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Abstract

Text simplification (TS) aims to modify sen-
tences to make their both content and struc-
ture easier to understand. Traditional n-gram
matching-based TS evaluation metrics heav-
ily rely on the exact token match and human-
annotated simplified sentences. In this pa-
per, we present a novel neural-network-based
reference-free TS metric BETS that leverages
pre-trained contextualized language represen-
tation models and large-scale paraphrasing
datasets to evaluate simplicity and meaning
preservation. We show that our metric, with-
out collecting any costly human simplification
reference, correlates better than existing met-
rics with human judgments for the quality of
both overall simplification (+7.7%) and its key
aspects, i.e., comparative simplicity (+11.2%)
and meaning preservation (+9.2%).

1 Introduction

Text simplification (TS) models aim at rewriting
complicated input sentences into more readable
variants. TS has a wide range of applications
in various domains including education, language
learning and journalism. It can further serve as
a useful preprocessing step to simplify the down-
stream tasks such as parsing, machine translation,
and information extraction (Chandrasekar et al.,
1996). An example of TS is shown in Figure 1,
where some parts of the sentence are deleted and
paraphrased (e.g., “nonhuman primates” is para-
phrased into a simpler term, “apes”).

The goal in TS is to simplify the sentences
while retaining the original semantic meaning. To
achieve this, three types of operations: splitting,
deletion, and paraphrasing (Feng, 2008) have been
widely studied in the research community. Split-
ting and deletion operations try to split long sen-
tences and delete irrelevant modifiers (Angrosh
et al., 2014; Siddharthan, 2006; Clarke and Lapata,
2006; Filippova et al., 2015; Rush et al., 2015). For

Figure 1: An example of TS with deletion and para-
phrasing operations.

paraphrasing, most recent work regards the TS task
as a monolingual machine translation (MT) prob-
lem (Wubben et al., 2012; Narayan and Gardent,
2014; Zhang and Lapata, 2017; Nisioi et al., 2017;
Zhao et al., 2020). In order evaluate text simplifica-
tion, previous work uses two main kinds of metrics
adapted from the metrics used in the MT litera-
ture: (1) BLEU (Papineni et al., 2002): the most
commonly used metric for text generation which
computes the exact n-gram matching between the
reference and candidate; (2) SARI (Xu et al., 2016):
an n-gram based metric which is specifically de-
signed for TS to measure the correspondence of the
preserved, deleted and added information between
the system output and human-annotated simplified
references.

However, there are two main limitations of these
metrics based on exact n-gram match between the
system output and human reference (i.e., simpli-
fied sentences): (1) simple n-gram overlap count
can fail to capture meaning preservation or com-
positional diversity (Zhang et al., 2020). Since
TS systems usually rewrite word tokens to achieve
simpler sentences, exact n-gram matching can not
capture every variant of paraphrasing due to the di-
versity of human language (e.g., in Figure 1, “had
assumed” can be rewritten as either “thought” or
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“supposed”); (2) the heavy reliance on human ref-
erence restricts the generalization ability, where
the reference can be wrong (Zhu et al., 2010) or
requires experts to annotate (Xu et al., 2015). Since
high-quality human annotations on sentence sim-
plification are costly to acquire, it is hard to obtain
sufficient human reference to capture the diversity
in expression or to evaluate systems in a new do-
main.

To tackle these limitations, in this paper, we
propose a reference-free evaluation metric BETS
(BERT Embedding-based evaluation for Text
Simplification), that leverages pre-trained contex-
tualized language representation models (PTLMs)
to improve semantic-involvement, comprehensive-
ness, and generalization ability. From our human
evaluation on simplification quality, we observe
that: (1) human perception on overall simplifica-
tion quality is not identical to the simple arithmetic
mean of the quality of its key factors: meaning
preservation and simplicity change; (2) the quality
of meaning preservation correlates poorly with the
quality of simplicity change. On the other hand, the
importance of these two kinds of aspectual quality
can vary over different domains and purposes. Mo-
tivated by these observations, we first use contex-
tualized language embeddings to replace the exact
tokens. We then build two separate units with pre-
trained neural networks to measure these aspects.
Finally, we perform regression with these separate
scores to acquire a flexible and optimizable metric
that correlates well with human judgments on TS.

We evaluate the effectiveness of BETS by com-
paring with human annotations on both the rank-
ings and aspectual scores (on grammar, simplicity,
and meaning preservation) of TS outputs from var-
ious systems. We show that our metric correlates
better with human scores than existing metrics, for
each aspect. Finally, our combined metric with op-
timized coefficients creates a single balanced met-
ric that can evaluate TS systems, where any of the
main aspects can be further emphasized according
to future applications.

