB15k (Toutanova and Chen, 2015), and
NELL (Xiong et al., 2017b) proposed by (Ren and
Leskovec, 2020) are commonly used to evaluate the
effectiveness of query embedding methods. WFRE
is compared with baselines with local comparison
and global transport, including BetaE (Ren and
Leskovec, 2020), ConE (Zhang et al., 2021) MLP-
MIX (Alivanistos et al., 2022), Q2P (Bai et al.,
2022), and GammaE (Yang et al., 2022). For fair-
ness, we compare the union operators with the DNF
treatment introduced by Ren and Leskovec (2020)
where scores of answers are merged from those
scores of the containing conjunctive queries. Other
treatments about union operators are discussed in
Appendix E Detailed discussions about the datasets
and baselines are listed in Appendix D.1. Table 1
shows how WFRE outperforms existing methods
by a large margin in terms of the scores averaged
from queries with and without logic negation.

5.3 Combinatorial Generalization on Queries
We also explore how WFRE generalizes on the
combinatorial space of complex queries on a bench-
mark targeting the combinatorial generalizability
of query embedding methods (Wang et al., 2021).
Details of datasets are presented in Appendix D.2

Results of 301 different query types are averaged
by the number of anchor nodes and the maximum
depth of the operator tree and are visualized in
Figure 4. To illustrate the combinatorial generaliz-
ability of complex queries, we normalize scores on
query types with the scores on BetaE, as indicated
in the axis labels in Figure 4. Then we plot the
results into lines by the number of anchor nodes
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Table 1: MRR scores for answering all tasks on FB15k, FB15k-237, and NELL. Scores of baselines are taken from
their original paper. The boldface indicates the best scores. AP is the average score for queries without negation
(EPFO queries). AN is the average score for queries with negation.

Dataset QE 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

FB15k

BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4 41.6 11.8
ConE 75.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1 49.8 14.8
MLPMIX 69.7 27.7 23.9 58.7 69.9 46.7 30.8 38.2 24.8 17.2 17.8 13.5 9.1 15.2 43.4 14.8
Q2P 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 21.9 20.8 12.5 8.9 17.1 46.8 16.4
GammaE 76.5 36.9 31.4 65.4 75.1 53.9 39.7 53.5 30.9 20.1 20.5 13.5 11.8 17.1 51.3 16.6
WFRE 81.1 37.7 30.5 68.5 78.0 56.3 41.8 48.0 33.1 26.1 26.5 15.6 13.7 19.4 52.8 20.2

FB15k-237

BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.6 3.4 20.9 5.4
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6 23.4 5.9
MLPMIX 42.4 11.5 9.9 33.5 46.8 25.4 14.0 14.0 9.2 6.6 10.7 8.1 4.7 4.4 22.9 6.9
Q2P 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.7 9.1 4.4 9.7 7.5 4.6 3.8 21.9 6.0
GammaE 43.2 13.2 11.0 33.5 47.9 27.2 15.9 13.9 10.3 6.7 9.4 8.6 4.8 4.4 24.0 6.8
WFRE 44.1 13.4 11.1 35.1 50.1 27.4 17.2 13.9 10.9 6.9 11.2 8.5 5.0 4.3 24.8 7.2

NELL

BetaE 53.0 13.0 11.5 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5 24.6 5.9
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9 27.2 6.4
MLPMIX 55.4 16.5 13.9 39.5 51.0 25.7 18.3 14.7 11.2 5.1 8.0 10.0 3.1 3.5 27.4 5.9
Q2P 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4 5.1 7.4 10.2 3.3 3.4 25.5 6.0
GammaE 55.1 17.3 14.2 41.9 51.1 26.9 18.3 15.1 11.2 6.3 8.7 11.4 4.0 4.5 27.9 7.0
WFRE 58.6 18.6 16.0 41.2 52.7 28.4 20.7 16.1 13.2 6.9 8.8 12.5 4.1 4.4 29.5 7.3

Table 2: MRR scores of different query embedding methods on WN18RR. Ap is the average of scores from 1P, 2P,
and 3P queries; Aℓ is the average of scores from other queries without negation; AN is the average of scores from
queries with negation. Scores are taken from Huang et al. (2022).

