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Abstract

Accounts of human language processing have
long appealed to implicit “situation models”
that enrich comprehension with relevant but
unstated world knowledge. Here, we apply
causal intervention techniques to recent trans-
former models to analyze performance on the
Winograd Schema Challenge (WSC), where
a single context cue shifts interpretation of
an ambiguous pronoun. We identify a rela-
tively small circuit of attention heads that are
responsible for propagating information from
the context word that guides which of the can-
didate noun phrases the pronoun ultimately at-
tends to. We then compare how this circuit be-
haves in a closely matched “syntactic” control
where the situation model is not strictly nec-
essary. These analyses suggest distinct path-
ways through which implicit situation models
are constructed to guide pronoun resolution'.

1 Introduction

Language understanding is deeply intertwined with
world knowledge. For example, when reading a
sentence like “the fish ate the worm,” we can guess
that the fish was probably hungrier before eating
and that the worm is no longer alive, even though
neither property is explicitly mentioned (Winograd,
1972; Rumelhart, 1975). Classical psycholinguis-
tic accounts have suggested that such knowledge
enters into language understanding through struc-
tured schemas called situation models (Zwaan and
Radvansky, 1998; Morrow and Clark, 1988; Brans-
ford and Franks, 1971; Schank and Abelson, 1977,
Bower et al., 1979; Graesser et al., 1994; Johnson-
Laird, 1983) that are dynamically constructed dur-
ing comprehension. Put succinctly, a situation mod-
els is a representations of the web of entities and
relations that are implied without being explicitly
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Figure 1: We analyze the circuits responsible for perfor-
mance on Winograd sentences using a series of causal
interchange interventions to trace how contextual infor-
mation is integrated to resolve the masked pronoun.

specified in the literal text (Safavi and Koutra, 2021;
Piantadosi and Hill, 2022).

Modern large language models (LLMs) exhibit
increasingly impressive performance on “common-
sense” tasks that seemingly require the use of im-
plicit world knowledge (Sap et al., 2019; Zellers
et al., 2019; Petroni et al., 2019; Davison et al.,
2019; Vuli€ et al., 2020), yet it is still not clear
precisely how that knowledge is accessed and em-
ployed. Recent interpretability work has explicitly
probed and traced individual pieces of world knowl-
edge to highly localized regions of the network (e.g.
the birth years of US Presidents; Meng et al., 2022;
Dai et al., 2022), allowing surgical erasure or edit-
ing (e.g. Colon-Hernandez et al., 2021). But the
kind of world knowledge represented by a situation
model is more implicit and, according to classical
theories, constructed on the fly for the task at hand.
Models must somehow determine that a particu-
lar relational concept is relevant in the first place
(Icard and Goodman, 2015).

For example, in Figure 1 the final piece of con-
text (successful / available) is only able to resolve
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the pronoun in light of the initial verb phrase “tried
to call”. The situation model constructed from
an agent Paul trying something raises the possi-
ble predicates of success or failure, while a patient
George being called raises the possible predicates
of busyness or availability. Conversely, Paul’s avail-
ability and George’s success are not at issue and
therefore not available as interpretations for the pro-
noun. There are, of course, many other attributes
that may be invoked from a tried to call situation
model that are not relevant to resolving the pro-
noun, involving the kinds of devices used to make
calls, the kinds of noises heard when being called,
and so on. According to this analysis, successfully
deriving the appropriate referent in both sentences
requires models to integrate relevant information
across disparate parts of the sentence structure.

In this paper, we conduct an initial exploration
of the hypothesis that LLMs have learned to con-
struct implicit situation models. As a case study, we
conduct a fine-grained analysis of a best-in-class
transformer model (ALBERT; Lan et al., 2020)
on a Winograd-like pronoun disambiguation task
(Winograd, 1972; Levesque et al., 2011; Sakaguchi
et al., 2021, see Figure 1). Winograd sentences
are minimal pairs constructed with the property
that resolving an ambiguous pronoun requires situ-
ational world knowledge outside the scope of the
literal text; critically, for our purposes, the pair of
sentences differs only at one site, which causes
the interpretation to flip. Controlling for possible
confounds, a model that is able to generate sharply
different predictions for these pairs can be said to
behave as if it has a situation model.” Although the
open models that amenable to causal probing do
not yet achieve fully human-like performance on
this task, their trajectory of increasing functional
capabilities raises an important mechanistic ques-
tion about how larger networks achieve these gains.

Our primary contributions are (1) employing
causal probes to identify a sub-circuit of atten-
tion heads that are responsible for propagating
contextual information, and (2) constructing a set
of closely matched controls for Winograd sen-
tences that are resolvable solely using syntactic
cues, which we use to validate the specificity of the
identified situation model circuit. Overall, we find
some exciting preliminary evidence for meaning-

Mt is important to distinguish this cautious claim of task-
specific functional equivalence from the stronger claim that a
neural model constructs the same kind of situation models as
humans in general.

fully non-overlapping pathways while also high-
lighting the subtleties of probing situation models
on a sentence-by-sentence basis.

2 Related Work

2.1 Implicit world knowledge in LLMs

A number of recent studies have examined the ex-
tent to which neural language models have acquired
implicit schemas about the world (Li et al., 2021;
Dai et al., 2022), proposed auxiliary tasks to im-
prove coherence (Li et al., 2022), and probed the in-
ternal mechanics by which world knowledge influ-
ences downstream predictions (Meng et al., 2022;
Geva et al., 2022). A smaller set of studies has
focused on classical psycholinguistic phenomena:
for example, Davis and van Schijndel (2020) ex-
amining relative clause attachment in coreference
resolution, and Upadhye et al. (2020) examining
predictions about which entities are preferred for
different verbs. We approach the problem of im-
plicit situation model representations with a more
targeted set of causal intervention techniques, trac-
ing the internal flow of subtle contextual cues in
Winograd schemas for the first time.

