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Abstract
Argumentation is one of society’s foundational
pillars, and, sparked by advances in NLP, and
the vast availability of text data, automated
mining of arguments receives increasing atten-
tion. A decisive property of arguments is their
strength or quality. While there are works on
the automated estimation of argument strength,
their scope is narrow: they focus on isolated
datasets and neglect the interactions with re-
lated argument-mining tasks, such as argument
identification and evidence detection. In this
work, we close this gap by approaching ar-
gument quality estimation from multiple dif-
ferent angles: Grounded on rich results from
thorough empirical evaluations, we assess the
generalization capabilities of argument qual-
ity estimation across diverse domains and the
interplay with related argument mining tasks.
We find that generalization depends on a suf-
ficient representation of different domains in
the training part. In zero-shot transfer and
multi-task experiments, we reveal that argu-
ment quality is among the more challenging
tasks but can improve others. We publish
our code at https://github.com/fromm-m/
acl-cross-domain-aq.

1 Introduction

The argumentation process is one of the corner-
stones of society, as it allows the exchange of opin-
ions and reaching a consensus together. Fueled
by advances in natural language processing, re-
cent years have witnessed the advent of Argument
Mining (AM), i.e., the field of automated discov-
ery and organization of arguments. AM is helpful
over various scenarios, reaching from legal rea-
soning (Wyner et al., 2010; Walker et al., 2014;
Poudyal et al., 2020; Villata, 2020) to supporting
the decision-making process of politicians (Had-
dadan et al., 2019; Duthie et al., 2016; Menini et al.,
2017; Lippi and Torroni, 2016; Awadallah et al.,
2012). Thus, there is a flurry of works on identifi-
cation of arguments from text (Stab et al., 2018b;

Fromm et al., 2019; Trautmann et al., 2020) and
retrieval of them (Wachsmuth et al., 2017c; Fromm
et al., 2021; Dumani and Schenkel, 2019; Dumani
et al., 2020; Stab et al., 2018a). Since arguments
often have to be weighed against each other, a
central property of arguments is their Argument
Quality (AQ) or convincingness, i.e., their (per-
ceived) strength. While the ancient Greeks (Rapp,
2002) already discussed the constituents of strong
arguments, automated estimation is a relatively un-
charted field. Due to the high subjectivity of argu-
ment strength (Swanson et al., 2015; Gretz et al.,
2020; Toledo et al., 2019; Habernal and Gurevych,
2016b; Stab et al., 2018b), obtaining high-quality
annotations is challenging, cf. Section 1. In this
light, a legitimate question is the reliability and ro-
bustness of the existing approaches for estimating
AQ and their applicability in real-life scenarios. Ex-
isting AQ benchmark datasets are often restricted to
a single domain (Wachsmuth et al., 2016; Persing
and Ng, 2017) or/and make different assumptions
about factors impacting the AQ. Thus, enabling
transfer between sources and datasets appears es-
pecially appealing, but existing works (Gretz et al.,
2020; Toledo et al., 2019; Swanson et al., 2015;
Habernal and Gurevych, 2016b) cease to provide
detailed studies thereupon.

In this work, we thus investigate for the first
time the automatic evaluation of the quality of argu-
ments from a holistic perspective, bringing together
various aspects. First, we evaluate whether AQ
models can generalize across datasets and domains,
a crucial feature for deployment in the diverse en-
vironments encountered in relevant real-world ap-
plications. Next, we investigate the hypothesis of
whether models for related argument mining tasks
inherently learn the concept of argument strength
without being explicitly trained to do so by evaluat-
ing their zero-shot performance for estimating AQ.
A

In summary, our contributions are as follows:
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Topic: Polygamy Legalization Score

“Polygamy makes for unhappy relation-
ships and is patriarchal.”

0.66

“Polygamy makes child-raising easier
by spreading the needs of children
across more people.”

0.84

Table 1: Two example arguments from the studied
datasets with Argument Quality score.

• As far as we know we are the first to study
the generalization capabilities of AQ predic-
tion models across different datasets and AQ
notions.

• Since we determine the size of the dataset
as one of the decisive performance factors,
we further investigate a zero-shot setting of
transferring from related Argument Mining
tasks.