QE 1P 2P 3P 2I 3I IP PI 2IN 3IN INP PIN PNI 2U UP Ap Aℓ AN

BetaE 44.13 9.85 3.86 57.19 76.26 17.97 32.59 12.77 59.98 5.07 4.04 7.48 7.57 5.39 19.28 32.83 17.87
LinE 45.12 12.35 6.70 47.11 67.13 14.73 24.87 12.50 60.81 7.34 5.20 7.74 8.49 6.93 21.39 28.21 18.72
WFRE 52.78 21.00 15.18 68.23 88.15 26.50 40.97 18.99 69.07 14.29 11.06 11.01 15.14 15.81 29.65 42.46 24.88
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Figure 4: Visualization of different query embed-
ding methods on combinatorial generalizability bench-
mark (Wang et al., 2021). Results of BetaE and LogicE
are taken from Wang et al. (2021). The slopes of lines
indicate how the performance of a complex query grows
as the performance of the one-hop query grows.

and the max depths. Scores from the same model
are located at the same vertical line. We find that
WFRE not only improves the performance signifi-
cantly but also generalizes better in combinatorial
complex queries with a larger slope compared to
LogicE (Luus et al., 2021).

5.4 Complex Queries on Hierarchical KG

Evaluations above are restricted to three commonly
used knowledge graphs. Then, we turn to another
type of the underlying knowledge graph, which
is characterized by the hierarchy of its relation.
We train and evaluate WFRE on a complex query
dataset proposed by Huang et al. (2022) on Word-

Net (Miller, 1995). Details of this dataset are
shown in Appendix D.3. We compare WFRE to
LinE (Huang et al., 2022), another histogram-based
query embedding proposed to solve queries on hi-
erarchical KG without global transport. Table 2
shows the results on WR18RR. We could see that
WFRE significantly outperforms LinE and BetaE.
In particular, WFRE significantly improved the per-
formance of BetaE and LinE on longer multi-hop
queries, i.e., 1P, 2P, and 3P queries. It should be
stressed that LinE also used histograms as WFRE
but trained with the scoring function motivated only
by local comparison. This result shows that WFRE
is suitable for modeling hierarchical relations be-
cause the local and global tradeoff on the scoring
function learns better embeddings WFRE. It also
confirms that Wasserstein spaces make the embed-
dings more efficient (Frogner et al., 2018).

5.5 Local and Global Trade-off

We further investigate how two mechanisms to re-
strict the transport, i.e., transport window size ω
and block size a affect the performance. Exper-
iments are conducted on queries on FB15k-237
sampled by Ren and Leskovec (2020). We alter
one value and fix another one. The default choice
is (ω, a) = (3, 5). Figure 5 demonstrates the effect
of these two hyperparameters.

13686



(i) (ii)

Figure 5: The effect of hyperparameter ω and a. The
default choice is (ω, a) = (3, 5).

Compared to the most recent SOTA query em-
bedding GammaE (Yang et al., 2022), the result
confirms the importance of the trade-off between
local comparison and global transport. When the
block size a = 5, we find that larger window size ω
hurts the performance of negation. Meanwhile, the
performance of queries without negation (EPFO
queries) reaches their maximum when properly
choosing ω = 3. When the window size is fixed
ω = 3 and a is small, we see that the performance
of EPFO and negation queries follows our observa-
tion for window size. Further increasing the block
size a only has little impact on the EPFO queries
but also hurts the performance of negation queries.
It indicates that a proper a is necessary for perfor-
mance when ω is fixed. This observation could
help to improve the degree of parallelization of the
convolution-based Sinkhorn algorithm.

6 Conclusion

In this paper, we propose WFRE, a new query em-
bedding method for complex queries on knowledge
graphs. The key feature of WFRE against to pre-
vious methods is its scoring function that balances
local comparison and global transport. Empiri-
cal results show that WFRE is the state-of-the-art
query embedding method for complex query an-
swering, and has good generalizability to combi-
natorially complex queries and hierarchical knowl-
edge graphs. The ablation study justifies the impor-
tance of the local and global trade-off.

