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Abstract

Unsupervised domain adaptation of machine
translation, which adapts a pre-trained trans-
lation model to a specific domain without in-
domain parallel data, has drawn extensive at-
tention in recent years. However, most exist-
ing methods focus on the fine-tuning based
techniques, which is non-extensible. In this
paper, we propose a new method to per-
form unsupervised domain adaptation in a
non-parametric manner. Employing only in-
domain monolingual data, this method jointly
perform nearest neighbour inference on both
forward and backward translation directions.
The forward translation model creates nearest
neighbour datastore for the backward direc-
tion, and vice versa, strengthening each other
in an iterative style. Experiments on multi-
domain datasets demonstrate that our method
significantly improves the in-domain transla-
tion performance and achieves state-of-the-art
results among non-parametric methods.

1 Introduction

Neural machine translation (NMT) has demon-
strated impressive performance when trained on
large-scale corpora. However, despite the abun-
dance of general-domain parallel data, domain-
specific parallel data is not readily available (Chu
and Wang, 2018). Therefore, how to adapt a
general-domain NMT model via in-domain mono-
lingual data has become the research focus in the
community. Since no annotated data is involved,
this effort is also generally known as the unsuper-
vised domain adaptation of NMT.

Existing approaches are mostly focused on the
data selection and finetuning techniques (Pour-
damghani et al., 2019; Aharoni and Goldberg,

†Contribution during internship at ByteDance Inc.
‡Corresponding Authors.

2020a; Hu et al., 2019; Zhang et al., 2022). For
example, Hu et al. (2019) proposed to induce in-
domain lexicon pairs as synthetic data for fine-
tuning. Zhang et al. (2022) proposed to use con-
strained back-translation model to generate syn-
thetic in-domain data for fine-tuning. Despite the
progress they have made, the cumbersome fine-
tuning process would lead to catastrophic forget-
ting (Thompson et al., 2019) and decrease the per-
formance on general domain. Besides, a copy of
parameters is required for each domain, which is
not flexible facing multi-domain scenario. There-
fore, Zheng et al. (2021) propose to perform adap-
tation based on non-parametric nearest neighbour
inference, and they introduce an autoencoder task
based on target language to enable in-domain data
construction with monolingual data. However,
adapter layers are still required to be fine-tuned in
their method, which is not fully non-parametric.

In this work, we propose an iterative near-
est neighbour approach named Iter-kNNMT to
achieve fully non-parametric unsupervised do-
main adaptation. Our framework is built based
on the recently proposed kNN-MT (Khandelwal
et al., 2021). We employ two pre-trained general-
domain NMT models in both forward and back-
ward directions, and the datastores are constructed
by the model in the reverse direction for each
other. The forward model performs nearest neigh-
bour inference to the source language sentences,
and the results serve as the datastore for the back-
ward model. Then, the backward model per-
forms nearest neighbour inference to the target
sentences and generate better datastore for the for-
ward model. This process is iteratively performed,
making the most of monolingual data for non-
parametric inference.

We evaluate the proposed Iter-kNNMT on multi-
datasets, including IT, Medical, Law and Koran
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domains. Experimental results show that, with-
out introducing any extra parameters, we are able
to achieve 6 BLEU improvement on in-domain
translation, bringing a new state-of-the-art results
among non-parametric adaptation methods.

2 Approach

2.1 Preliminary: kNN-MT

kNN-MT can be formulated as the following two
steps, namely datastore construction and nearest
neighbour decoding.

2.1.1 Datastore Construction

Given a pretrained NMT model and an in-domain
parallel corpus (X ,Y), kNN-MT first constructs a
key-value datastore as follows:

D(X ,Y) =
∪

(x,y)∈(X ,Y)

{(f(x, y<i), yi), ∀yi ∈ y}

where the keys are the mapping representations of
all the translation contexts in the training set using
the model representation f(·), and the values are
corresponding ground-truth tokens, and (x, y) is a
parallel sentence pair.

2.1.2 Nearest Neighbour Decoding

During inference, on each step i, kNN-MT models
the decoding probability PkNN(ŷi|x, ŷ<i) by mea-
suring the distance between query f(x, ŷ<t) and
its k-nearest representations in D(X ,Y). Denote
the retrieved neighbors as N i = {(hj , yj), j ∈
{1, 2, ..., k}}, and then a kNN distribution over vo-
cabulary is computed as:

PkNN(ŷi|x, ŷ<i) ∝
∑

(hj ,yj)∈N i

Iŷi=yjexp
(−d(hj , f(x, ŷ<i))

τ

)

where τ is the temperature, and d(·, ·) is the L2 dis-
tance function. The final probability for the next
token is the interpolation of PNMT(yi|x, y<i) and
PkNN(yi|x, y<i) with a tunable weight λ:

