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Abstract

Building cross-model intelligence that can un-
derstand charts and communicate the salient
information hidden behind them is an appeal-
ing challenge in the vision and language (V+L)
community. The capability to uncover the un-
derlined table data of chart figures is a critical
key to automatic chart understanding. We intro-
duce ChartT5, a V+L model that learns how to
interpret table information from chart images
via cross-modal pre-training on plot table pairs.
Specifically, we propose two novel pre-training
objectives: Masked Header Prediction (MHP)
and Masked Value Prediction (MVP) to facili-
tate the model with different skills to interpret
the table information. We have conducted ex-
tensive experiments on chart question answer-
ing and chart summarization to verify the effec-
tiveness of the proposed pre-training strategies.
In particular, on the ChartQA benchmark, our
ChartT5 outperforms the state-of-the-art non-
pretraining methods by over 8% performance
gains.

1 Introduction

Chart figures serve as the visual summary of tab-
ular data, which helps to convey rich context in
various documents, such as scientific papers, text-
books, and technical news. An intelligent agent
that can understand and communicate chart plots
can lead to many useful applications. For exam-
ple, a virtual doctor who knows how to answer
the patient’s question on a complex medical report
or a reading assistant who can summarize the key
findings from scientific papers in brief language.
In the past few years, there has been a growing
interest in our community to explore chart under-
standing in vision and language (V+L) tasks and
many related benchmarks like Chart Question An-
swering (CQA) (Masry et al., 2022; Kafle et al.,
2018; Methani et al., 2020) and Chart Summariza-
tion (CS) (Kantharaj et al., 2022) are introduced.

South America 3.191
India 2.42
Liberia 112

Q: What is the value of India Bar?
A:2.42

Cerial Yield 2001

0.5 1 1.5 2 2.5 3 35

o

Figure 1: A data sample from the ChartQA dataset. The
corresponding chart table is displayed in the top right
corner.

While prevalent in the research community, au-
tomatic chart understanding remains a challeng-
ing problem due to its complex compositions of
various shapes, lines, colors, and scene text. Al-
though tremendous success is achieved in the
V+L research, applying these existing methods
to handle chart-related tasks is hard. Recent re-
search ChartQA (Masry et al., 2022) and Chart-to-
Text (Kantharaj et al., 2022) attempt to first con-
vert chart images to their underlined tables and use
the extracted tables to perform chart-related V+L
task. As the extracted tables always have clean and
organized structures, it makes extracting relevant
information to solve downstream reasoning tasks
much more accessible. Empirically, using tables
yields promising results on both CQA and CS.

Despite valuing table as a significant ingredient
for chart understanding, we have two main con-
cerns about this approach: (1) Automatic table ex-
traction is unreliable. Existing methods (Luo et al.,
2021; Kato et al., 2022) are often limited to work
on a few particular types of chart images and do
not generalize well. Moreover, the extracted table
is likely to contain incorrect noisy predictions that
potentially harm the performance of the following
task. (2) In most cases, the whole table is optional
for resolving the chart-related V+L task. As illus-
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trated in Fig 1, to answer the question "What is the
value of India Bar", the model just needs access
to the second row to give the correct answer. In
contrast, having redundant table information makes
finding the relevant information challenging. To
better leverage the table data, we argue that it is im-
portant to equip the V+L model with the capability
to dynamically interpret the table value from the
chart information.

Therefore, in this paper, we propose ChartT5,
an OCR-based image-to-text generation model pre-
trained on a self-collected chart table pairs corpus.
More specifically, ChartT5 learns how to uncover
a masked table with two proposed pre-training ob-
jectives: Masked Header Prediction (MHP), and
Masked Value Prediction (MVP). MHP helps im-
prove the model’s capability of linking scene text
to the corresponding table headers. MVP requires
the model to perform mathematical reasoning over
chart structure units and the scene text to predict
the correct data value.