7 Limitation

WFRE suffers common drawbacks from the exist-
ing query embedding methods. The queries that
can be solved by such methods are a limited sub-
class of first-order queries. It is also not clear how
to apply WFRE to unseen entities and relations in
an inductive setting.

8 Ethics Statement

As a query embedding method, WFRE has stronger
generalizability to different query types and knowl-
edge graphs. Experiments and evaluations in this
paper involve no ethical issues and are not even
related to any human entities. WFRE could be
potentially used to efficiently infer private infor-
mation from an industrial-level knowledge graph.
This is a common potential risk for approaches
targeting data incompleteness and link prediction.
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A Other Methods for Complex Query
Answering

Despite of computing query embedding with neural
set operators, other approaches are also proposed
to derive answers. Daza and Cochez (2020); Liu
et al. (2022) explored the graph representation to
answer the logical queries with graph neural net-
works while Kotnis et al. (2021) discussed the logi-
cal queries as sequence representation. Arakelyan
et al. (2021) solves the logical queries by solving
the continuous optimization problems induced by
neural link predictors. However, these discussions
are only limited to EPFO queries without logical
negation. It is not clear how these methods handle
first-order queries.

Meanwhile, neural symbolic methods estimate
the probability for whether each entity is the an-
swer set (Zhu et al., 2022; Xu et al., 2022) even
at each intermediate step. Therefore, it requires
O(|V| + |T |) space and time to derive answers
for a given query, where V and T are the entity
set and the triple set of a knowledge graph. Com-
pared to the query embedding methods that require
only O(d), where d is the fixed dimension of the
embedding space, it is challenging to scale neural
symbolic methods to logical queries on large-scale
knowledge graphs (Ren et al., 2022).

B Training and Evaluation Protocal

We follow the commonly used experiment settings
for EFO-1 query answering, which aims to find
non-trivial answers in incomplete graphs and gen-
eralize to queries of unseen types.

Given an underlying KG G = (V,R) and its
triple set T , we sample three subgraphs by change
the scope of triples Ttrain ⊂ Tvalid ⊂ Ttest = T .
Following the standard evaluation protocol, we
aim to find the non-trivial answers which can-
not be directly discovered by traversing graphs.
We denote [q]train as the answer set of query q
in the train graph, the answer set we focus on
is [q]test\[q]train, and these are easy answers that
can only be reasoned or predicted. The hard an-
swers are [q]test \ [q]valid. Then we would rank
the easy(hard) answers against all the non-answer
sets V/[q]valid(V/[q]test). After getting the rank r,
we calculated mean reciprocal rank (MRR): 1

r and
Hits at K(Hits@K):1r<K as metric to measure the
performance of models.

3P1P 2P 2I 3I

2IN 3IN INP PNI PIN

Training + Validation +  
Test

PI

IP

2U

UP

Validation +  Test

P I U N

Figure 6: Visualization of logic query structures. The
left queries just appear in the training phase, and all the
queries are used in the validation and test phases.

C Settings for WFRE

Our framework is implemented with Pytorch. Our
code is based on the pipeline for the EFO-1-QA
benchmark (Wang et al., 2021) and we use AdamW
as the optimizer.

There are also some hyperparameters in code.
We apply dropout on projection network and de-
note the drop probability as Dropp. The Sinkhorn’s
algorithm’s maximum iteration is denoted as KS .
And We just set the layer of Projection MLP as 1
because of the results of the experiment relsults.
The hyperparameters and their related information
in WFRE are listed in Table 3. We finetune the
hyperparameters for four datasets and the results
are presented in Table 4. Hope the two tables could
help you quickly understand our model’s hyperpa-
rameters.

D Datasets and Baselines

In this section, we introduce the baselines in three
experiments. Table 5 presents the basic statistics of
different queries on all the benchmark datasets.

D.1 Benchmark datasets

For commonly used dataset (Ren and Leskovec,
2020), there are ten query types 1P, 2P, 3P, 2I, 3I,
2IN, 3IN, INP, PNI, PIN in the training dataset but
also four unseen query structures IP, PI, 2U, and
UP in the valid and test datasets. The related query
structures are visualized in Figure 6. The purpose
of unseen types of the vaild and test queries is to
test the combinatorial generalizability of the neural
set operator.

