PruMUX: Augmenting Data Multiplexing with Model Compression

Yushan Su Vishvak Murahari

Karthik Narasimhan Kai Li

Princeton University
Princeton, NJ, USA

{yushans, murahari,

Abstract

As language models increase in size by the
day, methods for efficient inference are criti-
cal to leveraging their capabilities for various
applications. Prior work has investigated tech-
niques like model pruning, knowledge distilla-
tion, and data multiplexing to increase model
throughput without sacrificing accuracy. In this
paper, we combine two such methods — struc-
tured pruning and data multiplexing — to com-
pound the speedup gains obtained by either
method. Our approach, PruMUX, obtains up to
7.5-29.5X throughput improvement over BERT-
base model with accuracy threshold from 80%
to 74%. We further study various combinations
of parameters (such as sparsity and multiplex-
ing factor) in the two techniques to provide
a comprehensive analysis of the tradeoff be-
tween accuracy and throughput in the result-
ing models. We then propose Auto-PruMUX,
a meta-level model that can predict the high-
performance parameters for pruning and mul-
tiplexing given a desired accuracy loss budget,
providing a practical method to leverage the
combination effectively.'

1 Introduction

Large language models (LLMs) have achieved
state-of-the-art performance across various NLP
tasks and resulted in impressive user-facing demon-
strations such as ChatGPT.>? However, their large
size necessitates the use of enormous amounts of
compute and memory at inference time, which lim-
its their widespread use.

Two types of techniques have been explored to
reduce the cost of model inference. The first is
model compression including network pruning (Le-
Cun et al., 1989; Han et al., 2015b; Frankle and
Carbin, 2019), quantization (Han et al., 2016),
knowledge distillation (Hinton et al., 2015), combi-
nations of multiple methods (Xia et al., 2022). The

'Our code is available at https://github.com/

yushansu/PruMUX
https://chat.openai.com/

karthikn,

li}@princeton.edu

® BERT-base (5,0.9)

—e— CofFi
| —e— DataMUX
—o— PruMUX

w
o
L

N
%]

N
o
L

=
o
L

Throughput Improvement (X)
w G

o
L

84 82 80 78 76 74
Accuracy (%)

Figure 1: Throughput improvements (x) of CoFi, Data-
MUX, and PruMUX over the BERT-base model (Devlin
et al., 2018) on the MNLI task (Williams et al., 2017).
The sparsity for a CoFi’s data point is labeled as s. The
width of multiplexing for a DataMUX’s data point is
labeled as N. The parameter pair for a PruMUX’s data
point is labeled as (NN, s).

second is recently proposed data multiplexing (Mu-
rahari et al., 2023), which multiplexes multiple
inputs into a single input for model inference.

While both types of methods leverage the over-
parameterization effect (Allen-Zhu et al., 2019;
Radhakrishnan et al., 2020) in modern deep neural
networks to improve the throughput-to-compute
cost ratio, the manner in which they do so is dif-
ferent. Model compression aims at reducing the
number of parameters in the model, hence reducing
the overall compute cost (denominator) to improve
the ratio. Data multiplexing, on the other hand,
compresses multiple inputs into one to improve
throughput (numerator) while keeping the model
size fixed. This observation naturally leads us to
hypothesize that the two types of methods could be
complementary and can be combined for maximal
gain in the throughput-to-compute cost ratio.

There are two challenges to this hypothesis. The
first is that both model compression and data multi-
plexing aim at trading a small accuracy loss for
large throughput improvement. Intuitively, the

13302

Findings of the Association for Computational Linguistics: ACL 2023, pages 13302-13315
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/yushansu/PruMUX
https://github.com/yushansu/PruMUX
https://chat.openai.com/

combination may incur an accuracy loss larger than
either method and it is not clear how they interact
with each other when combining them together.
A research question is how to combine the two
methods such that the combination achieves better
throughput than each type of method individually,
given any accuracy loss budget or accuracy thresh-
old.

The second challenge is to efficiently find the
best parameters pair (/V, s) where N is the width
of the data multiplexing and s is the sparsity of
the model compression method. Training and test-
ing with each parameter combination is costly and
time-consuming. A research question is how to au-
tomatically predict and find top parameters based
on the model’s performance on one set of parame-
ters.

To address the first research question, we present
PruMUX, a combination of model compression
and data multiplexing. Our method is simple and
consists of three phases — multiplexed model pre-
training, task-specific fine-tuning and task-specific
model compression. In our implementation, we
make use of CoFi (Xia et al., 2022), a state-of-
the-art model compression method that includes
intermediate knowledge distillation steps that help
minimize accuracy hits, and DataMUX (Murahari
et al., 2023), which performs vector-based input
multiplexing over instances.