2 Related Work

2.1 Text Simplification Evaluation

TS has been widely studied as a monolingual trans-
lation task solved with statistical (Zhu et al., 2010;
Wubben et al., 2012; Narayan and Gardent, 2014)
or neural network methods in either supervised (Ni-
sioi et al., 2017; Zhang and Lapata, 2017; Zhao

et al., 2018; Ippolito et al., 2019; Zhao et al., 2020;
Kriz et al., 2019; Maddela et al., 2021) or unsuper-
vised manner (Narayan and Gardent, 2016; Surya
et al., 2019). Another line of work regards the prob-
lem as editing the input sequence with pre-defined
operations and alternative tokens (Alva-Manchego
et al., 2017; Dong et al., 2019; Kumar et al., 2020).
Both lines of work mainly conduct evaluation with
a combination of human evaluation and automatic
metrics. Human annotators are generally asked to
measure the fluency (or grammaticality), adequacy
(or meaning preservation), and relative simplicity
(lexical or structural) between the inputs and sys-
tem outputs over a few test examples (around 20).
In this work, besides these aspectual measurements,
we also evaluate with human perception on the
overall simplification quality through ranking the
system outputs to avoid failure cases of score-based
methods (e.g., assigning high score to copying).

The quality estimation of general sequence-to-
sequence problems (Papineni et al., 2002; Martins
et al., 2017; Specia et al., 2018; Fonseca et al.,
2019; Xenouleas et al., 2019), as well as for TS
(Sulem et al., 2018a), is another long-lasting re-
search direction in the community. To design met-
rics specialized for TS, Xu et al. (2016) proposed
two n-gram matching-based light-weight metrics.
The first one, FKBLEU, is a combination of the
Flesh-Kincaid index (FK) (Kincaid et al., 1975)
(as readability measurement) and iBLEU (Sun and
Zhou, 2012).The other one, SARI, measures if the
output deletes, keeps, or adds the same n-grams
as the operations of human reference sentences
on the original inputs. With a different focus,
SAMSA (Sulem et al., 2018b) evaluates sentence-
level simplification such as splitting complex sen-
tences. None-neural-based reference-free TS met-
rics have also been explored in Martin et al. (2018);
Kriz et al. (2020). In our work, we propose to use a
neural-network-based method to improve the mea-
surement of simplicity change and relieve the re-
liance of reference (at least one reference is needed
for each test sentence for n-gram matching-based
methods) at the same time.

More recently, Alva-Manchego et al. (2021)
calls for TS metrics that emphasize the relation be-
tween input/output and allow personalizing. BETS
leverages contextualized embeddings to measure
directly with input/output pair and computes aspec-
tual scores to improve personalizing weights in the
final score on these aspects.

13251



2.2 Automated Evaluation with Embeddings
A large body of literature has explored the possi-
bility of using learned dense token representations
(i.e., embeddings) to capture the semantics on word
level or sentence level. (e.g., word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
BERT (Devlin et al., 2019)). Various approaches
have been developed to apply embeddings in the
evaluation of sequence-to-sequence problems to
capture the lexical and structural similarity between
sentences (Kusner et al., 2015; Servan et al., 2016;
Lo, 2017; Tättar and Fishel, 2017; Lo et al., 2018;
Chow et al., 2019; Clark et al., 2019). Recently,
pre-trained contextualized language representation
models (Devlin et al., 2019) have demonstrated
significant improvement in capturing the contex-
tualized word semantics. To leverage this prop-
erty, Zhang et al. (2020) proposed replacing n-gram
matching with greedy embedding similarity match-
ing. Maynez et al. (2020) and Durmus et al. (2020)
proposed to probe knowledge from the contextual-
ized embedding based question answering models
to evaluate the faithfulness of neural generation
models. Following this line of work, we use pre-
trained embeddings to capture relative readability
and semantic similarity.

2.3 Automated Evaluation with Optimization
Researchers also explore ways to use learned met-
rics to approach human judgments by performing
regression over n-grams (Stanojević and Sima’an,
2014), embeddings (Ma et al., 2017), or different
embedding models (Shimanaka et al., 2018). Un-
like these models which optimize the correlation
with human annotations on the targeted datasets,
our regression model is solely trained to capture
the relation between the overall simplification qual-
ity and the performance on its key aspects (i.e.,
meaning preservation and comparative simplicity).