We evaluate our ChartT5 on two tasks and bench-
marks: ChartQA and Chart-to-Text. In ChartQA,
ChartT5 outperforms all the non-pretraining meth-
ods that use extracted tables by at least 8% perfor-
mance gains. ChartT5 also beats the pre-training
table-based methods, which demonstrates the ef-
fectiveness of the proposed pre-training strategies.
On Chart-to-Text, ChartT5 consistly outperforms
the existing SOTA on the content selection met-
rics (Barzilay and Lapata, 2005) which values the
model’s capability to extract the critical informa-
tion from the chart.

In summary, our contributions are summarized
below:

* We propose chart-to-table pre-training for
V+L model to learn the capability of inter-
preting table data from the chart.

* We demonstrate that the pre-trained model
consistently outperforms table-based methods
on two chart understanding tasks.

* We conduct comprehensive ablation studies
to validate the effectiveness of chart-to-table
pre-training and the proposed pre-training ob-
jectives.

2 Related Work

2.1 Vision and Language Research on Charts

Researching chart understanding in V+L tasks is a
popular field nowadays. The most prevalent prob-

lem is chart question answering (CQA) (Kafle et al.,
2018; Kahou et al., 2018; Methani et al., 2020;
Masry et al., 2022; Chaudhry et al., 2020), where
researchers build models to answer complex ques-
tions on chart images. Another popular one is chart
summarization (CS) (Kantharaj et al., 2022; Obeid
and Hoque, 2020), which requires machine learn-
ing models to create a summary of key insights
conveyed by a chart. Hsu et al. (2021) collected
a large-scale scientific figures captioning dataset
from research papers where many images are chart
plots.

There are two main approaches for chart vision
and language tasks. The first approach adapts ex-
isting visual question answering (VQA) and im-
age captioning models to CQA and CS tasks with
some specialized designs for chart images (Kafle
et al., 2020; Singh and Shekhar, 2020; Chaudhry
et al., 2020; Kafle et al., 2018; Hsu et al., 2021;
Spreafico and Carenini, 2020). The other approach
assumes the table data of charts is accessible from
the dataset (Kim et al., 2020; Masry, 2021) or can
be extracted from the chart images using vision
to table techniques (Methani et al., 2020; Masry
et al., 2022; Kantharaj et al., 2022). Then, the re-
searchers will either use a table-to-text generation
model (Kim et al., 2020; Masry, 2021; Methani
et al., 2020) or combine the embedding of tables
and charts via a multi-modal fusion method to gen-
erate the text output (Masry et al., 2022; Kantharaj
et al., 2022). It is clear from these efforts that
adding tables as the additional representation of
charts will dramatically improve the model’s capa-
bility to understand and interpret chart information.

Following the table-based approach, we also
value the information provided by the underlined
table data of chart images. However, instead of
directly concatenating the extracted table into the
chart understanding model, we facilitate our model
with the capability to interpret the table data from
chart images via pre-training on chart-table pairs.

2.2 Vision and Language Pre-training

Vision and language pre-training has received grow-
ing interest over the past few years. Researchers
build transformer-based multi-modal fusion mod-
els and perform self-supervised learning on a large-
scale corpus of image-text pairs to learn robust
cross-modal representations that can benefit the
performance of various downstream tasks (Chen
et al., 2020; Lu et al., 2019; Tan and Bansal, 2019;
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Figure 2: An Overview of ChartT5. Given the input chart image and the extracted OCR tokens, ChartT5 predicts

the masked values of the table in the output.

Su et al., 2019; Li et al., 2020; Zhang et al., 2021).

While the pre-trained models achieve great suc-
cess on tasks like VQA (Antol et al., 2015) and Im-
age Captioning (Chen et al., 2015), they have only
focused on the domain of natural images. However,
chart understanding is still challenging for the exist-
ing vision and language methods due to their lack
of knowledge of scene text and structured visual
units such as “bars” and “lines”.