Our results over four datasets (MNLI, QNLI,
QQP and SST-2) demonstrate that PruMUX
achieves significantly higher throughput over CoFi
and DataMUX individually for a large range of ac-
curacy thresholds. As an example, Figure 1 shows
the throughput improvements over the BERT-base
model on task MNLI, providing a more optimal
Pareto frontier in the tradeoff between accuracy
and throughput.

To address the second research question, we pro-
pose Auto-PruMUX, a meta-model to automati-
cally predict and find the high-performance parame-
ter combinations for a desired accuracy loss budget
on a task based on the model’s performance on one
set of parameters without running additional experi-
ments. We use interpolation and estimation models
over a set of data points to predict the accuracy and
throughput of a PruMUX model based on sparsity
and multiplexing factor. We show promise in mod-
eling the tradeoffs accurately and Auto-PruMUX
can find high-performance combinations of known
parameters as well as unknown parameters, pro-

viding a practical method for choosing a high-
performance PruMUX model for a downstream
task.

Our key insight for why PruMUX can achieve
better throughput than model compression and data
multiplexing individually is that they improve the
throughput of a model in two different dimensions:
reducing the latency of an inference and compress-
ing multiple inferences. In addition, both meth-
ods lead to non-linear drops in model accuracy at
some points. PruMUX can achieve high throughput
while avoiding each method’s limitations.

2 Background
2.1 CoFi Pruning

CoFi is a state-of-the-art model compression
method (Xia et al., 2022) that uses distillation and
structured pruning to jointly prune a Transformer
network (Devlin et al., 2018). Its key idea is to
distill the knowledge from the base model into the
pruned model during training. A layer-wise distil-
lation approach is used to guide the pruning from
the teacher model, i.e., dense model, to the student
model, i.e., pruned model, with a loss defined as:

Llayer = Z MSE(WlayerH;n(i)y Hé)

1ET

where H;n(i) and H! are hidden representations
of the m(i)th feed-forward layer of the student
model and ¢th feed-forward layer of the teacher
model. i is the teacher model’s closest layer to
the layer m(i) of the student model. Wiqye, is
a linear transformation matrix, initialized as an
identity matrix.

CoFi prunes both coarse-grained and fine-
grained units of the distilled network. The coarse-
grained units include multi-head attention layers,
fully-connected layers, and attention heads. The
fine-grained units include hidden dimensions and
intermediate dimensions of the Transformer model.
Different masks are used for different pruning units
and are learned via ¢, regularization during train-
ing. The units with mask variables smaller than a
threshold are pruned away before inference.

2.2 DataMUX

Data multiplexing (DataMUX) is a recently pro-
posed method (Murahari et al., 2022, 2023) to com-
press multiple inputs into a single “mixed” repre-
sentation of the same size as a single input to a

13303

network, in order to improve inference through-
put. DataMUX introduces multiplexing layers,
which multiplex different sequences into a sin-
gle sequence of representations, i.e., multiplexed
representations, and demultiplexing layers, which
demultiplex/decompress the multiplexed represen-
tations. The multiplexed layer first compresses
multiple input sequences into a single sequence
of representations. These representations are then
processed by a Transformer model and the result-
ing representations are then disentangled into inde-
pendent representations by the demultiplexer layer.
These representations are then used to make predic-
tions. DataMUX, therefore, leads to a many-fold
increase in inference throughput as just a single
pass through the large Transformer model.
The multiplexing layer is defined as

1o
xMV = ox!, . xN) = N ;d(x’)

where x is the input sequence, ¢*,i € [1,...N], is
the Hadamard product with a fixed Gaussian ran-
dom vector and NV is the number of input sequences
that get multiplexed. The multiplexed representa-
tions, x'*V, are then processed by the Transformer
model to generate hidden multiplexed representa-
tions, h* .

The demultiplexer layer, in order to disentan-
gle the hidden multiplexed representation, h*"V,
into independent representations, learns N param-
eterized demultiplexing functions, 1/¢. The inde-
pendent representations, h’, are then used to make
predictions.

hi = ') Vviel,2,..N

2.3 Observations

Both model compression and data multiplexing aim
at trading small accuracy losses for large inference
throughput improvements. When CoFi prunes a
Transformer at relatively low sparsities, its accu-
racy loss is minimal and throughput improvement
is significant, but at 95% sparsity, its accuracy loss
becomes relatively significant (Xia et al., 2022).
DataMUX also shares this nonlinear property, as
shown in Figure 1. In other words, the trade-off of
each method is good only up to a certain point.
The two methods improve the throughput of a
model in two dimensions. CoFi reduces the latency
of an inference, whereas DataMUX compresses
multiple inferences into one. A natural question is

whether combining the two methods can achieve
higher throughput with a smaller accuracy loss than
each method individually.

3 PruMUX

1. Retrieval Warm-up 2. Multiplexed Model Training

iL‘l

Transformer

Figure 2: Illustration of PruMUX showing a multi-
plexer, sparse Transformer, and a demultiplexer, with
multiplexing width of 10, where 10 input sequences are
mixed into 1 input sequence. The multiplexed Trans-
former model is pruned to reduce inference time. The
training for PruMUX consists of three steps including re-
trieval warm-up, multiplexed model training, and Trans-
former pruning.