In this part, we choose the following complex
query embedding methods which support arbitrary
EFO1 queries:
BetaE (Ren and Leskovec, 2020) Beta distribu-

tion embedding whose scoring function is

13691



Table 3: Hyperparameters used for WFRE

Hyperparameter Comments Choices

Learning rate Model’s convergence {0.0001, 0.0005, 0.001}
Training steps Model’s convergence {240000, 300000, 360000}
Negative sample size Kneg Model’s convergence {32}
Weight decay Regulararization for model {0.001, 0.005, 0.01}
Dropp Regulararization for projection operation {0.05}
Dropn Regulararization for negation operation {0.05, 0.15, 0.25}
Entity dimmension d Representation of entities {400, 800, 1600}
Number of relation bases K Representation of relations {70, 90, 120}
Margin γ Loss function {37.5}
Scale ρ Loss function {90, 120, 150}
Size of diagonal block a Representation of entities {5, 10, 20}
Window size ω Transport area of WFR distance {1, 3, 5}
SinkHorn’s reg ϵ Entropy regularization of WFR distance {0.1}
Sinkhorn’s maximum iteration KS Sinkhorn algorithm’s convergence {10, 15, 30}

Table 4: Best hyperparameters on every dataset

learning rate training steps Kneg weight decay Dropp Dropn d K γ ρ a ω ϵ KS

FB15k 0.0005 360000 32 0.01 0.05 0.1 1600 90 37.5 150 5 3 0.1 10
FB15k237 0.0005 240000 32 0.01 0.05 0.1 1600 120 37.5 120 5 3 0.1 10
NELL 0.0005 240000 32 0.01 0.05 0.1 1600 70 37.5 180 5 3 0.1 10
WN18RR 0.001 120000 32 0.01 0.05 0.1 800 70 37.5 120 5 3 0.1 15

based on local comparison with KL diver-
gence

GammaE (Yang et al., 2022) GammaE distribu-
tion embedding whose scoring function is
based on local comparison with KL diver-
gence.

ConE (Zhang et al., 2021) 2D cone embedding
whose scoring function is based on global
transport with the rotational distance between
cones.

MLP-MIX (Amayuelas et al., 2022) Vector em-
bedding whose scoring function is based on
local comparison with the Euclidean distance.

Q2P (Bai et al., 2022) Multi-particle embedding
whose scoring function is based on global
transport by comparing the target particle with
the closest particle of a point cloud.

Those scores are directly taken from corresponding
papers.

D.2 Combinational generalizability on queries

Wang et al. (2021) propose a new dataset including
301 different query types to benchmark the combi-
national generalizability of CQA models. Based on
the EFO-1 queries represented by OpsTree, EFO-1
formulas are generated with operations including
entity, projection, intersection, union, and nega-
tion. To make queries more realistic, the maximum
length of projection/negation chains and the num-
ber of anchor nodes are both limited to no more

than 3. The baselines are BetaE and LogicE (Luus
et al., 2021). Scores are directly taken from Wang
et al. (2021).

D.3 Complex queries on Hierarchical KG

WN18RR is first introduced as a link prediction
dataset created from WN18 (Bordes et al., 2013b),
which is a subset of WordNet. There are 93,003
triples with 40,943 entities and 11 relation types in
WN18RR and most of the relations are hierarchical.
In Table 6, we could know seven out of eleven rela-
tions have high antisymmetry KhsGr Huang et al.
(2022) and negative transitive score ξGr (Gu et al.,
2018) and are regarded as hierarchical relations.
Huang et al. (2022) extends complex logic queries
to WN18RR and detaied queries stastics is in Ta-
ble 5. Huang et al. (2022) generated 14 types of
queries from hierarchical KG WN18RR and aimed
to investigate the reasoning ability of query em-
beddings in hierarchical knowledge graphs. We
choose BetaE and LinE (Huang et al., 2022) as
baselines, their scores are also taken from Huang
et al. (2022). Notably, LinE (Huang et al., 2022) is
also a histogram-based query embedding method
based on the same closed-form set operation. The
key difference between LinE and WFRE is that
WFRE encourages the local and global trade-offs.
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Table 5: Number of training, validation, and test queries generated for different query structures.