2.2 Probing with causal interventions

In order to identify interpretable algorithms under-
lying specific model behaviors, recent studies have
employed variants of causal intervention analyses
on intermediate representations, targeting syntactic
agreement (Lakretz et al., 2021; Finlayson et al.,
2021; Lasri et al., 2022), relative clause processing
(Ravfogel et al., 2021), natural language inference
and compositionality (Geiger et al., 2020, 2021;
Soulos et al., 2020), gender bias (Vig et al., 2020),
sub-word representations (Huang et al., 2022), and
factual knowledge (Dai et al., 2022; Meng et al.,
2022). Following Olah et al. (2020), we use the
term circuit to capture the explanatory construct
in such interpretability studies: a computational
subgraph of a neural network consisting of a set
of units and connections between them that are
causally implicated in a behavior (Elhage et al.,
2021; Olsson et al., 2022). For example, Wang
et al. (2023) recently argued that a small circuit of
attention heads appears to identify indirect objects,
and Wu et al. (2023) revealed a circuit for solving
simple numerical reasoning problems. Building on
this family of interchange intervention techniques
(Geiger et al., 2020; Mueller et al., 2022; Elazar
et al., 2021a), we decompose each head into its
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query, key and value sub-components (Mohebbi
et al., 2023) to trace the flow of causally important
information for solving Winograd sentences.

3 Approach

3.1 Dataset construction

We began by extracting the subset of the Wino-
grad Schema Challenge (WSC) appearing in Super-
GLUE (Wang et al., 2019; Levesque et al., 2011),
as well as the larger, crowd-sourced Winogrande
(Sakaguchi et al., 2021) dataset. These datasets
contain sentence pairs that differ only at a mini-
mal word or phrase that changes the referent of
an ambiguous pronoun earlier in the sentence (see
Figure 1).3

)] Paul tried to call George but <MASK> wasn’t
[successful / available].

These sentences are structured such that the disam-
biguating context only appears near the end, but
otherwise have diverse sentence structure (e.g. the
context can be any part-of-speech). We call these
pairs the “context cue” condition.

We then modified these pairs to construct three
additional conditions for comparison. In a “con-
text+syntax cue" condition, we changed the plural-
ity of one of the noun phrase options such that the
pronoun can be resolved by relying on the number
signaled by the verb without necessarily requiring
situational knowledge.

2) They tried to call George but <MASK>
[weren’t successful] / [wasn’t available].

To remove the availability of world knowledge en-
tirely, we masked out the context span in both sen-
tences to form a “syntax only" condition.

3) They tried to call George but <MASK>
[weren’t / wasn’t] <MASK>.

Finally, we generated a control condition using
semantically equivalent synonyms; if results in
the other conditions truly reflect world knowledge
rather than spurious token-specific features, we

3To facilitate comparison across sentences of different
lengths, we will refer to the span of text that is manipulated
across the two sentences as the “context”, the candidate refer-
ents as the “options", the pronoun as the “mask" (since it is
masked for the prediction task), the verb immediately follow-
ing the mask as the “verb", and the remaining tokens as the
“rest”. For all analyses, we conduct single-token interventions
and then aggregate effects within that class.

should not expect to find any effect in this condi-
tion.

4) Paul tried to call George but he [wasn’t
accessible] / [wasn’t available].

In total, we constructed 200 unique pairs of sen-
tences, each of which appears within all 4 con-
ditions (see more examples in Table S1; further
details of dataset construction are provided in Ap-
pendix A.)

3.2 Interchange interventions

To interrogate how exactly masked language mod-
els achieve context-sensitive predictions from min-
imal cues, we applied a causal intervention tech-
nique (Geiger et al., 2020; Mueller et al., 2022)
to map the flow of information from the context
word to the masked site where the ultimate predic-
tion is made. Specifically, we used an interchange
intervention to swap intermediate representations
across the two contexts (see Figure 1), and quan-
tified the effect of the intervention on the model’s
downstream prediction. Given a pair of sentences
(sa, sp) that differ only at the context token, we
mask out the pronoun and score the likelihood of
each noun phrase (N4, Np) at the masked posi-
tion. For simplicity, we denote the noun phrases
such that N4 is the correct referent for sentence
s4 and Np is the correct referent for sentence spg.
For example, Py(N 4|s4) refers to the likelihood
assigned to the (correct) referent N 4 at the mask
position in sentence s4, where 6 represents the
model parameters. In the case of multi-token noun
phrases, we masked out all tokens in the phrase and
used the average log probability of each token as
the score (see Appendix C).

Although multiple metrics have been proposed
for capturing the effect of an intervention (e.g.
Mueller et al., 2022), we use the canonical odds
ratio, the shift in relative preference for the correct
option as a result of the intervention. We first calcu-
late the baseline preference for the correct referent
N 4 relative to the incorrect referent Npg:

e — Pyp(Nalsa)
pre PQ(NB‘SA)

where Py() represents the model’s prediction un-
der pre-intervention representations . We then
measure the same preference after the intervention:

y _ P9+z(NA‘SA)
Post = Py (Nplsa)
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Model context only syntax only context+syntax
strict [%] \ weak [%] | strict [%] \ weak [%] | strict [%] \ weak [%]