Our key motivational question is the following:
given an accuracy loss budget, can the combina-
tion of model compression and data multiplexing
achieve better throughput than each method indi-
vidually? In this section, we first present PruMUX,
a method to combine the two methods, and then
show that PruMUX achieves substantially better
throughput than each method alone for various ac-
curacy thresholds in our experimental results.

3.1 Method

PruMUX is a method to convert any Transformer
into a high throughput model, capable of compress-
ing multiple inference inputs into a single input and
executing it at a low latency.

For multiplexing, PruMUX uses the recently pro-
posed DataMUX (Murahari et al., 2023), which ap-
pends a multiplexer and demultiplexer as described
in Sec 2.2. With width NV, the inference throughput
of the Transformer can be improved by a factor of
up to N, as each multiplexed input takes the same
amount of computing resources as performing in-
ference over a single input.

13304

For model compression, PruMUX can use any
method such as network pruning, distillation, or a
combination of the two (such as CoFi). The goal
is to substantially reduce the latency of processing
an inference. For our experiments, PruMUX uses
CoFi as the model compression method.

Training a model with PruMUX consists of three
phases as shown in Figure 2:

Phase 1: Priming the multiplexed model with
the token retrieval objective We first prime the
multiplexed transformer model with a token re-
trieval task. Murahari et al. (2022) introduced
this "retrieval warm-up" self-supervised objective
(shown below) and found it to be critical to improve
the performance of multiplexed models. L is the
length of each input sentence. I is the index of the
randomly selected sentence from the input batch.

L

Lretrieval(xlzN) = Z — log P(WJI’hJI)
=1

Phase 2: Pre-training and fine-tuning multi-
plexed models The multiplexed models from the
previous stage are then pre-trained on large-scale
text corpora with the masked language modeling
(MLM) objective. The pre-trained multiplexed
models are then fine-tuned on downstream tasks to
yield task-specific multiplexed models.

Phase 3: Model compression Finally, we use
CoFi to jointly prune coarse-grained and fine-
grained units in the multiplexed Transformer model.
The coarse-grained units include entire attention
heads, attention layers, and fully connected layers.
The fine-grained units include hidden dimensions
and intermediate dimensions of the Transformer
model. The demultiplexer’s input dimension is
pruned in order to match the pruned hidden di-
mension of the Transformer model. During the
pruning process, CoFi uses knowledge distillation
to transfer knowledge from the teacher model, i.e.,
the task-specific multiplexed model, to the pruned
model.

3.2 Implementation Details

We use the pre-trained multiplexed BERT-base
models (Murahari et al., 2023) with the standard
BERT pre-training recipe with the masked lan-
guage modeling objective for N = 2,5,10 on
Wikipedia (Foundation) and BooksCorpus (Zhu
et al.,, 2015) datasets. We prime the multi-
plexed model before pre-training with the token-

retrieval task in Section 2.2 on the Wikipedia and
BooksCorpus datasets. We then train the pre-
trained multiplexed models on the four largest
GLUE Tasks (Wang et al., 2018) — MNLI (Williams
et al., 2018), QNLI (Wang et al., 2018), QQP (qqp),
and SST-2 (Socher et al., 2013). We then use the
CoFi structured pruning objective to get pruned
multiplexed model on each task dataset. The hy-
perparameters we use for the training process are
shown in Appendix A.1. We perform a single run
to train the model for each setting, i.e., task, mul-
tiplexer width IV, model sparsity s, following the
training process.

3.3 Experiments

Setup We would like to answer the question that
given an accuracy threshold, whether PruMUX
method can achieve a higher throughput than either
CoFi or DataMUX alone.

We compare PruMUXed BERT-base model to
three baselines:

* BERT-base: BERT-base model trained without
data multiplexing and model compression.

* CoFi: BERT-base model pruned by CoFi (Xia
et al., 2022) with sparsity3 s = 0.50, 0.60, 0.70,
0.80, 0.90, and 0.95.

* DataMUX: BERT-base model pre-trained by
DataMUX (Murahari et al., 2023) with the multi-
plexer width N = 2, 5, and 10.

We have applied PruMUX to the BERT-base
model with all combinations of (N, s) for all 4
tasks. We follow the procedure in Xia et al.
(2022) to calculate throughput improvements for
PruMUXed Transformers and all three baselines,
i.e. BERT-base, DataMUX, and CoFi. The evalu-
ation batch size is 128% N, where N is the multi-
plexer width.

Results Figure 3 shows the throughput improve-
ments and accuracies of PruMUXed, DataMUXed,
and CoFi-Pruned Transformers over the Trans-
former base model on the MNLI, QNLI, QQP, and
SST-2 tasks with all available parameters.