To address the limitation of conventional vision
and language pre-training, TAP (Yang et al., 2021)
and PreSTU (Kil et al., 2022) propose OCR-based
vision and language pre-training frameworks that
focus on scene text understanding in natural images
where they design various pre-training objectives
around the extracted OCR texts. Most recently,
Donut (Kim et al., 2022) and Pix2Struct (Lee et al.,
2022) propose OCR-free pre-training frameworks,
where the pre-trained model directly generates a
text output from a raw image input. Donut focuses
on document image (e.g., receipt) understanding,
and Pix2Struct aims to handle broader types of syn-
thetic images that contain visually-situated texts
such as infographics and user interfaces via pars-
ing web-page screenshots into their HTML Code.
Different from these works, we take the first step
to explore vision and language pre-training that fo-
cuses on chart image understanding. Specifically,
we propose novel pre-training objectives to parse
charts to their underlined tables.

3 Method

In this section, we first introduce the dataset for
pre-training. We then go over our ChartT5 model
architecture and pre-training objectives to predict
masked tables from the chart and OCR information.

Type | PlotQA  DVQA  FigureQA | Total
Bar 142,587 204,514 40,000 387,101
Line | 48,133 0 40,000 88,133
Pie 0 0 20,001 20,001

Table 1: Distribution of the three chart types: bar, line,
and pie from different resources in the pre-training cor-
pus.

3.1 Pre-training Dataset Collection

To collect large-scale pairs of chart-table data, we
collect synthetic data from existing chart question-
answering corpora, including PlotQA (Methani
et al., 2020), DVQA (Kafle et al., 2018), and Fig-
ureQA (Kahou et al., 2018). Specifically, DVQA
and FigureQA render chart images from synthetic
tables that are randomly generated from limited
vocabularies. PlotQA first scrapes tables from on-
line resources like World Bank Open Data and then
synthesizes the charts from the scraped data, where
the tables and charts contain more diverse language
information. Our pre-training corpus consists of
495K chart-table pairs, which cover a diverse range
of chart types. Our pre-training corpus contains
three chart types: bar, line, and pie. The distribu-
tion of different chart types from the three chart
question-answering benchmarks is summarized in
table 1.

3.2 Model Overview

ChartTS5 is an extension of the existing V+L Pre-
training framework, VLTS5 (Cho et al., 2021), an
encoder-decoder architecture that unifies the vision-
language tasks as text generation conditioned on
multi-modal inputs. Given a chart image, we
first extract the scene texts. For the synthetic
chart images that are collected from DVQA (Kafle
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et al., 2018), FigureQA (Kahou et al., 2018), and
PlotQA (Methani et al., 2020), the ground-truth
scene texts are available. The visual context is then
represented as combining visual features extracted
from the chart image and the language features ob-
tained on the detected scene text. We then flat the
paired table of the chart image into a string and
extract the text features via the language encoder.
The multi-modal features are then concatenated
and fused via the multi-layer encoder, and the out-
put hidden vectors can then be used for various
pre-training tasks.

3.2.1 Chart Image Encoder

Given an input chart image, to recognize the crit-
ical marks (e.g., bars and lines) of chart images,
we first utilize a pre-trained Mask R-CNN object
detector from (Masry et al., 2022) to extract the
visual region features v = {v1,va, - -+, vp }. Next,
the chart object detector is trained on the synthetic
chart images from the previous CQA datasets (Ka-
hou et al., 2018; Kafle et al., 2018; Masry et al.,
2022; Methani et al., 2020) which is defined to iden-
tify 15 chart-related objects!. For each detected
object region, we also extract location features as
a 5-d vector: [%%%%W%] which
denotes the normalized top left coordinates, bottom
right coordinates, and the normalized area of the
detected region box. The position feature is then
fed through fully-connected layers to be projected
to the visual region feature embedding space. The
final representation of the visual feature is obtained
by summing up the projected region feature and
corresponding location feature.