3 Methodology

3.1 Task Description
The task of TS requires a model to generate a more
readable sentence that preserves the meaning of
the original input. We aim to evaluate the overall
simplification quality, as well as two key problems
of this task: comparative simplicity and meaning
preservation. Intuitively, too much simplification
may hurt meaning preservation, vice versa. Accu-
rate measurement on one aspect may not transfer to
the other. As a result, we propose to evaluate text

simplification with a parametric combined metric
on separate components measuring these two key
aspects.

3.2 Parametric combination
Previous metrics usually use a single metric to ap-
proximate the human perception on both compar-
ative simplicity and meaning preservation. They
then use the average of these aspectual human an-
notations to represent the overall simplification per-
formance. However, there are two problems with
this setting:

1. Intuitively, comparative simplicity and meaning
preservation are not highly correlated. For ex-
ample, keeping all the original tokens achieves
perfect meaning preservation but no compara-
tive simplicity. On the other hand, keeping only
the main narrative simplifies the sentence on the
cost of hurting meaning preservation.

2. Human perception on the TS quality may not
be the simple arithmetic mean over the aspec-
tual scores. For example, humans can be more
sensitive to comparative simplicity when the
meaning preservation quality surpasses a cer-
tain cognitive threshold but less sensitive when
too little meaning is preserved. Moreover, differ-
ent purposes and domains may require different
combination of these aspects to be taken into
account.

Above intuition motivates us to use a parametric
metric to capture the overall performance of TS. We
denote the output scores for the comparative sim-
plicity component and the meaning preservation
component as Psimp and Rmeaning , respectively.
The overall score S is a parametric combination
that can be written as:

S = αPsimp + βRmeaning

,where α and β are hyperparameters to be tuned.

3.3 Comparative Simplicity Measurement
The Flesch-Kincaid index (FK) (Kincaid et al.,
1975) has long been accepted as a measure of
sentence readability but suffers from indirect mea-
surement 1 and limited training data size and do-
main(i.e., 531 Navy personnel manuals only).

1It defines simplicity as the weighted sum of word count
per sentence and syllables count per word.
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Figure 2: The siamese network structure of the compar-
ative simplicity measurement model. The input can be
either words or phrases. The output denotes if Word A
is more complicated than Word B.

To achieve a direct and general approximation
over word readability, we leverage a large-scale
dataset of simplification rules. SimplePPDB++
(Maddela and Xu, 2018) is a dataset with over 10
million rules on simplifying paraphrase rules built
upon SimplePPDB (Pavlick and Callison-Burch,
2016) with human annotations on readability. Mo-
tivated by Maddela and Xu (2018); Reimers and
Gurevych (2019), we propose to create a phrase-
level simplicity comparison model with a BERT
siamese network structure optimized by these rules
in English. The generation of rules only requires
workers on Amazon Mechanical Turk to do classi-
fication on automatically mined rules or common
words (for SimplePPDB++), which is simpler and
clearer compared to asking them to write simplified
sentences (i.e., reference).

For a new domain, our trained model that cap-
tures domain-agnostic comparative similarity can
be applied directly without collecting references.
For further specialization, take the medical domain
as an example, only the new terms need to be anno-
tated to prepare the data for pre-training. For a new
language, the formulation of PPDB is language-
agnostic, which relieves the cost of finding high-
quality annotators to simplify the sentences in the
language (e.g., annotators are experienced teachers
for Newsela (Xu et al., 2015)).

We train the model with 11,996 rules from Sim-
plePPDB++. We pre-process the scores from -1 to
1 with thresholds ±0.4 as in original work. We get

Name Example

Simple
PPDB

destabilise→ destabilize: 0.505
resolve→ solve: 0.997
phones→ telephones: 0.345

Simple
PPDB++

destabilise→ destabilize: 0.481299 (no-diff)
resolve→ solve: 0.909 (simplifying)
phones→ telephones: -0.720 (complicating)

SemEval
2012

When you think about it, that’s pretty terrible.
Alternatives (easy→hard):
1.bad 2.awful 3.deplorable

Table 1: Examples from the involved datasets. Se-
mEval 2012 denotes its English Lexical Simplification
shared-task. Alternatives denotes the candidates that
can replace the underlined word, and can be in tied rank
in terms of hardness.

3989, 4029, 3978 pairs labeled simplifying, com-
plicating, or no-difference, respectively. Figure 2
shows the structure of the complexity comparison
model. We perform mean pooling to get unified-
dimension vectors to represent the words/phrases.