P (ŷi|x, ŷ<i) = (1− λ)PNMT(ŷi|x, ŷ<i)+

λPkNN(ŷi|x, ŷ<i)

2.2 kNN-MT with monolingual data

An effective method to improve domain-specific
machine translation with monolingual data is to
augment the parallel training corpus with back-
translations of target language sentences (Sennrich
et al., 2016). In the case of kNN-MT, the uti-
lization of monolingual data can follow this style.
Specially, given a set of sentences Y in target lan-
guage, a pre-constructed NMT model is used to au-
tomatically generate their translations X̃ in source
language. Then the datastore can be created based
on the synthetic data (X̃ ,Y):

D(X̃ ,Y) =
∪

(x̃,y)∈(X̃ ,Y)

{(f(x̃, y<i), yi), ∀yi ∈ y}

This datastore can then be retrieved to interpo-
late the prediction of forward translation model.
Although the source language sentences X̃ are syn-
thetic, the target sentences Y are fluent and intact.
Therefore, when performing nearest neighbour re-
trieval, the best tokens can be retrieved largely
based on the fitness to target context. As discussed
in previous research (Edunov et al., 2018), tar-
get fluency is one of the major factors to hinder
the performance on domain-specific translation.
Therefore, the interpolated probability distribution
would be more inclined to the target-domain.

2.3 Iter-kNNMT

Figure 1: Iterative nearest neighbour inference process.

In most applications, if the target monolingual
data Y is accessible, a monolingual source data
X would be accessible, too. To make the most
of monolingual data for nearest neighbour infer-
ence, we extend the task setting from solely im-
proving the forward NMT model augmented with
target monolingual data into a paired one.

As shown in Figure 1, our method runs near-
est neighbour inference bidirectionally and refines
the datastore iteratively. At each iteration step j:

13295



Method Data
EN-DE DE-EN

IT Medical Law Koran Avg. IT Medical Law Koran Avg.

basic NMT - 38.35 39.99 45.48 16.26 35.02 30.69 36.55 41.07 15.56 30.97
Copy-kNNMT half 38.42 39.52 45.18 15.29 34.60 30.87 36.35 40.74 15.55 30.88
BT-kNNMT half 39.82 45.38 51.98 18.96 39.04 31.89 40.56 45.62 20.74 34.70
UDA-kNNMT half 40.62† 44.56† 51.32† 19.41† 38.98† 31.95† 39.60† 45.17† 19.48† 34.05†

UDA-kNNMT all 41.57‡ 46.64‡ 52.02‡ 19.42‡ 39.91‡ 33.99† 40.75† 46.88† 20.59† 35.55†

Iter-kNNMT half 40.90 48.06 54.97 20.03 40.99 33.07 42.70 48.11 22.12 36.50

Parallel-kNNMT half 41.33 50.18 56.73 18.46 41.68 34.22 45.27 50.68 22.37 38.14

Table 1: BLEU score of different unsupervised domain-adaptation methods on the four domains. Results with †

are re-implemented by us with their released codes and ‡ are taken from their paper.

1) Model fx→y performs kNN inference on data-
store Dj(X̃ ,Y) to decode the monolingual data
X into Ỹj+1, which is combined into the data-
store Dj+1(Ỹ,X ) for backward translation. 2)
Then model fy→x performs kNN inference on
Dj+1(Ỹ,X ) to decode the monolingual data Y
into X̃j+1, forming datastore Dj+1(X̃ ,Y) for the
next iteration step. The newly generated datastore
would contain more diverse and fluent source con-
text, serving as a better memory base for the next
kNN retrieval. Notice no further parameter is intro-
duced during the whole procedure, only the data-
store is updated, therefore our method is totally
non-parametric.

3 Experiments

3.1 Setup

We use the same multi-domain dataset as Aharoni
and Goldberg (2020b) to evaluate the effectiveness
of our proposed method. We mainly experiment
on the adaptation of four domains of IT, Medical,
Law and Koran. To exclude the influence of par-
allel sentence pairs, we divide the training set into
two halves, and fetch the source side of first half
and target side of second half, forming two un-
aligned monolingual in-domain datasets X and Y ,
and dev and test set are kept unchanged.

The WMT19 German-English News translation
task winner model (Ng et al., 2019) is chosen as
our general domain model, and the same setting
is applied to train the English-German model1.
Faiss2 is used to build the in-domain datastore to
carry out fast nearest neighbor search, and 4096
cluster centroids are learned for each domain. We

1We do not introduce monolingual data as augmentation,
only following the setting of their basic model.

2https://github.com/facebookresearch/faiss

set the hyper-parameter τ as 4 for IT, Medical,
Law, and 40 for Koran. The λ is tuned on the in-
domain dev sets for different methods, and we use
(4, 8, 16, 24, 32) as the value for k.