The main takeaway is that PruMUX achieves
higher throughput than either CoFi or DataMUX
individually in all cases starting at various accuracy
thresholds:

3Sparsity of 0.95 means 95% of the Transformer model
weights are set to zero.

13305

® BERT-base (5,0.9)
—e— CoFi
| —e— DataMUX

—e— PruMUX

w
o

N
v

N
o
L

=
o
L

Throughput Improvement (X)
” G

84 82 80 78 76 74
Accuracy (%)

(a) MNLI

80

(10,0.95)
® BERT-base

701 —e— CoFi
—e— DataMUX

60 - (10,0.
—e— PruMUX

50 4

40 4

30 A

201

101

Throughput Improvement (X)

92 90 88 86 84 82
Accuracy (%)

(c) QQP

| ® BERT-base
—e— CoFi

—e— DataMUX

201 —e— PruMUX

Throughput Improvement (X)

90 88 86 84 82
Accuracy (%)

(b) QNLI

® BERT-base
—e— CoFi

—e— DataMUX
—e— PruMUX

(5,0.95)
40 4

Throughput Improvement (X)

Accuracy (%)

(d) SST-2

Figure 3: Throughput Improvement (x) of PruMUX (ours), DataMUX (Murahari et al., 2023), and CoFi prun-
ing (Xia et al., 2022) over the BERT-base model for the MNLI, QNLI, QQP, and SST-2 tasks. The x-axis is the
Transformer accuracy, which is inverted to better show throughput improvements of each method for different

accuracy loss budgets.

» For MNLI, with the accuracy thresholds from
80% to 74%, PruMUX achieves 7.5-29.5X
throughput improvement over the BERT-base
model, whereas CoFi improves by 4.0-10.6X
and DataMUX by 2.0-4.9X.

* For QNLI, with the accuracy thresholds from
87% to 82%, PruMUX achieves 4.1-26.6X
improvement, whereas CoFi improves by 3.8-
11.2X and DataMUX by 2.0-9.6X.

* For QQP, with the accuracy thresholds from
89% to 86%, PruMUX achieves throughput
improvement over BERT-base by 7.6-29.7X,
whereas CoFi improves by 10.6X and Data-
MUX by 2.0-9.8X.

e For SST-2, with the accuracy thresholds
from 86.5% to 83%, PruMUX improves the
throughput by 10.1-27.8X, whereas CoFi im-
proves by 10.6X and DataMUX by 4.8-9.7X.

The results also confirm the intuition that Pru-
MUX with (N, s) incurs an accuracy loss, loosely
speaking, close to the sum of the accuracy loss of

DataMUX with N and that of CoFi with s. In gen-
eral, PruMUX can achieve substantial throughput
improvement when there is a decent accuracy loss
budget.

3.4 Discussion

The results above find top PruMUX performance
with all parameter pairs (N, s), where N = 2, 5,
10 and s = 0.60, 0.70, 0.80, 0.90, and 0.95, for
each accuracy loss budget. Searching for top Pru-
MUX parameters at a finer parameter granularity
will require training and testing on all additional
parameter pairs.

Exhaustive tests are impractical. First, for each
N, pre-training a DataMUX model with multiplex-
ing width N is time-consuming. Second, given
each pre-trained model with multiplexer width IV,
different sparsities s provide different throughput
and accuracy trade-offs. In order to find the spar-
sity s with the highest throughput given an accuracy
budget, one has to train the model for all possible
sparsities. The total training time for the sparsities
from 0.60 to 0.95 at the granularity of 0.05 for each

13306

N takes over six thousand GPU hours on commod-
ity GPUs, for a small original BERT-base model.
A key question is whether one can automatically
find a high-throughput (N, s) with a small number
of PruMUX experiments.

4 Auto-PruMUX

To address the question above, we propose Auto-
PruMUX, a method to search for top (IV, s) param-
eters, to help practitioners balance the performance
vs throughput trade-off.

Our research question is: Suppose we have some
experimental data of PruMUX and the experimen-
tal data of DataMUX and CoFi, how can we find
and predict the top parameters (N, s) given an
accuracy loss budget?

Our approach is to develop performance models
for the accuracy and throughput of PruMUX. We
first train PruMUX models for a set of (/V, s) com-
binations and measure both the accuracy and the
throughput improvement. We then use this data to
fit a throughput model and an accuracy model to
predict throughput and accuracy respectively given
(N, s) parameters.

We first discuss how we fit the accuracy and
throughput models with a set of sparse data points.
Given that we are working with a limited set of data
points, we opt to use a simple class of interpolation
models for modeling PruMUX accuracy and use
an estimation model for modeling throughput. We
then outline how we leverage these models to pre-
dict top (NN, s) parameters, given an accuracy loss
budget. We then demonstrate the effectiveness of
the Auto-PruMUX in predicting the top parameters
across a wide range of accuracy loss budgets.