2 Related Work

2.1 Argument Quality

Argument Quality (AQ), sometimes also called Ar-
gument Strength, is a sub-task of Argument Min-
ing (AM) that is one of the central research top-
ics among argumentation scholars (Walton et al.,
2008; Toulmin, 2003; Van Eemeren and Grooten-
dorst, 1987). Due to its highly subjective nature,
there is no single definition of AQ. As a result,
there are various proposals for different factors
that can affect the quality of an argument, such
as the convincingness of an argument (Habernal
and Gurevych, 2016a). There are several ways to
express the strength of an argument. Some works
take an absolute continuous score, while others
argue that strength estimation works better in (pair-
wise) relation to other arguments. To the best of
our knowledge, we are the first to evaluate how AQ
estimators trained on different corpora, AQ notions,
and AQ tasks correlate with each other.

One of the first relatively large corpora was pre-
sented by Swanson et al. (2015). The SwanRank
corpus contains over 5k arguments, where each
argument is labeled with a continuous score that
describes the interpretability of an argument in the
context of a topic. They propose several meth-
ods based on linear regression, ordinary kriging,

and SVMs as regression algorithms to automati-
cally estimate the strength from an input text en-
coded by hand-crafted features. Other corpora have
followed, using relative- and/or absolute convinc-
ingness (Habernal and Gurevych, 2016b; Potash
et al., 2019) as an annotation criterion. The works
proposed AQ estimators based on SVMs or BiL-
STMs combined with GloVe embeddings (Penning-
ton et al., 2014). Gleize et al. (2019) provide a
dataset, IBM-EviConv, that focuses on ranking the
evidence convincingness. They used a Siamese net-
work based on a BiLSTM with attention and train-
able Word2Vec embeddings. Gretz et al. (2020),
and Toledo et al. (2019) created their corpora by
asking annotators whether they would recommend
a friend to use the argument in a speech support-
ing or disputing the topic, regardless of their own
opinion. Both use a fine-tuned BERT (Devlin et al.,
2019) model for the absolute AQ regression task.

The shared evaluation practice in the previous
works is to evaluate methods on each dataset in-
dependently. Gretz et al. (2020) use their newly
introduced dataset for pre-training of their model.
The authors then investigate the strength of their
models by applying them on two related datasets
UKPConv and SwanRank. By finetuning the model
on the training part of two datasets, they investigate
if the pretraining is helpful for the target corpora.
Our work proposes to advance the evaluation and
advocate for an accurate cross-dataset evaluation
without additional fine-tuning on the evaluation
dataset to estimate the model’s applicability in chal-
lenging real-life scenarios.

As a common understanding of AQ is still lack-
ing, Wachsmuth et al. (2017a,b) investigated dif-
ferent dimensions of AQ. Based on a survey paper
of existing argument quality theories (Wachsmuth
et al., 2017a), they developed a taxonomy that aims
to capture all aspects of AQ. In their work, they
present a small corpus of 320 arguments annotated
for 15 dimensions and explore the correlations be-
tween the different dimensions. Thus, their work
presents a different view that rather focuses on the
argumentation theory than on multiple corpora and
the generalization of AQ estimators.

Lauscher et al. (2020); Ng et al. (2020) created a
cross-domain corpus (Q&A forums, debate forums,
and review forums) with 5,295 arguments using the
annotation scheme of Wachsmuth et al. (2017a).
They conclude that, in most cases, models ben-
efit from the inclusion of out-of-domain training
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data. However, they do not perform a cross-corpora
study of their architectures, which limits the gener-
alizability and impact of their experiments.