bert-base-uncased 11.0 59.5 81.5 99.5 83.5 100
bert-large-cased 15.5 65.0 81.5 100 80.5 99.5
roberta-base 8.5 59.0 69.5 100 72.5 100
roberta-large 12.5 70.0 64.0 99.0 66.0 99.5
albert-base-v2 12.5 56.0 60.0 95.5 84.5 99.0
albert-large-v2 14.5 57.0 78.0 98.0 89.0 99.5
albert-xlarge-v2 18.5 59.5 90.0 100 91.0 99.5
albert-xxlarge-v2 315 81.5 88.5 100 88.5 100
gpt-4 51.0 - - - - -

gpt-4 + CoT 67.3 - - - - -

human 94.1 - - - - -

Table 1: Zero-shot performance on Winograd items. The strict metric requires the correct referent to be strictly
preferred on both sentences in the pair, so chance is 0% for a model that is not sensitive to context. The weak
metric only requires context to shift the prediction in the correct direction across the pair (even if there is an
absolute preference for the incorrect referent), so chance is 50% for a model that is not sensitive to context. We
could not compute weak scores for gpt-4 because raw probabilities are not exposed by the APL.

where Py+-() represents the model’s prediction
using post-intervention representations %, The
odds ratio is then: £ = ypre/Ypost (o1, On a log-
arithmic scale, log /' = log ypre — l0g yYpost- Ef-
fects are averaged across the two directions of in-
tervention within each sentence pair. Note that
log Ypase > 0 by definition for pairs where the
baseline prediction is correct, but depending on
whether the intervention decreases or increases the
probability of the correct referent, the causal effect
can be positive (indicating the site of the interven-
tion was contributing to the correct prediction) or
negative (indicating the site of the intervention was
contributing to the incorrect prediction).

The odds ratio has some desirable properties
compared to other measures like the absolute dif-
ference in differences (e.g. Yin and Neubig, 2022).
It does not suffer from ceiling or floor effects, and
it is a well-understood measure in classical statis-
tics, as deployed in logistic regression. However,
it is also insensitive to the absolute values of the
probabilities going into the ratio, making it poten-
tially vulnerable to noise in the tails (i.e. when
both NPs are very infrequent). We believe the odds
ratio is a preferred metric a priori but we hope fu-
ture work will better elucidate the advantages and
disadvantages of different metrics.

4 Results

4.1 Zero-shot performance evaluation

There are a multiplicity of different ways of evalu-
ating performance on Winograd sentences. These
shifting criteria may be responsible for inflated
claims of state-of-the-art performance (Liu et al.,
2020; Kocijan et al., 2022; Trichelair et al., 2019).
To set the stage for our causal intervention analyses,
we conduct our own stricter zero-shot comparison
of recent pre-trained models. Our strict metric re-
quires the correct referent to be assigned higher
probability for both sentences, that is, the likeli-
hood ratios must satisfy

Py(Nalsa)
PQ(NB|SA)

Py(Ng|sp)

>1 and —————~=
P@(NA‘SB)

By jointly considering both sentences in the pair,
this metric better captures context-sensitivity. Note
that a context-insensitive model that makes the
same prediction for both sentences would receive
a score of zero on this metric (Abdou et al., 2020;
Elazar et al., 2021b). That is, context-sensitivity
is required for the interpretation of a pronoun to
be systematically reversed, as required to meet the
stricter accuracy criteria. We also consider a more
standard but weaker metric that only requires the
prediction to shift in the correct direction, even if
there is an absolute bias for the incorrect option;
chance is 50% for this metric:

Py(Nalsa) Py(Nalsp)
Py(Np|sa) =~ Pp(NB|sp)
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Table 1 reports the performance of three masked
language models (BERT, RoBERTa and ALBERT)
at different sizes, along with the auto-regressive
GPT-4, and a newly elicited dataset of N = 199
human participants (see Appendix B for details).
While all models we consider fall well short of hu-
man performance, larger and more recent models
tend to perform better overall, with the large AL-
BERT model achieving up to 81.5% on the weak
criterion. We also observe, unsurprisingly, that
models perform better overall for the syntax cue
condition than for the context cue condition and
even better when both cues are combined. GPT-
4 performs better than other models on the strict
criterion, reaching 67.3% with the use of chain-of-
thought prompting (Wei et al., 2022) (mean accu-
racy aggregated across all 400 individual sentences
is 82%, compared to 87% human accuracy).

Although models like GPT-4 are only available
through an API, limiting our ability to explore
causal interventions on their internal representa-
tions, we may view other models as lying at earlier
points on the same scaling trajectory. We report
interventions on all open models (Figure S3), but
we place particular focus on the largest ALBERT
model, which achieved the highest zero-shot per-
formance of any open-source model we considered.
First, we are interested in examining the circuits
underlying successful performance, and the small
number of sentences for which they make the cor-
rect predictions limit statistical power (e.g. BERT
is only correct for 22 sentences under the strong cri-
terion). Second, the ALBERT architecture ties the
weights of attention heads across all layers, yield-
ing more interpretable head-wise analyses (i.e. it is
meaningful to track the same head k across layers).

4.2 Layer-wise information flow

To yield insight into failure modes of these mod-
els, we would like to develop a more mechanistic
understanding of how local information from the
context word is algorithmically propagated through
other sites in the sentence to ultimately arrive at
the correct prediction. In other words, we are inter-
ested in probing the transformer circuits that allow
such minimal context cues to have such large ef-
fects on pronoun resolution. According to classical
accounts, situation models must be constructed dy-
namically, as it is not obvious ahead of time which
aspects of the situation will be relevant to interpre-
tation.

We begin by considering the effect of coarse-
grained layer-wise intervention. For each layer and
each token, we replaced its vector representation
under one sentence with what it would have been at
the same layer and token for the other sentence, and
measured the extent to which the output prediction
changed (see Figure 2). Results are shown only for
sentences where the model made “strictly” correct
predictions in both the context condition and the
syntax condition; effects are similar for cases where
the baseline predictions are “weakly” correct (see
Figure S1).