4.1 Task Accuracy Model

We use linear interpolation for our task accuarcy
model.

fA(N7S) =
A11(N,s) No <N <Nyp,s0 <5 <sp,
A;ij(N,s) Ni_1 <N <N;s;-1<s<sj,
AI%Q(Nv S) prl <N Np,Sqfl <s<sy

Each term is a linear combination of data multi-
plexer width and model sparsity.

11
AiJ(N, S) = Z Z k‘c(fb’])NaSb
a=0 b=0
The model is fitted on the gathered data of model
task accuracy at different multiplexer width and
sparsity.

Ai’j(Ni,Sj) = ACC(NZ',S]')
1=1,..,p,5=1,....q

where N and s are the range of N and s values used
to fit the model.

4.2 Throughput Model

We collect the throughput values for all N and s
on one task (taskg) and use the throughput values
as the throughput estimations for all tasks.

fr(N,s) = Througsk, (N, s)

4.3 Predicting (N, s)

We use our models, f4(N,s) and fr(N,s), to
model the accuracy and the throughput of Pru-
MUX with N > 1 and s > 0%. Acc(l,s)
and T'hrou(1, s) are the measured accuracy and
throughput of CoFi-pruned models. Acc(N,0)
and Throu(N, 0) are the measured accuracy and
throughput of DataMUX models. Acc(1,0) and
Throu(1,0) are the performance of BERT-base
model. We search for (N, s) parameters that maxi-
mize (; defined below.

Ct(N,s) = Throu(N,s) - g(Acc(N,s)) (1)

1
g(m):{o iig

Intuitively, (s tries to tradeoff task performance
and throughput, given an accuracy loss budget &
with the goal of maximizing the throughput. g(z)
provides a mechanism for a strict accuracy thresh-
old - i.e. a model that does not meet the minimum
required accuracy will have ¢y = 0.

4.4 Experimental Results

Experimental setting In this section, we show
Auto-PruMUX’s prediction results by fitting the
performance models using a set of parameter space
and predicting top parameters on a larger set of
parameter space.

We define the set of (IV, s) parameter space (test
set) as follows.

13307

* BERT-base model - (N,s) N =1, s =0.00

» CoFimodels - (N,s) N =1, Vs € 0.60, 0.70,
0.80, 0.90, 0.95

» DataMUX models - (N, s) VN € 2,5,10, s =
0.00

e PruMUX models - (N, s) VN € 2,5,10,Vs €
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95*

We fit the accuracy model with the model ac-
curacies on (IV, s) VN € 2,5,10, Vs € 0.60, 0.70,
0.80, 0.90, 0.95 (training set). We fit the through-
put model with the throughput of one task on all
parameter pairs.

Our goal is to evaluate the task accuracy model,
the throughput model, and parameter prediction
performance.

Performance Model Accuracy To evaluate the
accuracy of the task performance models on
the training set, we perform leave-one-out cross-
validation for each task. We show the fraction M 4
of accuracy predictions with error falling within
A¢ = 1.5% from real accuracy in Table 1. To eval-
uate the accuracy of the throughput model on the
training set, we fit the model using PruMUX’s per-
formance of the QQP task. We show the fraction
My of throughput predictions with error within
20% of real throughput improvement in Table 1.
Across different tasks, our accuracy and throughput
models are accurate across a broad set of parameter
combinations.

Task My Mr Task My M

QQp
SST-2

MNLI
QNLI

92.3%
100%

92.3%
91.7%

100%
100%

100%
100%

Table 1: Accuracy of the task accuracy model (M 4) and
accuracy of the throughput model (M7) for PruMUX.

Top Parameter Prediction We show Auto-
PruMUX’s prediction results by fitting the accuracy
model on the training set and fitting the through-
put model using the throughput of the QQP task,
and predicting top parameters on the test set. We
show Auto-PruMUX’s top parameter predictions
for accuracy loss budget 3% in Table 2. Auto-
PruMUX predicts the actual best parameter pairs
within its top 3 predictions. In Table 3, we use

*High sparsity doesn’t work for some N's and some tasks,
i.e., (5, 0.95), (10, 0.90), (10, 0.95) for QNLI, (10, 0.85), (10,
0.90), (10, 0.95) for SST-2. We exclude these points from our
training and test set.

Task Auto-PruMUX Actual Best
(N, s), Throu. (x) (N, s), Throu. (x)

Top 1: (2, 0.65), 4.5%

MNLI Top 2: (2, 0.60), 4.2 (2,0.65),4.7x
Top 3: (1, 0.80), 4.0x
Top 1: (2, 0.70), 5.0x

QNLI Top 2: (2, 0.65), 4.2 (2,0.65),4.5x
Top 3: (2, 0.60), 3.9x
Top 1: (2, 0.90), 12.4 %

QQP Top2: (5, 0.65), 10.6x (2,0.90), 12.4x
Top 3: (1, 0.95), 10.6x
Top 1: (1, 0.95), 10.6x

SST-2 Top 2: (1, 0.90), 6.2 (1, 0.95), 10.6 x

Top 3: (2,0.70), 5.0x

Table 2: Auto-PruMUX top 3 (NN, s) predictions for dif-
ferent tasks with accuracy loss budgets of 3% along with
their predicted throughput improvements. The actual
best parameters (N, s) and their throughput improve-
ments are shown in the last column.