To avoid the influence of random data partition,
all results are the average of 5 runs with different
random seeds when partitioning the data.

3.2 Baselines

We mainly compare with the following methods
for translation domain-adaptation:

• Basic NMT The general-domain model is di-
rectly evaluated on the target domain;

• Copy-kNNMT In-domain datastore is created
based on (Y,Y) for kNN-MT inference;

• BT-kNNMT In-domain datastore is created
based on back-translated data (X̂ ,Y) for kNN-
MT inference;

• Parallel-kNNMT Ground-truth in-domain par-
allel data (X ,Y) is used to generate the datas-
tore, which can be regarded as the upper bound
of the kNN retrieval based methods;

• UDA-kNNMT (Zheng et al., 2021) This method
first creates datastore based on (Y,Y), and
then introduces lightweight adapters to map the
token-level representation to the ideal represen-
tation of translation task. Notice due to the in-
troduction of adapter layers, this method is not
fully non-parametric.

3.3 Main Results

As shown in Table 1, our methods can surpass all
baselines and achieve the state-of-the-art among
non-parametric methods. Especially, we are able
to surpass the result of UDA-kNN by 1 BLEU

13296



Figure 2: The variation of BLEU score of Iter-kNNMT
according to the iteration number on EN-DE.

score without the introduction of an extra train-
ing phase. Copy-kNNMT could hardly bring any
improvement. BT-kNNMT, which is actually our
method without iteration, could introduce notable
improvement, but still underperforms our method.
We attribute this to the iteration process, where
domain-specific knowledge is written into datas-
tore and further refined during the iteration. While
not introducing any extra training parameters, the
datastore itself is able to memorize and update
the domain-related lexical and syntactic knowl-
edge, and this can be actually deemed as a non-
parametric learning process.

We also illustrate the variation of BLEU score
according the iteration number on EN-DE direc-
tion. As shown in Figure 2, the BLEU score in-
creases rapidly in the first two iterations, but the
improvement would be marginal or even negative
in the following iterations. Therefore, we set the
max iteration number as 5 in all experiments.

4 Ablation Studies

4.1 The influence of datastore size

In this section, we want to investigate the influence
of the datastore size. To this end, we split the in-
domain data into different folds, and fetch two un-
aligned folds for datastore building.

As shown in Figure 3, on EN-DE direction, our
Iter-kNNMT can bring consistent improvement
and surpass UDA-kNNMT among different data
scales. Despite the monolingual data being lim-
ited, we are able to create various key-value pairs
with different kNNMT models in different itera-
tions. With different back translations for a single
target sequence, the most suitable key-value pair
would have more possibility to be retrieved.

Figure 3: The variation of BLEU score according to
different datastore sizes on EN-DE.

4.2 Refinement and Accumulation
To verify that the improvement comes from both
the refinement during iteration and the accumula-
tion of datastore, we perform two contrast experi-
ments on EN-DE direction. Firstly, we perform n-
best decoding with random sampling on the back
translation model, and generate 5 different source
sentences for each target sequence, forming an
accumulated datastore without refinement. Sec-
ondly, we perform iteration without accumulation,
only using the newest datastore each time.

Model Data Koran Medical

basic NMT - 16.26 39.99
UDA-kNNMT full 19.42 46.64

Iter-kNNMT half 20.03 48.06
-accumulation half 19.22 45.79
-refinement half 19.79 46.20

Table 2: BLEU scores on EN-DE Koran and Medical
domains without refinement or accumulation.

As can be seen in Table 2, both refinement and
accumulation play an important role in the Iter-
kNNMT. While datastore is indeed refined during
the iteration, accumulation is necessary to keep the
variety and robustness of datastore. While the re-
fined back translation can function as more accu-
rate datastore, the comparably noisy back trans-
lation can also improve the robustness of the re-
trieval. Also, if there is no refinement from it-
eration, a single back-translation model only has
limited decoding space induced by pre-train data,
therefore the constructed datastore can also pro-
vide limited domain-specific guidance.

5 Conclusion

This paper proposes a simple yet effective method
to perform unsupervised domain adaptation of ma-
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chine translation in a non-parametric manner. We
perform nearest neighbour inference on both for-
ward and backward directions, strengthening each
other in an iterative manner. While accumulated
datastore is more robust and effective than datas-
tore generated in a single pass, the accumulated
datastore introduce extra retrieval overhead. In the
future, we would investigate how to compress the
datastore and improve the decoding efficiency.

Limitations

Due to the lack of research in this area, there is
only one direct related paper to our work, which
serves as the main baseline in our experiments.
We hope we can compare our method with more
related works to verify its effectiveness in the fu-
ture. Also, the domain adaptation problem not
only exits in the machine translation filed, but also
various generation and understanding NLP tasks,
where we should evaluate our method on if we are
not limited by time and resource.
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