First, as a sanity check, we observe that inter-
vening at the critical context token at early layers
dramatically switches the model’s prediction (Fig-
ure 2). This effect begins to decay around layer 9.
Meanwhile, intervening at the noun phrase options
only yielded a significantly non-zero effect on the
model’s output starting layer 9, £(57) = 6.1,p <
0.05 (correcting for multiple comparisons), while
intervening at the masked pronoun and other po-
sitions (rest) yielded effects beginning at layers
6 and 7, respectively (p < 0.05). Although ef-
fects are localized among “rest” tokens in differ-
ent locations from sentence to sentence, the ex-
ample in Figure 2A reveals early causal effects
in the “tried to call” construction and the comma
token, which may serve as a neutral site for ag-
gregating phrase-level information* Finally, as pre-
dicted, no significant effects were observed when
swapping representations on control pairs with syn-
onymous context words (Figure 3), indicating that
the context-sensitivity observed for Winograd sen-
tences is not purely driven by token-specific sen-
sitivities. Taken together, these layer-wise effects
are consistent with pronoun-relevant information
remaining localized in the context until intermedi-
ate layers, when it begins to pool in other locations
and eventually contextualizes the options to guide
attention from the prnoun.

So far, nothing about these comparisons impli-
cates the construction of an implicit situation model

— we may simply be measuring the circuits for
pronoun-resolution more generally. To disentangle
these possibilities, we consider our “syntax only”
control condition, where syntactic agreement in-

*It has been previously observed that a large amount of
attention at late layers is focused on punctuation and other
special tokens (Kovaleva et al., 2019; Clark et al., 2019). In-
terestingly, though, we found no systematic effects at other
annotated elements, such as final periods or [CLS]/[SEP]
tokens (Figure S2), suggesting that these elements are not
consistently involved in the circuit across sentences.

13269



effect
0.0 0.5 1.0+
|

A Context Only

6 tried
to 4
< call |
o
2 ] -
S 4 on 1
S the |
[0) phone -
£ | rest 4] .
e Ut'
5, mask MASK ] .
© wasn
2 '
© t 4
1 I
01
1357 911 1 4 7 10
layer layer

effect
B Syntax Only 0.0 1.0 2.0+
]
12 i
tried 4
to A
s g | verb call -
€ on -
g the
9 5 phone -
= ]
“— but -
5 mask e |
O 3 wasn -
Q v
© t
0 rest i
1357 9 11 14 710
layer layer

Figure 2: The mean effect of causal interchange interventions at each layer and site are shown for (A) the context
only condition and (B) the syntax only condition. Error ribbons show bootstrapped 95% confidence intervals across
sentence pairs. Heatmaps show effects of interventions at each individual token for an example sentence.

formation alone is sufficient to make the correct
prediction and no contextual information is avail-
able. Unlike the “context only” condition, where
effects at the rest of the sentence preceded contex-
tualization of the mask and the effect at the options
remains stronger than at the mask as late as layer 11
(t(57) = —5.4,p < 0.05), the “syntax” condition
is strictly dominated by the effect at the mask start-
ing around layer 7 (¢(57) = 3.8,p < 0.05). This
effect is illustrated in Figure 2B, where we see a
much more localized circuit between the auxiliary
verb, where a number agreement cue is provided,
and the MASK, where the prediction is generated;
effects at other sites are much more muted. Interest-
ingly, in the combined (context+syntax) condition
where both cues are available, information at the

0.25

0.00 '% context
+— _—
8 — verb
= _0.25- options
w — masks

= rest
-0.501

1234567 89101112
Layer

Figure 3: Layerwise intervention for synonyms yields
no significant effects, indicating that heads are not
purely driven by lexical identity. Error ribbons show
bootstrapped 95% confidence intervals across sentence
pairs.

mask still dominates starting at the same layer as
the “syntax” condition (p < 0.05; not shown). We
found qualitatively similar results for the largest
RoBERTa model, but not for the smaller models
(see Figure S3).

4.3 Head-wise causal interventions

These coarse layer-wise analysis suggest that
global “situational” information may be con-
structed from the context word, and integrated else-
where in the sentence, whereas purely syntactic
agreement information may be accessed more di-
rectly by the masked pronoun. However, it remains
unclear exactly how the transformer accomplishes
this task at an algorithmic level, and a lot of com-
plexity was potentially hidden in the “rest” cate-
gory. In this section, we conduct a finer-grained
head-wise analysis of the individual components
within each layer that are responsible for routing
contextual information between tokens (Figure 4).

We consider four internal components: (1) the
final transformation vector produced by the head
that gets concatenated back to other heads before
being projected back into the residual stream, (2)
the guery vector that “imports” information into a
given source site, (3) the key vector at other sites
which matches the query to yield the attention ma-
trix, and (4) the value vector that is “exported” from
the target site (see Figure S4 for a schematic).

For ease of interpretability, we will refer to ef-
fects of intervening on each of these components
in terms of an implied “source — target” pathway.
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Figure 4: Effects of intervening at a single attention head (head 8) for an example sentence in (A) the context
condition and (B) the syntax condition. We intervene at both the point where this head’s output is added back to
the given token’s residual stream (transformations) as well as the internal value vector this head exports to other
tokens when queried. In the syntax condition, this head appears to be primarily responsible for moving information
from the verb to the MASK; in the context condition, however, it is implicated at other sites, like the comma token

where phrase-level information may be integrated.