Auto-PruMUX to predict parameters for accuracy
loss budgets in 0%, 0.5%, ..., 10% and show the
percentage of accuracy loss budgets which Auto-
PruMUX predicts the actual best parameter in its
top 3 predictions. Auto-PruMUX is able to predict
top parameters in most cases.

Task Accuracy Task Accuracy
MNLI 81.0% QQpP 100%
QNLI 90.5% SST-2 90.5%

Table 3: Percentage of accuracy loss budgets in 0%,
0.5%, ..., 9.5%, 10% which Auto-PruMUX predicts the
actual best (IV, s) parameter in its top 3 predictions.

5 Related Work

Model Compression

Model compression reduces the number of model
parameters with minimal loss in task performance.
A well-studied method is network pruning, which
removes unimportant connections from a network
with minimal or no accuracy loss (LeCun et al.,
1989; Hanson and Pratt, 1989; Hassibi et al., 1993).

Unstructured pruning (Han et al., 2015b,a; Zhu
and Gupta, 2017; Frankle and Carbin, 2019; Chen
et al., 2020a; Huang et al., 2021; Sanh et al., 2020)
does not impose any constraints on the locations
of non-zero weights. The resulting network can
achieve high sparsity but may not run efficiently on
common hardware such as GPUs.

Structured pruning produces structured sparse
matrices that can take better advantage of the paral-
lelism in existing hardware, but its sparsity is rela-

13308

tively lower than the unstructured pruning method
for the same accuracy loss budget (Yu et al., 2017;
Narang et al., 2017; Wen et al., 2017; Mao et al.,
2017; Wang et al., 2019; McDanel et al., 2022).
Structured pruning has been applied to transform-
ers to improve inference throughput (Fan et al.,
2019; Sajjad et al., 2023; Voita et al., 2019; Michel
et al., 2019; Prasanna et al., 2020; Chen et al.,
2020b; McCarley et al., 2019; Hou et al., 2020;
Yao et al., 2021).

Distillation compresses a model by transferring
knowledge from a large teacher model to a small
student model (Hinton et al., 2015). General distil-
lation for Transformer models learn from unlabeled
corpus (Sanh et al., 2019; Sun et al., 2020; Wang
et al., 2020; Turc et al., 2019; Jiao et al., 2019).
Task-specific distillation for Transformer models
learns on task-specific data (Sun et al., 2019). (Jiao
et al., 2019) combines the two distillation methods
to improve performance.

Pruning with distillation objective have been ex-
plored (Sanh et al., 2020; Lagunas et al., 2021).
(Xia et al., 2022) proposes structured pruning with
distillation objective to reduce the Transformer
parameters by up to 95% and achieve over 10x
speedups with small accuracy drops.

Multi-input Multi-output Models

Multi-input Multi-output models concurrently pro-
cess multiple inputs within one neural network to
reduce network over-parameterization. (Havasi
et al., 2021) and (Ramé et al., 2021) train inde-
pendent sub-networks and ensemble them into a
multi-input multi-output model to obtain better ac-
curacy and uncertainty estimation with inference
cost similar to a single network. (Murahari et al.,
2022) proposes data multiplexing technique to mul-
tiplex multiple input sequences into one input se-
quence to Transformer model, which leads to up
to 18x inference speedup. (Murahari et al., 2023)
develops pre-trained multiplexed language models
to improve model throughput.

Performance Modeling

Various methods have been proposed to estimate
the performance of machine learning models. (Jus-
tus et al., 2018) proposes a method to predict CNN
execution time for training. They decompose CNN
training into several components, estimate the time
for each component, and predict the model execu-
tion time as the combination of different compo-
nents. (Qi et al., 2017; Cai et al., 2017) predict the

performance of deep neural networks based on the
neural network models’ architecture. (Stamoulis
et al., 2018) proposes predictive models for the
power and memory of neural networks executing
on GPUs. Machine-learning-based cost models
(Chen et al., 2018; Bouzidi et al., 2020) have been
explored to predict program running time.

Interpolation (Davis, 1975) is widely used in en-
gineering and science (Oliver and Webster, 1990;
Keys, 1981; Lehmann et al., 1999), where function
values at discrete data points are collected in ex-
periments and the function values at the intervals
between discrete data points are estimated using
interpolation methods.

6 Conclusion

We propose PruMUX, a method to combine model
compression and data multiplexing to build high
throughput transformers. Our implementation of
PruMUX makes use of CoFi and DataMUX and
we show that it achieves substantial throughput
improvement over either CoFi or DataMUX for a
large range of accuracy thresholds.