3.2.2 OCR Encoder

After extracting the list of the OCR words from
the chart image, we obtain a set of OCR text em-
beddings o = {01, 09, - , 00 } via a learned word
embedding layer. We also get each OCR token’s
5-d position vector similar to the visual position
vector from the OCR token’s detected bounding
box. We then obtain the position embedding vector
using the shared projecting layer from the Chart Im-
age Encoder. The shared position encoding mecha-
nism between OCR tokens and chart object regions
would help the model to capture their relative posi-
tional relations, which is a critical clue to predict

'These 15 categories are: Legends, yAxisTitle, ChartTi-
tle, xAxisTitle, LegendPreview, PlotArea, yAxisLabel, xAx-
isLabel, LegendLabel, PieLabel, bar, pie, pieSlice, line, and
dotLine.

the table data from the chart image. For example,
the bar associated with an x-axis label should share
a similar x-coordinate position in a vertical bar
chart. The final OCR embedding vector is gained
by summing up the OCR text token embeddings
and the OCR position embedding.

3.2.3 Language Encoder

Following the setting of the original VLTS5 (Cho
et al., 2021), we add a prefix to the flattened un-
derlying table to indicate different pre-training
tasks. We then get the table token embeddings
t = {t1,ta,- -+ ,t;x} with a shared word embed-
ding layer. We apply the original T5’s (Raffel et al.,
2020) relative position bias to obtain the position
information of each token in the caption and the
flattened table. We know that the tables have very
different structures compared to natural language
captions, and several efforts are exploring special-
ized position embeddings for tables (Yin et al.,
2020; Herzig et al., 2020). We leave the explo-
ration of the specialized table position embedding
for chart table pre-training in the future.

Scene Text Copy Mechanism. A critical ingre-
dient to the success of chart-to-table translation is
the ability to predict the table headers from the
corresponding OCR texts. For example, in the hori-
zontal bar chart, the table column header is usually
obtained from the x-axis labels, and the row header
is often copied from the legend labels. Although
presenting OCR text and the table to the model
helps link the shared OCR tokens and table values,
generating the correct table prediction from the cor-
responding OCR source is still challenging due to
the large candidate token vocabulary. To encourage
direct copy from the OCR text to the associated
table cell value, we introduce OCR sentinel to-
kens {< ocr_1 >, < ocr_2 >,---, < ocr_l° >},
which corresponds to the detected OCR texts. As
illustrated in Figure 2, we replace each OCR token
with a unique corresponding OCR sentinel token.
Then, for every OCR token, we find if there is a
matched existing table cell value. If a matched pair
is found, we replace the table cell value with its
paired OCR sentinel token. During pre-training, as
all the plot images are synthesized from a paired
table, the one-to-one scene text to table value map-
ping is already provided. With this prepossessing
procedure, we successfully distinguish the table
values that are copied from OCR tokens and those
that need to be generated from the general token
vocabularies, encouraging more accurate table pre-
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diction from the relevant resources.

3.3 Pre-training Objectives

Given the chart-table pairs, we propose Masked
Header Prediction (MHP) and Masked Value Pre-
diction (MHP) to teach the model to recover incom-
plete tables with the chart information. Specifically,
this objective aims to predict a masked table token
tm With the remaining table info ¢,,,, as well as the
chart image region v and the scene text o. Com-
pared to the traditional masked language modeling
applied to the natural language text, we adjust the
table masking strategy based on two hypotheses:
(1) We alternatively mask just the table headers
or numerical table values, as we think interpreting
these two types of information requires different
skills. Predicting table headers requires retrieving
the correct scene text, while predicting numerical
table values depends more on the capability to con-
duct mathematic reasoning over both the visual el-
ements and the scene text. Therefore, it is better to
format them as two separate pre-training objectives.
(2) We increase the masking rate from 15% to 45%,
as the masked table token has less dependence on
the surrounding table values.