Dataset
Training Validaton Test

1P/2P/3P/2I/3I 2IN/3IN/INP/PIN/PNI 1P Others 1P Others

FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15k-237 149,689 14,968 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000
WN18RR 103,509 10,350 5,202 1,000 5,356 1,000

Table 6: Hierarchical relations in WN18RR

Relation KhsGr ξGr Hierarchical

memberMeronym 1.00 -2.90 ✓
hypernym 1.00 -2.46 ✓
hasPart 1.00 -0.82 ✓
instance hypernym 1.00 -0.78 ✓
memberOfDomainRegion 1.00 -0.78 ✓
memberOfDomainUsage 1.00 -0.78 ✓
synsetDomainTopicOf 0.99 -0.69 ✓
alsoSee 0.36 -0.29 ×
derivationally related form 0.07 -3.84 ×
SimilarTo 0.07 -1.00 ×
verb group 0.07 -0.50 ×

E Modeling Union: DNF and DM

There are two ways to deal with union operations.
With the De Morgan (DM) Law, it’s natural to
model union operation S1∪S2 with S1 ∩ S2. (Ren
et al., 2020) transforms queries into a disjunctive
normal form (DNF) and only computes the union
operation in the last step. Therefore, CQA mod-
els usually train intersection and complement logic
operations. Though WFRE has closed union opera-
tion, WFRE with DNF has better performance as
training queries don’t contain union operation.

F Addtional results

Moreover, we further compare with two QE
methods FuzzQE (Chen et al., 2022) and Gam-
maE (Yang et al., 2022). Yang et al. (2022) de-
velop a new union operation method with the self-
attention mechanism and get better performance
than DNF and DM. FuzzQE’s result on FB15k is
missing, and the suggested hyperparameters setting
on FB15k-237 is missing. As we couldn’t repro-
duce FuzzQE’s result on NELL, we list the results
in the paper and those reproduced by us. In Table
7, WFRE outperforms the two models except for
the FuzzQE result in the paper.

Table 8 also provides the mean and standard
derivation of the output of our model. All scores
are computed from four runs of cases of differ-
ent random seeds. We could see that the standard
derivation is four orders smaller than the mean
value. It shows that WFRE is very stable and sig-
nificantly outperforms previous baselines.
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Table 7: Additional benchmark comparison on FB15k, FB15k-237, and NELL(MRR).

Dataset QE 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

FB15k GammaE 76.5 36.9 31.4 65.4 75.1 53.9 39.7 57.1 34.5 20.1 20.5 13.5 11.8 17.1 52.3 16.6
WFRE 81.1 37.7 30.5 68.5 78.0 56.3 41.8 48.0 33.1 26.1 26.5 15.6 13.7 19.4 52.8 20.2

FB15k-237 GammaE 43.2 13.2 11.0 33.5 47.9 27.2 15.9 15.4 11.3 6.7 9.4 8.6 4.8 4.4 24.3 6.8
WFRE 44.1 13.4 11.1 35.1 50.1 27.4 17.2 13.9 10.9 6.9 11.2 8.5 5.0 4.3 24.8 7.2

NELL

GammaE 55.1 17.3 14.2 41.9 51.1 26.9 18.3 16.5 12.5 6.3 8.7 11.4 4.0 4.5 28.2 7.0
FuzzQE(our) 55.5 16.8 14.4 37.3 46.9 24.0 19.1 15.0 11.7 7.3 9.1 11.1 4.1 4.9 26.7 7.3
FuzzQE(reported) 58.1 19.3 15.7 39.8 50.3 28.1 21.8 17.3 13.7 8.3 10.2 11.5 4.6 5.4 29.3 8.0
WFRE 58.6 18.6 16.0 41.2 52.7 28.4 20.7 16.1 13.2 6.9 8.8 12.5 4.1 4.4 29.5 7.3

Table 8: WFRE: metrics’ mean values (×10−2) and standard deviations (×10−6, boldface).