We conclude that the reason that PruMUX per-
forms well in certain range of accuracy loss budgets
is that CoFi and DataMUX improve the throughput
of a model in two different dimensions: reducing
the latency of an inference and compressing mul-
tiple inferences. When the accuracy loss budget
is large, both methods lead to non-linear drops in
model accuracy, PruMUX can achieve much better
performance than either approach because it uses
more conservative parameters for CoFi and Data-
MUX before each reaches its bad trade-off point.

We also present Auto-PruMUX, a meta-model to
automatically predict high-performance parameter
combinations for a desired accuracy on a task. We
show it is promising in predicting parameters with-
out individual data points and additional training.

7 Limitations

Our experiments are limited to 3 DataMUXed pre-
trained models (/N = 2, 5, and 10) due to compute
constraints. More pre-trained models with different
N’s would provide PruMUX with more options to
improve throughput and would allow us to conduct
a more detailed evaluation of Auto-PruMUX.
PruMUX uses CoFi as its model compression
method. Experiments with other methods could
improve our understanding of the interactions be-
tween model compression and data multiplexing.

13309

References

Quora. data.quora.com/First-Quora-Dataset-Release-
Question-Pairs. Accessed: 2022-10-15.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. 2019.
A convergence theory for deep learning via over-
parameterization. In International Conference on
Machine Learning, pages 242-252. PMLR.

Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and
Abdessamad Ait El Cadi. 2020. Performance pre-
diction for convolutional neural networks in edge
devices. arXiv preprint arXiv:2010.11297.

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and
Diana Marculescu. 2017. Neuralpower: Predict
and deploy energy-efficient convolutional neural net-
works. In Asian Conference on Machine Learning,
pages 622-637. PMLR.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020a. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural informa-
tion processing systems, 33:15834-15846.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018.
Tvm: An automated end-to-end optimizing compiler
for deep learning. arXiv preprint arXiv:1802.04799.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,
Zhangyang Wang, and Jingjing Liu. 2020b. Early-
bert: Efficient bert training via early-bird lottery tick-
ets. arXiv preprint arXiv:2101.00063.

Philip J Davis. 1975. Interpolation and approximation.
Courier Corporation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Wikimedia Foundation. Wikimedia downloads.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. In International Conference on Learning Repre-
sentations.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015b. Learning both weights and connections for
efficient neural networks. In Advances in neural
information processing systems, pages 1135-1143.

Stephen Jose Hanson and Lorien Y Pratt. 1989. Com-
paring biases for minimal network construction with
back-propagation. In Advances in neural information
processing systems, page 177-185.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon and general network
pruning. In IEEFE international conference on neural
networks, pages 293-299. IEEE.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort,
Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran.
2021. Training independent subnetworks for robust
prediction. In International Conference on Learning
Representations.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782-9793.

Shaoyi Huang, Dongkuan Xu, Ian EH Yen, Sung-en
Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Hang
Liu, and Caiwen Ding. 2021. Sparse progressive
distillation: Resolving overfitting under pretrain-and-
finetune paradigm. arXiv preprint arXiv:2110.08190.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Daniel Justus, John Brennan, Stephen Bonner, and
Andrew Stephen McGough. 2018. Predicting the
computational cost of deep learning models. In
2018 IEEE international conference on big data (Big
Data), pages 3873-3882. IEEE.

Robert Keys. 1981. Cubic convolution interpolation
for digital image processing. IEEE transactions on
acoustics, speech, and signal processing, 29(6):1153—
1160.

Francois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838.

Yann LeCun, John S Denker, and Sara A Solla. 1989.
Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598—605.

T.M. Lehmann, C. Gonner, and K. Spitzer. 1999. Sur-
vey: interpolation methods in medical image pro-
cessing. IEEE Transactions on Medical Imaging,
18(11):1049-1075.

13310

https://dumps.wikimedia.org
https://openreview.net/forum?id=OGg9XnKxFAH
https://openreview.net/forum?id=OGg9XnKxFAH
https://doi.org/10.1109/42.816070
https://doi.org/10.1109/42.816070
https://doi.org/10.1109/42.816070

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu
Liu, Yu Wang, and William J Dally. 2017. Exploring
the regularity of sparse structure in convolutional
neural networks. arXiv preprint arXiv:1705.08922.

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019.
Structured pruning of a bert-based question answer-
ing model. arXiv preprint arXiv:1910.06360.

Bradley McDanel, Helia Dinh, and John Magallanes.
2022. Accelerating dnn training with structured data
gradient pruning. arXiv preprint arXiv:2202.00774.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Vishvak Murahari, Ameet Deshpande, Carlos E
Jimenez, Izhak Shafran, Mingqiu Wang, Yuan Cao,
and Karthik Narasimhan. 2023. Mux-plms: Pre-
training language models with data multiplexing.
arXiv preprint arXiv:2302.12441.