4 Experiment

In this section, We detailed our experiment setups
to evaluate the proposed ChartT5 on two tasks:
chart question answering and chart summarization.
We then introduce the main results of the two eval-
uation tasks. Finally, we present the ablation study
on chart-table pre-training and the two pre-training
objectives.

Chart Question Answering. Given a chart im-
age and a query question, the goal for the model
is to provide an accurate answer string by inter-
preting the provided chart image. For this task,
we consider the ChartQA dataset (Masry et al.,
2022), which collects question-answer pairs on
realistic chart images scraped from the internet.
Their annotations are collected in two fashions:
(1) Human-written question-answer pairs; and (2)
machine-generated question-answer pairs derived
from the human-written chart summaries. In total
32.7K question-answer pairs are collected on 21.9K
scraped chart images, where about 9.6K question-
and-answer pairs are human-written. Compared to
the previously collected CQA datasets, ChartQA
is more challenging to handle due to the diverse
visual style from the realistic chart images and the

complex language from human annotations. Fol-
lowing previous work (Masry et al., 2022; Methani
et al., 2020), we also apply the relaxed accuracy to
measure the performance on the CQA task, which
allows a minor inaccuracy on numerical value pre-
diction (within 5% of the gold answer). For non-
numerical answers, the prediction needs to be ex-
actly matched to the gold-standard answer.

Chart Summarization. Given a chart image, the
target is to summarize the key insights of the chart
in natural language. For this task, we evaluate our
model on the most recently proposed Chart-to-Text
benchmark (Kantharaj et al., 2022), which collects
roughly 36.5K chart images with one summary for
each image. They split the collected charts into two
sets: Statista and Pew, representing the two sepa-
rate websites from which the chart plots come. The
summaries in Statista are human-written which is
well grounded on the chart image. Meanwhile, the
summaries from Pew are automatically extracted
from the news paragraphs surrounding the chart im-
ages. Pew is noisier and more challenging to han-
dle. We follow (Kantharaj et al., 2022) to split the
two sets for training and testing. We adopt BLEU-
4, Content Selection, and CIDER as the evaluation
metrics to measure the quality of the generated
summary following (Kantharaj et al., 2022).

Implementation details. We initialized our
ChartT5 from TSpyse and pre-trained on our self-
collected corpus for 30 epochs with a batch size
of 60. We used Adam optimizer (Kingma and Ba,
2015) with a linear warm-up for the first 5% train-
ing steps, and the peak learning rate is set as le-4.
After warming up, a linear decayed learning-rate
scheduler gradually drops the learning rate for the
rest of the training steps. The pre-training exper-
iments are conducted on 2 Nvidia TITAN RTX
GPUs, and it roughly takes two days to accomplish
the experiment. We kept the last checkpoint of
each pre-training run as our final checkpoint for
fine-tuning.

We also applied warming-up for downstream
fine-tuning to gradually increase the learning rate
to the pick value during the first 5% of training
epochs. After that, a linear decayed learning-rate
scheduler gradually drops the learning rate for the
remaining training. For CQA task, we set batch
size as 24 and fine-tune ChartT5 for 60 epochs with
a peak learning rate 2e-4 on 2 Nvidia TITAN RTX
GPUs. The best checkpoint was saved as the one
that achieves the highest accuracy on the validation
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ChartQA
Model Human Augment Overall
TS 25.12 56.96 41.56
Tapas 28.72 53.84 41.28
VLTS5 26.24 56.88 41.56
VisionTapas 29.60 61.44 45.52
VLTS5, 40.08 63.60 51.84
VisionTapas,,., | 32.56 61.60 47.08
Pix2Struct - - 56.00
ChartT5 31.8 74.4 53.16

Table 2: Evaluation results on ChartQA. We report re-
laxed accuracy on the test split annotated by humans
and that generated by the machine. In the last column,
we report the overall accuracy by computing the mean
values with human split and augment split.

split. On the CS task, we use batch size 20 and a
peak learning rate Se-5. On the Pew split, we fine-
tune ChartT5for 20 epochs, and on Statista, we fine-
tune ChartT5for 25 epochs. The best checkpoint
is also saved as achieving the best BLEU score on
the validation split. All the reported numbers are
one-time runs.