We intermediately evaluate the effectiveness of
the simplicity comparison model with the English
Lexical Simplification shared-task at SemEval
2012 (Specia et al., 2012). It contains 201 target
words and 10 context sentences for each. To test
the generalizability of the model, we conduct an un-
supervised setting that applies our model directly
to the original test set of the dataset with 1,710
sentences, where each sentence has 6 alternatives
for the target words on average. As a result, the
fine-tuning process applied to our model presents
significant improvement (from 18.2% to 38.44%)
over the original BERT weights (BERT-base) on
predicting the simplest candidate (P@1), which
demonstrates that the training process largely im-
proves the model’s ability to measure the compar-
ative simplicity. Examples from these involved
datasets are presented in Table 1.

With the simplicity comparison model (model
output is denoted as f(a, b)) in hand, we define the
sentence-level comparative simplicity as the aver-
aged simplicity change for the added/paraphrased
tokens in the output sentence. For each word in the
input u and output v, with m(x) as the embedding
function (BERT output in Figure 2), we acquire
the pooled embeddings m(ui) and m(vj). For the
unique words vj ∈ v \ u (potentially simplified ex-
pressions), we find the most similar u(j)i (by cosine
similarity cos(·)) and compute their related com-
plexity. The comparative simplicity score Psimp is
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defined as the average of the pair-wise scores:

u
(j)
i = argmax

ui∈u
cos(mmm(ui),mmm(vj)) (1)

Psimp =
1

|v \ u|
∑

vj∈v\u
f
(
u
(j)
i , vj

)
(2)

3.4 Meaning Preservation Measurement

The measurement of meaning preservation focuses
on how much of the original content is preserved in
the simplified variant, where the simplicity change
is already covered in Section 3.3. Since the deletion
operation can largely change grammar correctness,
completeness, and semantics, we evaluate the se-
mantic similarity between the input and output for
all the words in the input. For each word other
than the stop words (e.g., the, a, an) in the input u
and output v, we acquire the pooled embeddings
m(ui) and m(vj). We greedily match the words
in the two sentences with a word-level maximum
cosine similarity (cos(·)) score. We find the most
similar vj and compute their similarity. The overall
meaning preservation score Rmeaning is computed
as a pair-wise average:

Rmeaning =
1

|u|
∑

ui∈u
max
vj∈v

cos(mmm(ui),mmm(vj))

(3)

3.5 Finding Coefficients

To acquire a generalizable and high-quality set
of coefficients, we propose to leverage the high-
quality human-written simplified sentences (i.e.,
gold reference) and commonly used adversarial
noise in neural machine translation systems to form
minimum supervision. With the original sentences
and the human simplification reference as the initial
step, we can contrastively form two labels: original
→ reference: 1 (good simplification); reference→
original : −1 (bad simplification). Following the
noise addition steps for neural machine translation
(Lample et al., 2017, 2018; Févry and Phang, 2018),
we get four kinds of adversarial examples: drop-
ping, adding, shuffling, and substituting tokens,
with details introduced in Appendix. With 289 sen-
tences and 8 gold references2 for each, we gener-
ate 2,601 positive, 289 neutral, and 1,156 negative
examples. We then use a feature-based logistic re-
gression model to optimize α and β. As a result,

2We used the high-quality annotations shared in github.
com/cocoxu/simplification.

one possible set of α, β is 0.508, 2.944 respec-
tively. We also define a vanilla version with α, β
set as 0.5, 0.5 (after re-scaling Psimp and Rmeaning

to the same range). There is potential to further
improve the metric with fine-grained human anno-
tations (e.g., (Sellam et al., 2020)). However, we
only use automatic adversarial signals as minimum
self- supervision to keep the metric lightweight.

4 Experiments

4.1 Experiment Setup
To compare the automatic metrics, we compute the
correlation between the metric scores and human
perception. Following previous work, we evaluate
correlation with two kinds of evaluation protocols:

1. System Quality: We create our survey by adapt-
ing the standard evaluation survey proposed in
Sulem et al. (2018c). We first select 70 sen-
tences from the dataset as previous work (Xu
et al., 2016) and collect the corresponding out-
puts from various systems (described in Sec-
tion 4.2). We then ask three fluent English
speakers to rate the system outputs on four pa-
rameters: Grammatical Correctness (G), Mean-
ing Preservation (M), Simplicity (S), Structural
Simplicity (StS), with a 5-point Likert Scale
(Strongly agree, Agree, No opinion, Disagree,
and Strongly disagree) 3. Grammatical Correct-
ness (G) and Meaning Preservation (M) are also
referred to as Fluency and Adequacy in some
previous work. The overall sentence simplic-
ity (S+) can be represented by the average of S
and StS. The average human score (denoted as
AvgHuman) is computed as the average of G, M,
and S+. In addition to our collection, we check
the transferability of our metric with Simplicity-
DA (Alva-Manchego et al., 2021) dataset, which
collects human annotated overall simplification
scores for 100 sentence-simplification pairs.