3 Generalization across Argument
Quality Corpora

High-level applications such as Argument Re-
trieval (Wachsmuth et al., 2017c; Fromm et al.,
2021; Dumani and Schenkel, 2019; Dumani et al.,
2020; Stab et al., 2018a) and autonomous debat-
ing systems (Slonim et al., 2021) require reliable
Argument Quality (AQ) models to select strong
arguments among the relevant ones. The research
community has identified this gap and proposed
and evaluated different automated models for AQ
estimation (Gretz et al., 2020; Toledo et al., 2019;
Swanson et al., 2015; Habernal and Gurevych,
2016b). However, AQ is often captured differently
due to its high subjectivity, e.g., absolutely as a
continuous score or relative to other arguments by
pairwise comparison. Consequently, many publica-
tions also introduced their own corpus with individ-
ual annotation schemes capturing different notions
of AQ. While they have compared multiple AQ es-
timators against each other within a single corpus,
there is a lack of cross-corpora empirical evalua-
tions. Thus, the robustness of predictions across
datasets remains largely unexplored, which poses
a severe challenge for reliable real-world applica-
tions integrating diverse data sources. To assess the
generalizability capability of AQ estimation mod-
els, we designed a series of experiments across all
four major AQ datasets to answer the following
research questions:

1. How well do AQ models perform across
datasets if annotations schema and domain
of the arguments do not change?

2. How does the corpora size affect generaliza-
tion?

3. How well do models generalize across differ-
ent text domains?

4. How does the AQ quality notion affect gener-
alization?

5. Does the AQ model become more robust if
it is trained with a combined dataset contain-
ing data from different domains and labeling
assumptions also vary?

3.1 Datasets and Evaluation Setting

We briefly describe the four AQ datasets used in
our empirical study, which all capture AQ on a
sentence level. They are also summarized in Table
2.

1. Swanson et al. (2015) constructed the dataset
SwanRank with 5,375 arguments whose qual-
ity is labeled in the range of [0, 1], where 1
indicates that an argument can be easily inter-
preted. It consists of four controversial topics
taken from the debate portal CreateDebate1.

2. Habernal and Gurevych (2016b) annotated a
large corpus of 16k argument pairs and inves-
tigated which argument from the pair is more
convincing. Based on the argument pair anno-
tations, they created an argument graph and
used PageRank to calculate absolute scores
for the individual arguments. The dataset is
called UKPConvArgRank (here shortly UKP-
Conv) and contains 1,052 arguments. It con-
sists of 32 topics extracted from the debate
portals CreateDebate2 and ProCon3.

3. Toledo et al. (2019) created their corpora
IBM-ArgQ of 5,300 arguments by asking (1)
debate club members (from novice to experts)
and (2) a broad audience of people attending
the experiments, if they would recommend a
friend to use the argument in a speech support-
ing or contesting the topic regardless of their
personal opinion. They modeled the quality
of each individual argument as a real value in
the range of [0, 1], by calculating the fraction
of ‘yes’ answers.

4. Gretz et al. (2020) created their corpora of
30k arguments by asking crowd contributor
the same question as Toledo et al. (2019).
Gretz et al. (2020) further introduce new scor-
ing methods that consider the annotators’ cred-
ibility without removing them entirely from
the labeled data, as done in Toledo et al.
(2019). The new scoring functions and the
broader annotator selection presumably bet-
ter represent the general population compared
to Toledo et al. (2019).

1http://www.createdebate.com
2http://www.createdebate.com
3https://www.procon.org
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Name Sentences Topics Domain Quality notion

UKPConv 1,052 32 Debate Portal Convincingness
SwanRank 5,375 4 Debate Portal Interpretability
IBM-ArgQ 5,300 11 Crowd Collection Recommendableness
IBM-Rank 30,497 71 Crowd Collection Recommendableness

Table 2: Overview of the different Argument Quality (AQ) datasets with their number of arguments, the number of
distinct topics, the different source domains, and the AQ notion used for annotation.

As some of the corpora did not provide official
train-validation-test splits and differed in the num-
ber of topics and the formulated task (in-topic vs.
cross-topic), we decided to do our own split based
on the topics of the arguments. Contrary to the
original topic splits in UKPConv, IBM-ArgQ and
IBM-Rank, we treat the supporting and opposing
arguments from a certain topic as one topic because
they have very great similarities. Whereas in their
work, e.g. the topics "We should abandon cryp-
tocurrency" and "We should adopt cryptocurrency"
are represented as two topics. We perform 10-fold
cross-topic cross-validation, where each fold is a
60%/20%/20% train-validation-test split, and we
additionally ensure that no topic occurs in more
than one split. By the latter requirement and the
topic merge, we ensure an inductive setting where
the AQ estimation can not rely on similar argu-
ments in the training corpus and therefore provides
a more challenging but more realistic task.