4.1 Main Results

We first compare ChartT5 to various state-of-the-
art methods with or without pre-training on the two
downstream tasks.

4.1.1 Evaluation on CQA

We compare ChartT5 with SOTA non-pretraining
and pre-training methods on CQA tasks. The best-
performed non-pretraining baselines are introduced
in (Masry et al., 2022). The authors first predict the
table data from the chart image via an automatic
data extraction tool (Luo et al., 2021). Then they ex-
tend various language-only models (TS5, Tapas) and
multi-modal models (VLT5, VisionTapas) to pre-
dict the answer conditioned on the extracted table.
On the line of pre-training baselines, we compare
to VLTS5, and VisionTapas,,, which pre-trains
VLTS5 and Vision Tapas on PlotQA with the vi-
sual question answering tasks. We also compare
chartT5 to the current SOTA method Pix2Struct
which is pre-trained on 80 million webpage screen-
shots to HTML code parsing objectives. The result
is summarized in Table 2.

Comparison to Non-Pretraining Method Even
without access to the predicted tables, ChartT5 has
outperformed all non-pretraining methods by a

large margin (a minimum 7.3% gain on the overall
performance). ChartT5 also outperforms all non-
pretraining baselines on the human-written ques-
tions and machine-generated questions. Although
the predicted table covers 54% of the answers in the
test data of ChartQA, simply feeding it as an input
does not make the existing models fully leverage
the valuable information. The significant improve-
ment achieved by ChartT5 indicates the effective-
ness of the proposed pre-training to help the model
to obtain the relevant table information for chart
understanding.

Comparison to Pre-training Method Although
the performance of VLTS and VisionTapas is im-
proved significantly by pre-training on additional
CQA data, ChartT5 still outperform them by at
least 1.3%. Specifically, on machine-augmented
questions, ChartT5 outperforms VLTS5,.. by
8%. However, both visionTapas,,., and VLTS5,
achieve better accuracy on the human split, which
means that the in-domain question answering ob-
jectives helps the model to improve the numeri-
cal reasoning capability. ChartT5 underperforms
Pix2Struct by 2.3% on the overall test split. How-
ever, pix2struct is pre-trained on a more than 100
times larger pre-training corpus than the rest of the
pre-training methods. Given the same scale of the
pre-training dataset, we expect to gain additional
performance improvement, and we leave this for
future exploration.

4.1.2 Evaluation on Chart Summarization

For the chart summarization task, we compare
ChartT5 to the best non-pretraining approaches
introduced in (Kantharaj et al., 2022). Given a
chart image, The authors build the chart summa-
rization models by extending the pre-trained lan-
guage generation model TS5 (Raffel et al., 2020)
and BART(Lewis et al., 2019) whose generation
processes are conditioned on: (1) a set of scene
texts extracted by a trained OCR detector. (2) the
ground truth table that is paired with the chart. The
evaluation result is summarized in Table 3.

From Table 3, we can see that on Statista,
ChartT5 outperforms all baseline methods on
BLUE score, but only a slight improvement is
achieved over the best baseline. On Pew, ChartT5
underperforms T5-OCR by almost 1.5 percent.
The proposed ChartT5 also slightly underperforms
against the baseline methods in CIDER on both
datasets. However, ChartT5 consistently outper-
forms all baselines on content selection scores
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Model Statista Pew
BLEU CS CIDER | BLEU CS CIDER
T5-OCR 3529 73777 443 1049 4087  2.20
BART-OCR - - - 9.09 39.99 1.97
T5-TAB 37.01 7572  4.68 - - -
BART-TAB | 36.36 77.14  4.40 - - -
ChartT5 3751 8216 345 9.05 55.1 1.23