For example, if intervening on the value exported
from the context token has the same effect as in-
tervening on the ultimate transformation vector at
the options, we loosely say that this is a “context
— options” head. The effect of swapping the full
transformation vector is our primary measure of
how much pronoun-relevant context-sensitivity is
introduced into the residual stream by that head at
that layer overall, which can then be broken down
into its contributing subcomponents.

To build intuition, we first depict the complete
profile of causal intervention effects for a single
head (head 8) across layers and tokens of an ex-
ample sentence (Figure 4A; see Figure S12 for
the same analysis applied to the largest ROBERTa
model). Consistent with our coarser layer-wise
analysis above, we find that intervening on trans-
formations at the comma token around layer 8
(and a few layers later at the MASK token) sig-
nificantly interferes with the model’s ability to cor-
rectly resolve the referent. We then gained further
insight through targeted interventions on the sub-
components used to calculate the transformation
vector. Specifically, we find that intervening on
the value vector exposed at the context word (suc-
cessful) accounts for a significant proportion of the

total effect at middle layers. This effect appears
to be largely restricted to the context-only condi-
tion; causal interventions on the same head in the
syntax-only condition (Figure 4B) reveal only the
more local “verb — mask™ path.

Moving to a more systematic analysis, we find
that a set of 23 heads (less than half of the 64
total heads) show a significant effect of interven-
ing on the transformation for least one layer and
one site (p < 0.05, after correcting for multiple
comparisons; 15 survive at the p < 0.01 level; 13
at the p < 0.005 level; and 11 at the p < 0.001
level). Examining the internal components of each
of these attention heads (keys, queries, values) al-
lows us to construct a preliminary computational
graph of how contextual cues eventually propa-
gate to the masked site, aggregating over many
sentences. Figure 5 shows the layer-wise pro-
file for five representative heads, each represent-
ing a systematic link between a particular set of
sites (see Figure S7 for all heads). Roughly, this
graph suggests that the model begins by shifting
information from the context site into “neutral”
sites throughout the rest of the sentence via head
8 (e.g. value vector at context word, layer 10 :
t(57) = 6.1,p < 0.05) and head 11 (value vector
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Figure 5: Example heads involved in propagation of context information. Error ribbons show bootstrapped 95%
confidence intervals across sentence pairs. Schematic depictions are provided in Figure S6.

at context word, layer 6: ¢(57) = 4.9,p < 0.05).
Shortly thereafter, head 45 exports that information
to the two noun phrases (options) that are the possi-
ble referents of the pronoun (transformation vector
at options, layer 8 : ¢(57) = 6.9,p < 0.05) and
head 53 (transformation vector at options, layer 11
, t(57) = 7.1,p < 0.05). Then, at the final layer
of the model, head 60 preferentially attends from
the mask to one of the two options, determining the
ultimate prediction (key vector at layer 11 options,
t(57) = 8.0,p < 0.05).

4.4 Analysis of context-specificity

Critically, although some of these heads are also
implicated in the syntax-only condition (see Fig-
ure S8 for full profiles), there are dramatic quantita-
tive differences in the pattern of these heads across
layers. The specificity profile is shown for all ac-
tive heads in Figure 6, where specificity is defined
with respect to the context vs. syntax comparison:
an orange cell indicates ‘context-specificity’ (i.e.
selective activation only in the context condition)
while a blue cell indicates ‘syntax-specificity’ (i.e.

selective activation only in the syntax condition).
Broadly, we observe that many heads, including
those highlighted above, yield significant context-
specific effects at earlier layers, especially at “rest”
sites (left panel; see Figure S13 for an analysis
of RoBERTa). Conversely, there are a number of
heads that are yield syntax-specific effects at “mask”
sites (middle panel). Although this pattern of speci-
ficity remains highly exploratory, it suggests that
the network may have learned different pathways
for pronoun resolution: cues like verb number in-
formation are directly exposed to guide the mask
token, while contextual information must be in-
tegrated with other relevant semantic cues from
elsewhere in the sentence. In other words, the latter
may require constructing and querying a rudimen-
tary situation model.

5 Discussion

In this paper, we presented a preliminary investi-
gation of the transformer circuits underlying per-
formance on Winograd sentences, where minimal
contextual cues must be used to resolve an ambigu-
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Figure 6: Specificity of head-wise effects across layers
and sites. Orange cells only yielded causal effects for
the context condition, blue cells only for the syntax con-
dition, and black cells for both conditions. All colored
cells are significantly different from zero at Bonferroni-
corrected p < 0.005 level. Heads are ordered by the
earliest layer at which context-specificity appears.

ous pronoun. We applied fine-grained causal inter-
ventions to identify a circuit of attention heads that
are responsible for propagating information from
the context cue to the possible referents, which ap-
pears to be at least partially distinct from the circuit
used to propagate agreement cues in our closely
matched syntax-only baseline.

It still remains to be seen whether the circuits we
have identified should be interpreted as evidence
for a bona fide situation model. First, it is possible
that even on carefully debiased sets of examples,
models like ALBERT are still relying on lexical
shortcuts. For example, presented with “MASK
was tasty” we would prefer the referent pie over
the referent boat, knowing nothing about the rest
of the sentence. If so, we may be measuring the
circuit for those lexical preferences rather than for

anything like a situation model (but see Appendix
D for an additional analysis suggesting that this
kind of phenomenon is unlikely to be driving the
observed effects).