3.2 Model and Training
Since transfer learning achieves state-of-the-art Ar-
gument Mining (AM) results on different corpora
and tasks (Reimers et al., 2019; Fromm et al., 2019;
Trautmann et al., 2020), we also apply it to our AQ
estimation task. We use a bert-base model, pre-
trained on masked-language-modeling, and fine-
tune it to predict absolute AQ scores on the respec-
tive datasets, cf. Section 3.1. As an input, we used
the arguments from the respective datasets and con-
catenated the topic information, separated by the
BERT specific [SEP ] limiter, similar to other work
in AM (Fromm et al., 2019; Reimers et al., 2019;
Gretz et al., 2020). We concatenate the last four lay-
ers (as Gretz et al. (2020); Toledo et al. (2019) did
it) of the fine-tuned BERT model output to obtain
an embedding vector of the size 4 · 768 = 3, 072.
For the regression task, we stack a Multi-Layer Per-
ceptron (MLP) with two hidden layers, one with
100 neurons and a ReLU activation, followed by
the second hidden layer and a sigmoid activation

function. We train the architecture end-to-end, with
SGD with a weight decay of 0.35 and a learning
rate of 9.1× 10−6. The MLP uses dropout with a
rate of 10%.

3.3 Results

Table 3 summarizes our results. We report the Pear-
son correlation score between the predicted- and
ground-truth absolute AQ evaluated on a hold-out
test set. Contrary to the original topic splits in
UKPConv, IBM-ArgQ and IBM-Rank we treated
the supporting and opposing topics as one topic.
The task is therefore more challenging, as topic in-
formation from the contrary stance can not be used
during training. However, the task is also more
realistic, as one can not expect to have arguments
from all topics in the training set.

3.3.1 Evaluation on Similar Datasets and
Importance of Training Set Size

First, we evaluate the performance of the model on
similar datasets and the dependency on the size of
the training dataset. We can observe that models
perform very well on other datasets from a similar
domain labeled with a similar quality notion, i.e.,
IBM-ArgQ and IBM-Rank (both are crowd col-
lected and annotated based on recommendableness.
Furthermore, we can notice that the size of the
dataset is crucial for performance: a model trained
on the largest IBM-Rank dataset achieves the best
score also on IBM-ArgQ. This insight gives us a
solid foundation for the next steps.

3.3.2 Generalization Across Domains and
Quality Notions

Next, we investigate whether a transfer across do-
mains is possible. Recall that the four datasets
cover two different domains: the sentences from
UKPConv and SwanRank have been extracted from
debate portals, while IBM-Rank and IBM-ArgQ
have been collected from the crowd.
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Evaluation
Size UKPConv SwanRank IBM-ArgQ IBM-Rank

Tr
ai

ni
ng

Related Work Split - 35.1% - 41.0% 48.0%

UKPConv 1,052 19.0% 42.5% 15.2% 3.0%
SwanRank 5,375 18.9% 47.5% 17.1% 8.0%
IBM-ArgQ 5,300 23.3% 27.8% 34.2% 38.9%
IBM-Rank 30,497 26.2% 37.0% 38.3% 48.1%

all except UKPConv 41,172 23.3% 45.8% 31.6% 46.6%
all except SwanRank 36,849 25.0% 49.1% 35.0% 46.6%
all except IBM-ArgQ 36,924 23.0% 43.6% 38.4% 47.5%
all except IBM-Rank 12,224 20.4% 42.0% 35.0% 46.5%

Table 3: The models are evaluated by the Pearson correlation between ground truth and predicted Argument Quality
on the respective test sets. The first row corresponds to the respective correlation values reported in the original
work. In SwanRank (Swanson et al., 2015) the authors evaluated their approach with Root Mean Squared Error
(RMSE), Pearson correlation was not measured in their work. The first four rows correspond to models trained on
a single dataset, whereas for the last four rows, all but one dataset, have been used for training, i.e., following a
leave-one-out scheme. Bold numbers indicate the best results for each column within the two groups.