2. System Ranking: Most previous work repre-
sents the overall quality of each candidate sen-
tence with an average of the annotated scores
from different perspectives (i.e., G, M, S+).
However, the arithmetic mean can fail to capture
some unfaithful cases (e.g., copying the input)
and it may not represent human perception of
the overall quality. Table 2 shows an example
of good simplification ties with a failed copy
3The details and examples of the aspects are mentioned in

the survey guidelines.
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Input Today NRC is organised as an independent,
private foundation .

System 1
Output

Today NRC is organised as an independent,
private foundation. (G,M,S+ = 5, 5, 0)

System 2
Output

Today NRC is organize as an open and pri-
vate trust. (G,M,S+ = 3, 4, 3)

Table 2: An example of the tied system outputs rated
by the average of human annotations. While the first
output makes no change, the second output simplifies
both the structure and lexicons.

due to some minor grammatical errors and in-
formation loss. This indicates the importance of
introducing a ranking test that directly evaluates
the human perception on the simplification qual-
ity. The annotators are provided with outputs
from all the systems to compare them directly.
In this setting, similar to the first protocol, for
each of the 70 selected input sentences, we ask
the human annotators to rank the quality of their
simplified versions from the systems.

4.2 Metric and System Selection
We compare our metric with other most commonly
used metrics for TS, including: (1) Flesh-Kincaid
Grade Level (FK) (Kincaid et al., 1975), which
computes the text readability with the number of
cognitive steps needed. Since higher scores indi-
cate lower readability, we report its opposite num-
ber -FK. (2) BLEU (Papineni et al., 2002), one of
the most widely used n-gram based metrics measur-
ing the quality of text generation. (3) iBLEU (Sun
and Zhou, 2012) and FKBLEU (Xu et al., 2016),
two variants of TS-specified BLEU through involv-
ing human references. We set all hyperparameters
as the original work. (4) SARI (Xu et al., 2016), an
n-gram matching-based metric that evaluates the
operation correspondence with human reference in
adding, deleting, and keeping tokens. Three compo-
nent scores, Fadd, Fkeep, and Pdel, are proposed to
evaluate these operations respectively. The overall
score is given by the arithmetic mean of the above
n-gram matching scores. (5) BERTScore (Zhang
et al., 2020), a powerful automatic metric for gen-
eral text generation, which computes the token sim-
ilarity using contextual embedding. Similarly as
BLEU, we compute the similarity between system
outputs and human references with BERTScore to
use it as a reference-based TS metric.

For each of the metrics, we follow the origi-
nal work to decide the inclusion of the single and

multiple reference settings. In the multiple refer-
ence setting, we use 8 Amazon Turker annotations
collected by Xu et al. (2016). Since our metric
mainly focuses on sentence-level rewriting instead
of inter-sentence splitting, we do not compare with
SAMSA (Sulem et al., 2018b). However, for the
evaluation on Simplicity-DA, we additionally in-
clude SAMSA as the original work.

To ensure a broad coverage on TS system se-
lection, we collect the text simplification outputs
from both the widely compared classic systems and
the state-of-the-art (SOTA) systems: (1) PBMT
(Wubben et al., 2012), which treats TS as a mono-
lingual machine translation problem; (2) Hybrid
(Narayan and Gardent, 2014), which leverages
a sentence semantic tree and a machine transla-
tion system together for TS; (3) Dress-LS (Zhang
and Lapata, 2017), a reinforcement learning based
model for TS, where LS indicates the involvement
of lexicon simplification processing (denoted as
DRESS); (4) UNTS (Surya et al., 2019), an un-
supervised model which does not require aligned
data; (5) Edit-Unsup-TS (Kumar et al., 2020), a
phrase-level editing system which improves the
controllability and interpretability (denoted as Edi-
tUTS); (6) BTRLTS and BTTS (Zhao et al., 2020),
SOTA unsupervised and semi-supervised systems
using back-translation and denoising autoencoders.
For systems with multiple variants, we select the
best-performing variant reported. We collect the
system outputs from Alva-Manchego et al. (2019).