Table 3: Evaluation results on Chart Summarization. We display BLEU, CS and CIDER scores for the Pew and
Statista Split. The ground truth table is not available to Pew thus the table-based method does not have results on

Pew split.
o Question Types
()
Pretraining? Table Human Augment
No 60.7 30.8 66.7
Yes 647 318 74.4

Table 4: Ablation Study on Chart Table Pre-training
with ChartQA Dataset. We report results on three sub-
sets of questions: Table cover questions, human-written
questions, and machine-generated questions.

across both Statista and Pew sets. The under-
performance on BLEU and CIDER indicates that
Chart-table pre-training is limited to benefit high-
quality natural language generation. However, the
strong performance on content selection, which
values the key information appearance in the gen-
eration, suggests the advantage of chart-table pre-
training on extracting relevant chart information.
Therefore, a potential direction to explore is com-
bining different types of pre-training objectives,
such as chart-to-text pre-training and chart-table
pre-training goals, to facilitate the model with di-
verse strengths.

4.2 Ablation Study

We conduct ablation experiments to validate the
effectiveness of chart-table pre-training and the pre-
training objectives. We also evaluate the effective-
ness of the proposed scene text copy mechanism.

4.2.1 Chart-Table Pre-training

We conduct detailed analyses on the effectiveness
of chart-table pre-training. First, we measure the
performance gain from the chart-table pre-training
on the full test set of ChartQA data. We then
study what type of questions benefit most from
the chart-table pre-training by picking three sub-
sets of questions that measure different capabilities

of the model: (1) Human-written questions, (2)
Machine-generated questions, and (3) Table cov-
ered questions, where the answers can be directly
found in the ground truth tables. The results are
summarized in Table 4. From Table 4, we find
that after chart-table pre-training the model’s per-
formance on these three sets of questions is all
improved. The most significant gain is obtained
on machine-generated questions, which mainly fo-
cus on extractive-type questions. This indicates
that chart-table pre-training benefits the model to
localize and retrieve the requested information pre-
sented on Chart Image. The second biggest gain
is achieved on table-cover questions, where the
model demonstrates significant improvement in the
capability of chart-to-table interpretation.

Question Types
Human Augment Overall
Full 31.8 74.4 53.1
-MVP | 309 73.7 523
-MHP | 31.2 68.3 49.7
-STC 30.8 72.4 51.6

Table 5: Ablation Study on the two proposed pre-
training objectives and the Scene Text Copy Mech-
anism (STC). The first row is the result of the full
ChartT5 model. Then we remove one of the pre-training
objectives and the scene-text-copy mechanism. We re-
port the results of different ablation experiments on both
human and machine-generated splits as well as the over-
all performance.

4.2.2 Pre-training Objectives

We validate the effectiveness of the two pre-training
objectives, Masked Header Prediction and Masked
Value Prediction. We remove one pre-training ob-
jective at a time and pre-train the ChartT5with only
one table prediction task. The pre-trained model
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Q: What was the ratio of
females to males inn
tertiary education in 2017°?

Answer: 1.18

Prediction: 1:18

Figure 3: An error prediction from our model due to
noisy OCR prediction

.. Q: Does the sum of smallest
two bar is greater than the
value of largest bar?

Answer: Yes

Prediction: No

Figure 4: An error prediction from our model due to
complex multi-hop reasoning

is then fine-tuned and evaluated on the human and
augmented split for comparison. The result is dis-
played in table 5. As can be seen from the table,
removing Masked Value Prediction Loss has a neg-
ligible impact on the performance of ChartT5 on
ChartQA dataset. There is a slightly more drop
in human written questions which suggests that
predicting table numerical values still has a miner
positive impact on helping the model’s mathemat-
ical reasoning. Remove Masked Header Predic-
tion have a significant impact on the machine-
generated question-answering accuracy. As ex-
pected, Masked header modeling mainly helps the
model learn how to link the scene text to the ta-
ble headers, which is a critical ability to extract
relevant information given a specific query.