Compared to in-domain generalization, we ob-
serve a considerably worse generalization between
domains: For example, trained on the crowd dataset
IBM-ArgQ, we can achieve a correlation of 38.9%
on the crowd dataset IBM-Rank, while training
on the debate datasets SwanRank and UKPConv
results in negligibly low correlations of 8% and
3%, respectively. Conversely, when evaluated on
the debate portal dataset SwanRank, we obtain a
correlation of 42.5% when using a model trained
on the other debate portal dataset UKPConv, while
the crowd-collected datasets IBM-ArgQ and IBM-
Rank only achieves 27.8% and 37.0%, respectively.
The smaller difference compared to the first com-
parison can be explained by the larger training
datasets.

Surprisingly, we observe a completely different
picture for generalization across quality notions.
We see only a moderate drop in performance for
a fixed domain but a different quality notion. For
instance, the model trained on SwanRank performs
relatively well on the UKPConv dataset. Vice-
versa, we observe a more considerable performance
drop, which can be explained by the smaller size
of the UKPConv dataset.

3.3.3 Multi-Domain and Multi-Quality Notion
Training

To investigate whether a single model can grasp
various dimensions of quality and work on argu-
ments from various domains, we designed another

set of “leave-one-out” experiments. We train on
the training sentences of all but one AQ corpus
and evaluate the performance on all test sets. The
four rows ”all except” define the three training sets,
e.g. ”all except UKPConv” consists of the training
sets of (SwanRank, IBM-ArgQ, and IBM-Rank).
The entries on the diagonal thus show how well
the models perform when evaluated on an unseen
corpus.

For evaluation on the unseen IBM-Rank dataset
after training on the remaining ones, we can ob-
tain a correlation of 46.5%, which nearly reaches
the correlation of 48.1% we obtained when train-
ing and evaluating on IBM-Rank. For SwanRank,
IBM-ArgQ and UKPConv, we can even surpass the
correlation on the respective test set by training on
all other training sets instead of the one from the
respective corpus.

3.3.4 Cross-Corpora Generalization
Conclusion

To summarize, we conclude that in our analysis the
available datasets and models for AQ are reliable.
Our most important insight is that AQ notions do
not contradict each other, and a single model can
estimate the AQ of text from different domains.
Therefore, the practical recommendation for real-
life application is to combine all available datasets
across different domains and AQ notions.
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4 Zero-Shot-Learning in Argument
Mining

In this section, we investigate whether explicit Ar-
gument Quality (AQ) corpora are a necessity or
whether the task of AQ can also be solved by trans-
ferring from other related argument mining tasks
such as Argument Identification (AId) or Evidence
Detection (ED), In contrast to the relatively new
task of automatic AQ estimation, other Argument
Mining (AM) tasks already offer a broad range
of large datasets that cover different domains and
annotation schemes. Moreover, the agreement be-
tween the annotators is higher on the other tasks,
as AQ is highly subjective (Swanson et al., 2015;
Gretz et al., 2020; Toledo et al., 2019; Habernal
and Gurevych, 2016b; Stab et al., 2018b). There-
fore, a successful transfer from related tasks to the
target task of AQ would represent a significant ad-
vance in the field. To this end, we investigate the
zero-shot capability of AM models across different
corpora and different AM tasks. To the best of
our knowledge, we are the first to compare AM
task similarity by providing a first study on how
individual tasks can benefit from each other.

In particular, we aim to answer the following
guiding research questions:

1. Can we achieve satisfactory performance by
zero-shot transfer from related AM tasks, i.e.,
without fine-tuning the respective task?

2. Is there a difference in transferring from dif-
ferent tasks, i.e., is one task more suited than
the other?

While not a primary focus of this work, for com-
pleteness, we also provide experimental results for
the reverse direction of transferring from AQ esti-
mation to the other tasks.

4.1 Datasets and Tasks

This section provides an overview of the three dif-
ferent AM corpora and tasks we used in our experi-
ments. They are also summarized in Table 4.

1. UKP-Sentential (Stab et al., 2018b) contains
over 25k arguments distributed across eight
controversial topics. It is annotated for AId,
where each sentence is labeled as either argu-
mentative or non-argumentative in the context
of a topic.