4.3 Annotation Results

In total, we have collected 560 system outputs
from 8 systems and 70 sentences in the PWKP
test dataset. Then, we collect the evaluation of the
output quality and overall ranking of the systems.

To measure the quality of the collected annota-
tion, for system quality annotation, we estimate
the inter-annotator agreement (IAA) with both the
average pairwise absolute agreement (i.e., # of
matched annotations / # of annotations) and Co-
hen’s weighted Kappa (Cohen, 1968). The overall
agreement with all systems and metrics is 0.69
(for pairwise absolute agreement) and 0.94 (for
quadratic weighted kappa). The agreement for each
system and metric pair is shown in Appendix. Such
good agreement for a question with 5 options shows
that the annotators can understand and solve the
tasks well. The comparatively lower agreement on
evaluating simplicity (i.e., S and StS) also match
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Metric ref. G M S+

-FK none 0.155 0.162 0.002∗

BLEU single 0.375 0.475 0.068∗

BLEU multiple 0.605 0.666 0.067∗

iBLEU single 0.321 0.406 0.070∗

iBLEU multiple 0.600 0.647 0.071∗

FKBLEU multiple 0.459 0.684 -0.091

SARI single 0.063 ∗ 0.002∗ 0.224
SARI multiple 0.277 0.205 0.316
SARI – Fadd multiple 0.156 0.150 0.304
SARI – Fkeep multiple 0.642 0.752 0.051∗

SARI – Pdel multiple -0.319 -0.497 0.228

BERTScore multiple 0.543 0.539 0.093

Psimp none 0.061∗ 0.012∗ 0.351
Rmeaning none 0.714 0.831 0.097

Table 3: The metric correlation with human annota-
tions with Pearson correlation. We use ∗ to denote en-
tries with p-value >0.05. The ref. column denotes the
number of references used (8 vs 1). Avg. represents the
average human scores calculated in Section 4.1. Psimp ,
Rmeaning denote the component scores in our metric
that measure the simplicity (i.e., α = 1, β = 0) and
meaning preservation (i.e., α = 0, β = 1), respectively.

the findings from the annotation process in previ-
ous work (Sulem et al., 2018b).

To test our assumption in Section 3.5, we com-
pare the meaning preservation (M) annotations and
simplicity (S) or structural simplicity (StS) annota-
tions. The Pearson correlation scores are 0.22 and
0.05, which indicates a poor correlation between
these aspects of TS and supports our intuition to
assess these aspects separately.

For system ranking annotations, we calculate the
average pairwise agreement and Cohen’s weighted
Kappa among humans by splitting the rank into
comparison over each pair of entries. We conduct
ordered comparisons for each annotator pair and
each input sentence. The average absolute agree-
ment between humans is 0.70. In contrast, if we
use the average score of all aspects (G, M, S+) to
extract the ranks, the absolute agreement between
the calculated ranks and human-annotated ranks is
0.42 (-40%), which suggests the necessity of using
both aspectual scores and ranking to evaluate.

5 Results

5.1 Component Metric Performance

In this section, we first evaluate how our pro-
posed component metrics correlate with human
perception for different aspects (i.e., S for com-
parative simplicity measurement Psimp and G, M

for meaning preservation measurement component
Rmeaning). Table 3 presents the correlation of hu-
man perceptions with our component metric and
baselines. From the table we can observe that, with-
out the need for human references, the component
scores Psimp and Rmeaning present the best corre-
lation on these aspects aspects (+11.2% in S and
+9.2% in M, respectively, comparing to the previ-
ous best). Our results also show similar findings as
in the previous work (Xu et al., 2016; Sulem et al.,
2018a):

1. Although BLEU and its variants significantly
correlate with grammar correctness and mean-
ing preservation annotations, they have low or
even negative correlation with comparative sim-
plicity, which limits their use in TS evaluation.

2. Although the SARI score and its components
achieve a much better correlation with compara-
tive simplicity than BLEU, its lower correlation
with grammar and meaning preservation leads
to a low correlation on the average .

3. The metric performance on all these n-gram
based scores largely depends on the number of
references. The correlation drops drastically
with only one reference, which signifies of the
cost issue to generalize these metrics to new
datasets and domains since multiple human writ-
ten references are required for each new ex-
ample in the test set. In contrast, our metric
achieves better correlation without relying on
any reference.

5.2 Overall Correlation
Table 4 shows the correlation between automatic
metrics and human judgment for system quality
score (i.e., average of G, M and S+) and system
rankings. Similarly, our results are consistent with
findings in Section 5.1: single reference hurts the
overall performance of n-gram matching-based
metric. These observations match our assumptions
on the challenge of using a single reference in TS
evaluation.