Second, situation models present a well-known
example of the frame problem (McCarthy and
Hayes, 1969; Pylyshyn, 1987) — it is impossi-
ble to explicitly enumerate every property in the
world and how it is (or is not) related to every other.
Hence, any model of interpretation must be “lazy”
in some sense, only introducing relations that are
relevant for the task at hand (e.g. the concept of
availability for the “Paul tried to call George” ex-
ample). When the task at hand is simply pronoun
resolution, it is possible that an extremely minimal
situation model may be sufficient; in the longer
term, it will be important to explore settings that
require richer or less accessible interpretations. Fi-
nally, although we focused on implicit situation
models constructed internally, it may also be pos-
sible to expose situation models more explicitly
in larger auto-regressive models through chain-of-
thought prompting (Talmor et al., 2020) which do
not require model internals to be public.

Limitations

Although our single-site interchange interventions
provide causal evidence that particular sub-circuits
are necessary for a particular downstream behav-
ior, this technique has known limitations addressed
by recent Distributed Alignment Search (DAS) ap-
proaches (Geiger et al., 2023). First, it will over-
count certain “synergies:” when a single effect
is jointly produced by the conjunction of multi-
ple heads acting in concert, we will identify all
heads as making distinct contributions to the cir-
cuit. Second, it will under-count “redundancies:”
if there are multiple heads that are individual suf-
ficient to produce the effect, then no single head
will be detected as strictly necessary. Ideally, rather
than single-site interventions, we would explore
all combinations of different heads to find mini-
mal spanning sets that are both necessary and suffi-
cient, but this procedure becomes intractable given
the number of heads, requiring more sophisticated
optimization-based approaches to find promising
sets (e.g. Csordds et al., 2021; De Cao et al., 2022).

Ethics Statement

All existing datasets (SuperGLUE and Wino-
grande) and models (BERT, RoBERTa, and AL-
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BERT) were employed according to their intended
research focus, and our targeted probing dataset is
intended to be used for similar purposes in future
work. Because it was constructed by a combination
of automatic and manual processes by the authors,
it contains no additional information that could
uniquely identify any individuals. More broadly,
we employ causal interventions to evaluate how
models perform a challenging commonsense rea-
soning task, with the aim of building stronger links
to classic work in cognitive science and psycholin-
guistics. However, these causal interventions may
pose some risk if used adversarially to tamper with
public models or expose private information. Fur-
ther, the WSC and Winogrande datasets we use
to probe situation models have been constructed
within specific cultural settings (e.g. by NLP re-
searchers and largely US-based crowd-workers)
and are not intended to be universal or representa-
tive of situational competency: a wider diversity of
culturally-specific stimuli is needed.
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Appendix A: Dataset Construction

We began with 70 sentences from the WSC sub-
set of SuperGLUE and 9248 sentences from the
debiased portion of the Winogrande train split
(see Appendix D for discussion of debiasing pro-
cedures). Many of the sentences from Winogrande
were singletons, as the other sentence in the pair
had been removed in the debiasing procedure, leav-
ing 1361 intact pairs. We then excluded sentences
where we could not automatically obtain the index
of the context word or options in the tokenized se-
quence (many of them had subtle differences in the
sentence pair aside from the context word, with
respect to the choice of words/punctuation, which
are likely not intended by the original annotators
of Winogrande), leaving 1140 pairs.

In order to create a closely controlled “syntax"
cue condition, we took the subset where the verb
after the pronoun is either an auxiliary (“to be” or
“to have”) or in present tense, indicating whether
the masked pronoun is singular or plural. These
verbs were identified using spaCy (version 3.2.1)
(Honnibal et al., 2020). We also ensured at this
stage that all sentences had the same NP1-NP2-
mask-context-verb ordering. This step reduced the
number of sentence pairs to 38 and 167 for Super-
GLUE and Wingorande respectively.

The NPs and the verbs of these extracted sen-
tences were then manually modified to create the
agreement cue in the “syntax” condition, while the
context words were manually modified to create
the synonym condition. We excluded 5 out of 167
sentence pairs at this step, as we were unable to
change the plurality of the NPs while preserving
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the semantic meaningfulness of the sentence (e.g.
“James can count all the numbers on his fingers
because the [MASK] are few/many.”). Finally, be-
cause the interchange intervention requires both
sentences in a given pair to have exactly the same
overall number of WordPiece tokens (in order to
independently swap query, key or value features),
we lightly modified the contexts to satisfy this con-
dition. This step did not reduce the number of
sentence pairs.

The resulting dataset contains 200 sentence pairs
each for the context, syntax and context+syntax
cue conditions (38 from SuperGLUE and 162 from
Winogrande) and 400 sentence pairs for the syn-
onym condition (as we generated a synonym for
each individual sentence in the pair). This dataset
is available on Github (under MIT License)”.

Appendix B: Zero-shot evaluation details

We used Hugging Face transformers® (version
4.16.2) (Wolf et al., 2020) for all masked language
models. One of the key features of ALBERT (Lan
et al., 2020), unlike the original BERT (Devlin
et al., 2019) or the subsequent RoBERTa (Liu et al.,
2019), is that it shares model parameters across
layers, which makes it possible to meaningfully
compare the same head in different layers. Relative
to the next-largest ALBERT model, the xxlarge
model we consider allocates parameters toward
increased “width” rather than “depth,” with larger
hidden state dimension (4096 vs. 2048) and more
attention heads (64 vs. 16) packed into a smaller
number of layers (12 vs. 24). Running the entire
analysis took 200 hours using 2 GPUs (NVIDIA
TITAN X (Pascal)).