2. The IBM-Evidence (Ein-Dor et al., 2020)
corpus includes nearly 30k sentences from
Wikipedia articles. All sentences are anno-
tated with a score in the range of [0, 1], de-
noting the confidence that the sentence is evi-
dence (either expert or study evidence) of the
article’s topic.

3. IBM-Rank (Gretz et al., 2020) is the largest
of the four AQ datasets, which has also been
used in the previous Section 3. The corpus
annotation is in the range of [0, 1], where 1
indicates a strong argument and a score of 0
indicates a weak argument.

We split all three datasets into the train, vali-
dation, and test sets (70%/10%/20%). Similar to
Section 3.1, we designed the splits such that no
topic in the training set also occurs in the test set,
which is often called the "cross-topic" scenario in
AM and corresponds to a more interesting, but also
more challenging task, which requires a sufficient
degree of generalization to unseen topics.

4.2 Evaluation Setting
We use a standard BERT large model (Devlin
et al., 2019) pre-trained on the masked-language-
modeling task to evaluate the zero-shot general-
ization capability. As an input for the fine-tuning,
we use the sentences from the respective datasets
and concatenate the topic information, separated
by the BERT specific [SEP] limiter, similar to Sec-
tion 3.2. We develop three different zero-shot eval-
uation strategies for the different transfer settings:

• AId → Regression Tasks: We use the BERT
encoder output as input to a linear layer with
a dropout that predicts the classes. Cross-
entropy serves as training loss. The proba-
bilities between 0 and 1 indicate if a sentence
is argumentative or not. The predicted prob-
ability of the positive class, i.e., whether it is
argumentative, is then directly used as a score
for ED and AQ on the respective corpora. We
use Spearman rank correlation instead of Pear-
son correlation as an evaluation measure to
account for the difference in scale.

• Regression Tasks → AId: ED and AQ use
the BERT representations in a single hidden
layer that scores the sentences according to
their absolute quality or the probability of con-
taining evidence. Since we train on regression
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Name Sentences Topics Domain Task

IBM-Rank 30,497 71 Crowd Collection Argument Quality (AQ)
UKP-Sentential 25,492 8 Web Documents Argument Identification (AId)
IBM-Evidence 29,429 221 Wikipedia Evidence Detection (ED)

Table 4: Overview of the different Argument Mining (AM) datasets, we used for the zero-shot experiments, with
their size in terms of the number of sentences, the number of covered topics, the source domain and the AM task.

tasks, we use the Mean Squared Error loss dur-
ing training. We then apply the trained models
to AId. We select an optimal decision thresh-
old α among all possible thresholds on UKP-
Sentential’s validation set according to Macro
F1. By choosing the validation set, we avoid
an unfair leakage to the model. This model is
then evaluated on the UKP-Sentential test set.

• Regression Task ↔ Regression Task: For
the evaluation between the two regression
models, we calculate the Spearman correla-
tion coefficient directly on their respective
outputs.

4.3 Results

Table 5 shows the results of our experiments. We
train three models with different random seeds for
each source task and report the mean and standard
deviation of the evaluation on all target tasks.

We generally observe, unsurprisingly, that train-
ing on the same task as evaluating yields the best
results with Spearman correlations of ≈ 77.90%
for ED → ED and ≈ 47.45% for AQ → AQ.

A notable exception is AId, where a model
trained on ED achieves ≈ 75.16% Macro F1 and
thus can slightly surpass the performance of a
model directly trained on AId of ≈ 73.51%, al-
though within the range of one standard deviation.
Exceeding the in-task performance is a strong re-
sult, as the model has never explicitly been trained
for the task. We generally observe almost per-
fect zero-shot transfer towards AId, as also the
model trained on AQ achieves a performance of
≈ 71.27%, which is only 2% points behind the
≈ 73.53% from AId to AId. Thus, models capable
of predicting whether a sentence provides evidence
(ED) or capable of predicting the AQ of an argu-
ment inherently learn concepts that enable the de-
tection of whether a sentence is argumentative or
not (AId). To further give context to the zero-shot
performance, the BiCLSTM approach trained on
the AId task from (Stab et al., 2018b) obtained a

Macro F1 of 64.14%, i.e., worse results than the
zero-shot transfer despite explicitly being trained
on the task, which underlines the remarkable zero-
shot performance, and may indicate that AId is a
simpler task than the other two, ED and AQ.