For quality score correlation, BETS (regression)
achieves the best performance with 7.7% and 7.4%
improvement on quality correlation and ranking
correlation than the second best, respectively. Self-
supervised regression also helps improve BETS
(regression), comparing to BETS (vanilla)

For the correlation with rankings, with a similar
setting to Section 4.3, we compute the Pearson cor-
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Metric ref. Quality
Corr.

Rank
Corr.

Avg. Human none 0.941 0.664

BLEU single 0.419 0.325
BLEU multiple 0.662 0.514
iBLEU single 0.361 0.238
iBLEU multiple 0.655 0.432
FKBLEU multiple 0.535 0.544

SARI single 0.066∗ 0.076∗

SARI multiple 0.297 0.343
SARI – Fadd multiple 0.219 0.230
SARI – Fkeep multiple 0.684 0.548
SARI – Pdel multiple -0.350 -0.041∗

BERTScore multiple 0.562 0.590

BETS (vanilla) none 0.466 0.451
BETS (regression) none 0.737 0.634

Table 4: The metric correlation with human quality
score and rankings with Pearson correlation. We use
∗ to denote entries with p-value >0.05. BETS (vanilla)
denotes using α = 0.5 and β = 0.5. BETS (regression)
denotes using coefficients optimized from minimum-
supervised regression. The ref. and Corr. denote the
number of human references used and correlation, re-
spectively. Best performed entries is marked in bold.

relation on all the pair-wise ranks (i.e., “equal or
better” and “worse”) between the metric scores and
human judgments on the ranking. In general, our
metrics show a good correlation with human rank-
ings, which suggests that these metrics show robust-
ness over possibly unfaithful errors (e.g., copying).

In practice, with our parametric metric, the opti-
mal point can be adjusted through adjusting com-
ponent weights for different applications.

5.3 External evaluation: Simplicity-DA

Similar findings can be observed from from Table 5
on Simplicity-DA (Alva-Manchego et al., 2021),
which contains human judgments of simplification
quality on TS outputs from six systems elicited
via direct assessment (Graham et al., 2015) from
Amazon Mechanical Turkers. BETS (regression)
outperforms other none-reference-based metrics by
a large margin and achieves the second best corre-
lation (only lower than our Rmeaning component
metric) among all the metrics without any reference
or further optimization on Simplicity-DA, which
suggests this metric is generalizable to different
datasets.

An interesting finding is that BLEU performs
well and outperforms SARI on this dataset, which
differs from earlier findings in Sulem et al. (2018a).
One possible reason is that copying original sen-

Metric ref. Corr.

BLEU multiple 0.405
iBLEU multiple 0.398
FKBLEU multiple 0.131
SARI multiple 0.336
BERTScore multiple 0.518

-FK none 0.272
SAMSA none 0.103

BETS - Psimp none 0.079
BETS - Rmeaning none 0.755
BETS (vanilla) none 0.254
BETS (regression) none 0.618

Table 5: The metric Pearson correlation with
Simplicity-DA scores (p-value is not included in the
original work). The notations for the variants of BETS
are the same as Table 4. Best performed entry is
marked in bold.

tences may not get penalized during the annotation
process of Simplicity-DA, as stated in the origi-
nal work. As a result, meaning preservation can
dominate the score in these cases. Therefore, text
generation evaluation metrics (BLEU, BERTScore,
and BETS-Rmeaning ) may get higher correlations.

6 Conclusion

In this paper, we investigate the problem of TS eval-
uation. We find that: (1) different key aspects of
TS, comparative simplicity and meaning preserva-
tion, correlate poorly and should be measured sepa-
rately; (2) the overall simplification quality should
not be solely evaluated with arithmetic mean of the
scores for these aspects. Other human annotation
formats, such as ranking, should also be considered
to capture diverse human perception.

Upon such findings, we propose to leverage
large-scale simplification rule bases and PTLMs
to evaluate TS. We build two component metrics
focusing on the aforementioned key aspects. These
reference-free metrics correlate better with human
judgment on their specialized aspects than exist-
ing metrics that require multiple human reference
sentences. This allows our metrics to be able to
transfer to new tasks and domains. We further com-
bine these metrics with optimizable coefficients to
create a balanced general metric on all the aspects.