Vishvak Murahari, Carlos E Jimenez, Runzhe Yang,
and Karthik R Narasimhan. 2022. DataMUX: Data
multiplexing for neural networks. In Thirty-Sixth
Conference on Neural Information Processing Sys-
tems.

Sharan Narang, Eric Undersander, and Gregory Diamos.
2017. Block-sparse recurrent neural networks. arXiv
preprint arXiv:1711.02782.

Margaret A Oliver and Richard Webster. 1990. Kriging:
a method of interpolation for geographical informa-
tion systems. International Journal of Geographical
Information System, 4(3):313-332.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When bert plays the lottery, all tickets are winning.
arXiv preprint arXiv:2005.00561.

Hang Qi, Evan R Sparks, and Ameet Talwalkar. 2017.
Paleo: A performance model for deep neural net-
works. In International Conference on Learning Rep-
resentations.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and
Caroline Uhler. 2020. Overparameterized neural net-
works implement associative memory. Proceedings
of the National Academy of Sciences, 117(44):27162—
27170.

Alexandre Ramé, Rémy Sun, and Matthieu Cord. 2021.
Mixmo: Mixing multiple inputs for multiple out-
puts via deep subnetworks. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV).

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2023. On the effect of dropping layers of
pre-trained transformer models. Computer Speech &
Language, 77:101429.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378-203809.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and
Diana Marculescu. 2018. Hyperpower: Power-and
memory-constrained hyper-parameter optimization
for neural networks. In 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE),
pages 19-24. IEEE.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform

for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776-5788.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia
Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran Chen,
and Hai Li. 2017. Learning intrinsic sparse struc-
tures within long short-term memory. arXiv preprint
arXiv:1709.05027.

13311

https://openreview.net/forum?id=UdgtTVTdswg
https://openreview.net/forum?id=UdgtTVTdswg

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Adina Williams, Nikita Nangia, and Samuel R Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL-
HLT.

Mengzhou Xia, Zexuan Zhong, and Danqgi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1513-1528, Dublin, Ireland.
Association for Computational Linguistics.

Zhewei Yao, Linjian Ma, Sheng Shen, Kurt Keutzer, and
Michael W Mahoney. 2021. Mlpruning: A multilevel
structured pruning framework for transformer-based
models. arXiv preprint arXiv:2105.14636.

Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh
Dasika, Reetuparna Das, and Scott Mahlke. 2017.
Scalpel: Customizing dnn pruning to the underlying
hardware parallelism. ACM SIGARCH Computer
Architecture News, 45(2):548-560.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

A Appendix

A.1 Hyperparameters for Model Training

Table 4 and Table 5 show the hyperparameters used
in CoFi training and PruMUX training correspond-
ingly. The hyperparameters are from CoFi’s open-
sourced code.

Hyperparamter CoFi
distill layer loss alpha 0.9,0.7,0.5
distill ce loss alpha 0.1,0.3,0.5
layer distill version 3,4,6
sparsity epsilon 0.01

max seq length 128
pruning batch size 32
finetune batch size 64
training epoch 20
finetune epoch 20
distill temp 2
scheduler type linear
prepruning finetune epoch 1
lagrangian warmup epoch 2
pruning learning rate 2e-5
finetune learning rate le-5, 2e-5, 3e-5

Table 4: Hyperparameters in CoFi training

Hyperparamter PruMUX
distill layer loss alpha 0.9,0.7,0.5
distill ce loss alpha 0.1,0.3,0.5
layer distill version 3,4,6
sparsity epsilon 0.01

max seq length 128
pruning batch size 32*N
finetune batch size 64
training epoch 40
finetune epoch 40
distill temp 2
scheduler type linear
prepruning finetune epoch 0
lagrangian warmup epoch 2
pruning learning rate Se-5
finetune learning rate le-5, 2¢-5
3e-5, Se-5

Table 5: Hyperparameters in PruMUX training

3 github.com/princeton-nlp/CoFiPruning

13312

https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
https://github.com/princeton-nlp/CoFiPruning

A.2 Dataset Statistics

Table 6 shows the sizes and metrics of the datasets
in our experiments.

Task Train Size Metric
MNLI 393k accuracy
QNLI 105k accuracy

QQP 364k accuracy
SST-2 67k accuracy

Table 6: Data statistics of GLUE datasets

A.3 Potential Risks

Multiplexing with model compression may lead
to information leakage between different instances,
which can potentially raise privacy concerns if used
in a public API serving these models.

13313

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Section 7.

¥ A2. Did you discuss any potential risks of your work?
Section A.3.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1.

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 2, 3.

¥/ B1. Did you cite the creators of artifacts you used?
Section 2.

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Section 3.3, 7, A.1.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section A.2.

C ¥ Did you run computational experiments?
Section 3.3, 4.4.

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 3.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

13314

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3, A.1.

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 3.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 3.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

13315