For ED, we achieve the best performance of ≈
77.90% Spearman correlation by directly training
on this task. The model trained on AId obtains
the closest zero-shot transfer result with a rank
correlation of ≈ 55.53%, which still represents
a considerable correlation, despite being ≈ 22%
points behind. The model trained for AQ shows
the worst transfer from the studied tasks with a
correlation of ≈ 43.50%. Overall, we note that the
challenging zero-shot transfer is still possible with
an acceptable loss in performance. Models trained
on detecting whether a sentence is argumentative
or not (AId) transfer better than those trained for
predicting the argumentative strength of a sentence
AQ to the target task of predicting the confidence
in whether a sentence provides evidence (ED).

For AQ, the main focus of our paper, we achieve
the best performance of ≈ 47.45% Spearman corre-
lation by directly training on this task. When trans-
ferring from related AM tasks in a zero-shot set-
ting, we have to tolerate decreases in performance
to ≈ 28.66% for transfer from ED, and ≈ 27.49%
for transfer from AId, respectively. Both zero-shot
models are better at the prediction of AQ than mod-
els directly trained on the same target tasks but on
another corpus (previous section UKPConv could
achieve 3.0% and SwanRank 8.0% on the Gretz
dataset). Models capable of detecting whether a
sentence is argumentative (AId) are slightly less ap-
plicable to predicting the sentence’s argumentative
strength than the models for predicting a level of
supporting evidence (ED). One factor here may be
that ED is also a regression task as opposed to the
classification task of AId.

To summarize, the results suggest that the tasks
of AId, i.e., classifying whether a sentence is ar-
gumentative, and ED, i.e., predicting a numeric
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Evaluation
Train AId ED AQ

AId 73.51%± 3.37% 55.53%± 1.17% 27.49%± 1.54%
ED 75.16%± 0.71% 77.90%± 0.24% 28.66%± 0.92%
AQ 71.27%± 0.74% 43.50%± 3.10% 47.45%± 1.16%

Metric: Macro F1 ρ ρ

Table 5: Zero-Shot performance of the Argument Mining models. The evaluation measure is Macro F1 for Argument
Identification (AId), and the Spearman correlation for Evidence Detection (ED) and Argument Quality (AQ).

Evaluation
Train AId ED AQ

AQ - - 47.45%± 1.16%
AQ/AId 80.07%± 1.16% - 47.46%± 0.58%
AQ/ED - 78.07%± 0.45% 46.84%± 0.25%
AQ/AId/ED 78.91%± 3.17% 78.40%± 0.03% 48.39%± 1.12%

Metric: Macro F1 ρ ρ

Table 6: Performance of multi-task models trained on different Argument Mining task combinations, including
Argument Identification (AId) and Evidence Detection (ED). The performance is measured by Macro F1 for AId,
and the Spearman correlation for ED and AQ.

level of supporting evidence, are closer to each
other than to the more difficult task of assessing
the argumentative strength, as witnessed by worse
zero-shot transfer results from and to AQ. Neverthe-
less, in principle, a transfer in the highly challeng-
ing zero-shot setting is possible; for closer related
tasks, it can even lead to similar scores as training
directly on the target task.

4.4 Multi-Task Learning for Argument
Quality

As shown in the last section, the AM tasks are suf-
ficiently close to each other to enable successful
zero-shot transfer. An interesting question from
this observation is whether the performance in AQ
estimation further improves by multi-task learning.
To this end, we developed a multi-task model that
involves a shared BERT encoder and separated lin-
ear layers for the respective tasks. We trained the
architecture with weighted loss functions, ensuring
that each task is weighted equally. Our results are
shown in Table 6. Focusing on the right-most col-
umn first, we can see that the performance in terms
of Spearman correlation only marginally improves
by multi-task learning. A possible explanation is
that we already observed that the other two tasks
are seemingly less challenging and more closely
related to each other than to AQ. As additional sup-

porting evidence, ED slightly and AId considerably
benefit from multi-task learning with AQ.