4.2.3 Scene Text Copy

We also validate the effectiveness of the scene-text-
copy mechanism, where we train a ChartT5Smodel
by simply representing OCR tokens in their original
text format. The model is fine-tuned and evaluated
on the human and augmented split of the chartQA
dataset to compare against the full ChartT5. The
result is displayed in Table 5. Disabling the scene-
text-copy mechanism leads to a 1.5% overall per-

formance drop on ChartQA tasks. Specifically, it
leads to more degradation on the augmented split
than the human split, as scene-text-copy helps en-
hance the alignment between OCR and table values
to benefit accurate information extraction from the
chart.

4.3 Qualitative Error Analysis

We have manually analyzed model predictions to
understand its limitation. We found that our model
suffers most from noisy OCR detection and com-
plex question that requires multi-hop reasoning.
Noisy OCR Prediction. As an OCR-based model,
ChartTS5 often suffers from a wrong OCR detection.
An example is shown in Figure 3; the model local-
izes the right scene text “1.18” to answer the ques-
tion, but the OCR text is mistakenly detected as
“1:18”. To further understand the limitation of OCR
detection, we randomly sample 20K PlotQA test
split and compare the performance of our model
using detected OCRs against Ground Truth OCRs.
We observe a 5% performance drop when using de-
tected OCRs. We can improve the OCR detector for
future work by training on a large Plot scene-text
detection benchmark. Another promising direction
is to attempt OCR-free end-to-end plot recognition
method like Pix2Struct (Lee et al., 2022).
Multi-Hop Reasoning. Our model is also quite
vulnerable to handling complex questions requir-
ing multi-hop reasoning. An example is shown in
Figure 4; the model cannot perform the complex
logic reasoning to add the stats of the two smallest
bars and compare that to the large bar. We will
consider exploring pre-training on the mathematic
reasoning datasets to address this limitation.

5 Conclusion

We propose ChartT5 to enhance the vision lan-
guage model’s ability to understand chart images
via chart-table pre-training. The model learns to in-
terpret the masked tables via our proposed masked
header prediction and masked value prediction ob-
jectives. ChartT5 achieves significant improvement
over table-based non-pretraining SOTA methods
on the ChartQA dataset, especially on the extrac-
tive question sets. We also achieve a new SOTA
Content Selection Score on the Chart-to-text sum-
marization dataset. We conduct comprehensive ab-
lation studies to identify the impact of chart-table
pre-training, and we find that the proposed pre-
training is extremely helpful to extract accurate
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information from the Chart. For future research
directions, we believe it may also be meaningful
to explore chart understanding under data-efficient
settings (Hsu et al., 2022; Zeng et al., 2023) and
for evidence retrieval tasks (Lu et al., 2022; Ji et al.,
2023).

6 Limitations

Although introducing chart value prediction objec-
tive, it only provides minor improvement to the
model’s performance on doing complex reasoning.
There is still a large room to improve the model’s
capability in math calculation. Our model also suf-
fers from the noisy OCR prediction of off-the-shelf
object detector, whose performance will depend
highly on the extracted OCR text qualities. Another
possible limitation of our approach is the quality of
the pre-training data, which only contains synthetic
images. Although the proposed model works fairly
well on the ChartQA dataset, it is unclear if the
improved performance can be generalized to other
realistic chart images.

7 Ethics Statement

When we collect the pre-training dataset, we en-
sure we respect the intellectual property of dataset
sources. All the ChartQA dataset we used for the
collection of chart-table pairs allows public access
for research. To ensure the reproducibility of our
experiment results, we provide details of the hy-
perparameter setting in our paper, and we will also
publish our code later. Our models can mislead
the public’s understanding of chart content due to
the potential bias from our training corpus. There-
fore, we don’t recommend using our model for any
real-world decision on chart images.
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