Dataset QE 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

FB15k

MRR 81.1 37.7 30.5 68.5 78.0 56.3 41.8 48.0 33.1 26.1 26.5 15.6 13.7 19.4 52.8 20.2
0.073 0.33 0.39 0.45 1.5 0.37 1.6 1.3 2.5 0.74 1.2 1.8 0.37 2.8 0.16 0.046

HITS1 73.0 27.4 21.2 58.6 70.1 45.7 31.1 36.1 23.1 16.5 16.4 8.4 7.1 10.9 42.9 11.9
0.096 0.35 2.0 1.6 5.4 1.0 1.8 2.5 8.1 1.0 1.4 1.3 0.32 4.8 0.67 0.11

HITS3 87.8 42.0 33.8 74.5 83.5 62.0 46.6 54.5 36.6 28.5 28.9 16.4 13.8 20.8 58.0 21.7
0.18 1.3 0.35 2.0 0.69 1.9 9.8 3.5 2.6 0.18 6.8 3.0 0.16 1.7 0.11 0.32

HITS10 93.5 58.0 48.5 86.5 92.2 76.3 62.4 70.4 52.7 45.5 47.3 29.9 26.6 36.2 71.2 37.1
0.38 6.5 1.2 0.60 0.95 0.062 1.1 0.60 2.9 0.97 0.20 0.91 4.3 0.16 0.0086 0.29

FB15k237

MRR 44.1 13.4 11.1 35.1 50.1 27.4 17.2 13.9 10.9 6.9 11.2 8.5 5.0 4.3 24.8 7.2
0.032 2.1 2.4 1.0 3.1 1.6 0.36 0.89 0.12 0.60 1.1 0.20 0.42 0.56 0.016 0.17

HITS1 33.7 7.3 5.5 23.9 39.6 18.5 10.8 7.5 5.2 2.8 5.2 3.7 1.6 1.4 16.9 2.9
0.056 5.7 5.7 1.6 5.5 2.1 0.70 2.3 0.37 0.071 1.2 0.76 2.0 0.56 0.15 0.044

HITS3 48.9 13.8 11.3 39.7 55.2 29.9 18.0 14.0 11.0 6.3 10.8 8.2 4.4 3.6 27.0 6.7
1.2 0.36 0.92 4.1 4.8 0.69 1.8 0.11 0.49 3.7 0.42 5.1 0.20 1.1 0.15 0.73

HITS10 64.5 25.6 21.9 57.8 71.0 45.6 29.8 23.1 17.5 14.4 23.1 17.5 10.9 9.0 40.5 15.0
0.15 3.9 1.0 13 1.6 18 0.53 0.69 0.48 2.5 4.6 0.95 0.37 0.35 0.17 0.24

NELL

MRR 58.6 18.8 16.0 41.2 52.7 28.4 20.7 16.1 13.2 6.9 8.8 12.5 4.1 4.4 29.5 7.3
0.74 0.44 0.056 0.72 6.0 2.6 0.96 0.22 0.62 0.0026 0.24 1.6 0.046 0.047 0.52 0.095

HITS1 49.1 12.6 10.6 29.5 41.4 20.6 14.1 9.4 7.8 2.3 3.2 6.1 1.1 1.4 21.7 2.8
1.3 0.27 0.40 12 0.77 5.3 0.34 1.1 0.29 0.12 0.16 1.9 0.24 0.19 0.44 0.25

HITS3 64.2 19.9 16.8 46.5 58.3 30.8 22.2 17.2 13.8 6.0 7.6 12.9 3.2 3.7 32.2 6.7
1.3 8.9 1.6 2.4 2.9 3.5 4.1 5.9 2.1 0.25 0.70 3.2 0.10 0.73 1.71 0.18

HITS10 76.1 31.0 26.3 64.6 75.0 43.9 33.7 29.4 24.0 15.6 19.7 24.8 8.6 9.1 44.5 15.5
1.1 6.2 6.5 5.1 1.6 1.3 6.3 3.0 0.27 0.49 0.062 1.9 1.2 1.5 0.33 0.24
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