For a more state-of-the-art reference point, we
also examined the performance of the most recent
OpenAl GPT-4 model (using the provided snap-
shot from March 14, 2023). Because GPT-4 is
auto-regressive and the disambiguating context in
Winograd sentences typically follows the pronoun,
we create a prompted variant of the text as sug-
gested by the original proposers of the Winograd
challenge (Levesque et al., 2011). That is, we pre-
sented the full sentence along with a question: “The
trombone did not fit in the suitcase because it was
too large. What was too large, the trombone or
the suitcase?”” and coded the model’s free-text re-

5https://github.com/taka—yamakoshi/
situation-models
8 Apache License 2.0

sponses for matching either of the NP options (or
“other” if it did not match either option). We used
a temperature of 1 and generated 50 responses for
each question to account for sampling variation.
For our chain-of-thought experiment, we used the
following prompt containing a single example:

You are going to be shown a sentence
and asked to fill in a blank (with
an explanation). For example, consider
the sentence, "The man tried to put
the tuba in a suitcase but <blank> was
too small.” We will ask whether the
<blank> should be interpreted as the
TUBA or the SUITCASE. The <blank> will
be literally ambiguous, but you can use
knowledge about the world to figure it

out. In this case, we can reason as
follows. The suitcase is a container,
the man is attempting to fit a tuba

in that container, and bigger things
don’t fit when containers are too small.
In addition, tubas are generally bigger
than suitcases. Therefore the answer
is SUITCASE. What about the following
sentence?

Finally, because our specific set of Winograd
items had not previously been benchmarked against
human performance, we elicited free-response
judgments from a N = 199 human participants.
We matched the wording of instructions closely to
the prompt we used with GPT-4, and we coded
responses in the same way. Each sentence received
approximately 20 judgments, we ensured no partic-
ipant saw more than one sentence from any given
Winograd pair, and the order of presentation of the
options was counterbalanced (i.e. half of partici-
pants saw ’the trombone or the suitcase?” while
the other half saw ”the suitcase or the trombone?”).

Appendix C: Handling multi-token NPs

In order to evaluate the model’s ability to perform
pronoun resolution, we replaced the pronoun with
the mask token and compared the log probability of
each NP option at the masked site. While this was
straightforward in most cases, 28 of the 200 exam-
ples contained a multi-token option. We handled
these cases by introducing multiple masks at the
pronoun. We then calculated an average token-wise
score probability in the following way. Suppose
the option noun phrase N P consists of 3 tokens
(wk, w41 and wgyo) starting at the kth site (s,
Sk+1 and si42), where the pronoun is at the /th site
(s7). We then replaced the pronoun with three mask
tokens and calculated the average log probability as
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tllog P(s; = wi  |Si41, Si12 = mask, s_; = w_y)

+log P(s141 = Wyy1|s1, S142 = mask, 5 = w_;)
+log P(s14+2 = wi+2lsi, s141 = mask, s—; = w_y)],
where s_; = w_; denotes that all sites other

than s; are filled with the corresponding tokens
in the original sentence. Taking the average log
probability effectively controls for the additional
number of tokens. One concern with this method
is that, if part of the noun phrase is a functional
word (e.g. a determiner like the), it may drag down
the observed effect of the entire phrase. While
this is not ideal, we confirmed our results are
not sensitive to other ways of aggregating across
tokens and believe that aggregating across multiple
tokens in this way is a conservative choice relative
to other methods, like taking the maximum effect
across each of the component tokens.

Appendix D: Checking dataset biases

A recurring concern in the literature on Winograd
tasks is that many examples can be fully resolved
using lexical “shortcuts” that do not require im-
plicit world knowledge. We took several steps to
ensure that our results are not explained by these
biases. First, we used the debiased train split of
Winogrande, which used an approach known as
AFLITE to filter out examples that could be solved
using only the isolated embedding of the context
word (Sakaguchi et al., 2021). Second, due to
differences in our mask-prediction task and the
fine-tuning regime used by Sakaguchi et al., we
conducted our own analysis of bias in our smaller
dataset.

We devised a simple alternative approach to test
whether the isolated context embeddings (token
representations at layer 0) had lexical preferences
for the options. We first calculated correlations
(and Euclidean distances) between the embedding
vectors at the context and each of the options. If
the context is more similar to /V; (i.e. larger corre-
lation or smaller distance), we say /V; is predicted
as the referent, while if the context is more similar
to Na, we say it predicts Ny. This simple method
made correct predictions in 15.5 % (using correla-
tion) or 16.5% (using Euclidean distance) of our
200 sentence pairs. As expected, this performance
is significantly worse than the output MASK pre-
diction. More importantly, out of the 63 sentence
pairs we consider where correct predictions were
made by the contextualized model, only 9 (10) were

resolvable using word embeddings, based on corre-
lation (distance). This analysis suggests that while
some lexical shortcuts may still exist in our data,
these biases are likely not driving our results.
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| sentence pair

A I poured water from the into the until the <mask> was
I poured water from the into the until the <mask> was
B I poured water from the into the until the <mask> was
I poured water from the into the until the <mask> were
c I poured water from the into the until the <mask> was
I poured water from the into the until the <mask> were
I poured water from the into the until the <mask> was
Dy . .
I poured water from the into the until the <mask> was
I poured water from the into the until the <mask> was
Dy . .
I poured water from the into the until the <mask> was .
paid because <mask> has the final report on the case.
A .
paid because <mask> has the final report on the case.
paid because <mask> has the final report on the case.
B .
paid because <mask> have the final report on the case.
paid because <mask> has the final report on the case.
C .
paid because <mask> have the final report on the case.
paid because <mask> has the final report on the case.
Dy .
paid because <mask> has the final report on the case.
D paid because <mask> has the final report on the case.
2 .
paid because <mask> has the final report on the case.
A As in the crop duster passed over , <mask> was able to spot the landing
As in the crop duster passed over , <mask> was able to spot the landing
B As in the crop duster passed over , <mask> was able to spot the landing
As in the crop duster passed over , <mask> were able to spot the landing
c As in the crop duster passed over , <mask> was able to spot the landing
As in the crop duster passed over , <mask> were able to spot the landing
D As in the crop duster passed over , <mask> was able to spot the landing
1 . .
As in the crop duster passed over , <mask> was able to spot the landing
As in the crop duster passed over , <mask> was able to spot the landing
Dy . .
As in the crop duster passed over , <mask> was able to spot the landing