5 Conclusion

We see this work as a fundamental step towards
a more holistic view of Argument Quality (AQ).
We have shown that for good generalization across
individual AQ corpora, a match between the source
and target domain of the arguments is essential. In
contrast, diversity in AQ concepts does not hin-
der generalization but rather enriches it. The tar-
get domain has a minor impact with a sufficiently
broad coverage of different domains and adequate
size. This insight is directly applicable to practical
applications: the advantages of different AQ no-
tions allow the direct integration of different data
sources, which is a prerequisite for handling the
input from different domains encountered, e.g., by
general-purpose argument retrieval engines.

Moreover, we were able to elucidate the relation-
ship between AQ’s and other Argument Mining
(AM) tasks, such as Evidence Detection (ED) and
Argument Identification (AId). Our zero-shot trans-
fer experiments showed that the concepts learned
for one of the tasks are sufficient to solve the other
to some extent without explicitly being trained for
it. By comparing the results obtained, we con-
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clude that AId and ED are more closely related to
each other than to AQ and are per se also easier
to transfer to. The multitask experiment further
emphasized this, where AQ could gain less from
the other tasks than vice-versa. Thus, an important
open question is how to enable a more successful
transfer to AQ, extending beyond the three tasks
we studied in this work.

6 Limitations

1. Our investigation in the zero-shot experiment
is not exhaustive, we focused on the interplay
between the three main tasks that also provide
datasets of similar size: argument identifica-
tion, evidence detection, and argument quality.
However, there are other tasks, such as stance
classification (deciding whether an argument
supports or opposes a particular issue) or ar-
gument structure identification (identifying
argumentative discourse units, such as claims
and premises). Other tasks might be better
source tasks for estimating argument quality.

2. Our experiments are based on the most popu-
lar datasets in argument mining and argument
quality and may not generalize to other more
specialized text domains, such as law or poli-
tics.

3. Using only English datasets limits the general-
izability of the results to other languages and
cultures. The ability to identify and evaluate
the quality of arguments may be different in
other languages and cultures, and the anno-
tators may not be able to accurately capture
these differences. This may lead to a lack of
robustness and reliability of the results.
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A Computing & Software Infrastructure

All experiments were conducted on a Ubuntu
20.04 system with an AMD Ryzen Processor with
32 CPU-Cores and 128 GB memory. We used
Python 3.7, PyTorch 1.4, and the Huggingface-
Transformer library (4.15.0). For the experiments
in Chapter 3, we used four NVIDIA RTX 2080
TI GPUs with 11 GB memory. The models in
Chapters 4 and 5 were trained on a single NVIDIA
Tesla V100. The default parameters from the
Huggingface-Transformer library 4 were used for
all hyperparameters not specified in the following
sections.

B Generalization across Argument
Quality Corpora

In Section 3, we trained bert-base-uncased models
with a batch size of 64. The learning rate was
set to 9.1 · 10−6. A weight decay of 0.31 was
used. We calculated the 95th percentile based on
the four AQ validation sets and truncated longer
sentences to that length. The losses in the multi-
dataset setting were equally weighted for each of
the four datasets. We used early stopping on the
validation MSE loss, with a patience value of five
epochs, as a regularization technique to avoid over-
fitting.

C Zero-Shot-Learning in Argument
Mining

For Section 4, we trained bert-large-uncased ar-
chitectures with a batch size of 64. The learning
rate was set to 1 · 10−5, and a warm-up period was
used for the first 0.1 epochs. We opt for evalu-
ations every 0.1 epoch in our training configura-
tion, resulting in 10 evaluations per epoch. Our
train/validation/test split is based on a reasonably
standard 70%/10%/20% split. Furthermore, we
calculate the 99th percentile of the max length of
all sentences inside the validation split and trun-
cate them to that length. This further decreases
the required learning time due to a reduced input
dimension without losing significant information.
We used a dropout rate of 0.1 for the dropout layer
in the AId → Regression Tasks setting. The losses
in the multi-dataset and multi-task setting were
equally weighted for each of the three argument
mining datasets. Finally, to further reduce variance

4https://huggingface.co/docs/transformers/
master/en/main_classes/trainer#transformers.
TrainingArguments

in training, we use three seeds for our experiments
and calculate the mean and standard deviation for
all of our results.
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