Table S1: Examples sentence pairs in each condition (A: context / B: context+syntax / C: syntax / D;: synonym
1/ Dy: synonym 2). For synonym 1, we changed the context of sentence 2 to match that of sentence 1 and for
synonym 2, we changed the context of sentence 1 to match that of sentence 2. We report the aggregated results of
both synonym conditions in Figure 3
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context — verb options — masks — rest
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Figure S1: Effects of swapping each layer for cases where the model predicted incorrectly. The line at the top
shows the sign of the log likelihood ratio log(Ls(Na|s)/Le(Np|s)) in each sentence s. The top left panel shows
the cases where the model predicted correctly for both sentences (positive for s 4 and negative for sg). The cases
where the model made incorrect prediction can be categorized into five different groups, depending on the signs
of the log likelihood ratios. The sign of the effect is flipped for three panels in the bottom row reflecting the fact
that the log likelihood ratio was larger for sentence 2. Error ribbons show bootstrapped 95% confidence intervals
across sentence pairs.
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Figure S2: Effects of swapping intermediate representations of periods or special tokens (i.e. [CLS] and [SEP]
tokens). Error ribbons show bootstrapped 95% confidence intervals across sentence pairs.
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Figure S3: Effect of swapping each layer for models with different types and sizes. The flow of information from
the context to the mask is conserved in all models. In addition, larger models (roberta-large, albert-large-v2, albert-
xlarge-v2, and albert-xxlarge-v2) have the context information flow that goes into the options and the rest. Error
ribbons show bootstrapped 95% confidence intervals across sentence pairs.
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but he wasn't

e

Figure S4: A schematic showing how different components interact with each other in the attention mechanism. X,
V, K, Q, and T refer to the layer embedding, value, key, query, transformation vectors respectively. This schematic
is used in Figure S6

options — masks = rest

context verb

0.4-
0.2

0.3

3

£ 0.2

L 0.1

0.1

0.0- 0.0

1 3 5 7 9 11 1 3 5 7 9 11

Layer

Figure S5: Effects of cumulative intervention on the transformation vectors (the final layer of the attention mech-
anism prior to being added back to the residual stream, see Figure S4). For each layer ¢, transformation vectors
at layer 7 and all the preceding layers (at layer O, 1, ..., ¢ — 1) are interchanged. The cumulative effects largely
reproduce the layerwise intervention Figure 2, which suggests the emerging context information that flows into the
options, mask and rest is mediated by transformation. Error ribbons show bootstrapped 95% confidence intervals
across sentence pairs.

13284



A. —»rest / verb (Head 11) B. / verb —»»rest / masks (Head 8)

masks verb rest t masks verb rest
C.rest / masks —» 0ptions (Head 45) D.rest —¥» options / masks (Head 53)
ptions masks  verb rest opt masks  verb rest
E. options —» masks (Head 60)
masks  verb rest

\
i

Figure S6: Schematic illustration of Figure 5. Shapes highlighted in orange are found to be implicated in the
circuit.
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Figure S7: Effects of swapping full transformation representations for each head, in the context only condition.
Error ribbons show bootstrapped 95% confidence intervals across sentence pairs.
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Figure S8: Effects of swapping full transformation representations for each head, in the syntax only condition.
Error ribbons show bootstrapped 95% confidence intervals across sentence pairs.

13287



— context — verb — options — masks — rest

1 2 3 4 5 6 7 8

0.24
0.14

0.0 —A _—aﬁ@. _ —\

-0.1

-0.2

0.24

0.14

0.0 —
-0.14

-0.24

17 18 19 20 21 22 23 24

0.24

0.14

0.0

IS

-0.1

-0.2

25 26 27 28 29 30 31 32

0.24
0.14

0.0 e <= ———

-0.1

-0.24

33 34 35 36 37 38 39 40

Effect

0.24

0.14

0.0

-0.1

-0.2

41 42 43 44 45 46 47 48

0.24

0.1 é;
0.0 /A.
-0.1

-0.24

49 50 51 52 53 54 55 56

0.24

o] AN . A
’0:1' l o

-0.2

57 58 59 60 61 62 63 64

0.24

0.0 W = j
-0.1

-0.24

Figure S9: Effects of swapping query representations for the context condition. Error ribbons show bootstrapped
95% confidence intervals across sentence pairs.
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Figure S10: Effects of swapping key representations for the context condition. Error ribbons show bootstrapped

95% confidence intervals across sentence pairs.
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Figure S11: Effects of swapping value representations for the context condition. Error ribbons show bootstrapped
95% confidence intervals across sentence pairs.
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Figure S12: In order to test the robustness of our identified circuit, we also performed the head-wise interchange
intervention analysis for roberta-large. It was the best performing model among non-ALBERT models and
showed similar layer-wise pattern in the layer-wise analysis. Here, we show the effect of causal interventions at
different sites in an example sentence. Within the context (A) and verb (B) conditions, the head at each layer with
the maximum ¢-value is selected.
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Figure S13: Head-wise causal interventions aggregated across sentences for different sites and layers in ROBERTa
in the context (A) and verb (B) conditions. The head with the maximum ¢-value is selected for each representation
type (transformation/key/value), position (context/verb/options/masks/rest), and layer. Lines show the mean effect
of the selected head, and error ribbons show bootstrapped 95% confidence intervals. Bars above line plots regions
of statistical significance for each position.
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