Experiments show that our metric, BETS, corre-
lates well with human judgments in both the scor-
ing and ranking settings. Also, the focus on preser-
vation or simplifying text can be manually adjusted
by changing the weights on two almost orthogonal
components to fit personalized and specific weight-
ings of these aspect in different domains.
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8 Reproduciblity

Our code is available at: https://github.com/

colinzhaoust/reference-free_TS_evaluation.

9 Limitations

Under-explored multilingual generalizability.
We evaluate the efficiency of our metric mainly
for English. We aim to extend this work to other
languages using language-agnostic PPDB as
described in Section 3.2.

Restricted to lexical simplicity. We mainly ex-
amine the lexicon-level effect of the quality of the
text simplification (i.e., the relative simplicity and
meaning preservation of the output tokens). Other
sentence-level factors that could have an effect in
simplicity is not explored in this paper, such as the
compositional difficulty (e.g., whether the sentence
uses a inverted order) and comprehension difficulty
(e.g., a sentence written with simpler words may
still be hard to understand). Empirically, we ob-
serve that all the involved metrics correlate poorly
with StS. We aim to conduct further research ex-
ploring the automatic metrics on sentence-level
simplicity without external knowledge bases or hu-
man references.
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A Appendix

A.1 Implementation Details
We conduct our experiments on 4 GTX 1080 Ti
graphics cards with CUDA 11 installed.

We initialize the comparative simplicity mea-
surement model using the BERT-base model
with 110M parameters. We pad the input to-
kens/sentences with BERT start and end symbols
(i.e., [CLS] and [SEP]). The size of the hidden
states for FFNN blocks is 256. During training,
we use Mean Squared Error (MSE) loss as the
loss function and stochastic gradient descent (SGD)
as the optimizer. We initialize all parameters ran-
domly and train all the models with 3 epochs. On
average, each epoch takes 20 hours. We use the Se-
mEval 2012 English Lexical Simplification shared
task as the intermediate evaluation. We use pre-
cision@1 and Pearson correlation to evaluate the
models. We tune the hyperparameters with uni-
form sampling for 10 times and set the learning
rate as 5e-5 and the maximum phrase length as 15.
The results are presented in the main paper. Other
component metrics (Psimp and Rmeaning ) use pre-
trained weights from the comparative simplicity
measurement model and BERT-base model with
110M parameters. We use the Scikit-learn package
4 to compute logistic regression. All parameters
are set as default.

A.2 Details of finding coefficients
The details of each way to find adversarial exam-
ples are introduced in Table 6. Besides substitu-
tion, all methods lead to examples with negative
examples. A figurative illustration on the effect of
involving these noise types can be found in Fig-
ure 3, where adequacy and simplicity denote the
quality of meaning preservation and comparative
simplicity change, respectively.

A.3 Annotation Quality
Table 7 presents the scores for system quality an-
notation. The overall agreement with all systems
and metrics is 0.69 (for pairwise absolute agree-
ment) and 0.94 (for quadratic weighted kappa).
Such good agreement for a question with 5 options
shows that the annotators can understand and solve
the tasks well. The quality of the agreement and
comparatively lower agreement on evaluating sim-
plicity (i.e., S and StS) also match the annotation
results from previous work (Sulem et al., 2018b).

4https://scikit-learn.org/

Noise Description (label)

Substitution We use the substitution rules from SimpleP-
PDB or SimplePPDB++ to replace the to-
kens in the input. (simplifying rule: 1; com-
plicating rule: −1; no-difference rule: 0)

Drop We drop the tokens from the gold reference
at a certain probability. (−1)

Additive We sample a subsequence from another sen-
tence in the corpus and append it at the end
of the original sentence. (−1)

Shuffling We shuffle the original sentence to break the
original semantics. (−1)

Table 6: Involved noise types and their descriptions
for adversarial example generation. 1,−1, 0 denote
the process to create good/bad/no-difference simplifi-
cation, respectively.

Figure 3: By adding noise (e.g., shuffling, deletion) to
the human written reference (gold reference) and sub-
stitution on original sentences, we can acquire adver-
sarial examples with different characteristics: high ade-
quacy, low simplicity, or vice versa.

Model G M S StS

Overall 0.70(0.63) 0.63(0.75) 0.77(0.41) 0.65(0.27)

Reference 0.81(0.24) 0.73(0.59) 0.61(0.49) 0.57(0.48)

Dress 0.91(0.58) 0.74(0.86) 0.86(0.28) 0.54(0.26)
Hybrid 0.46(0.58) 0.53(0.68) 0.93(0.27) 0.29(-0.05)
PBMT 0.77(0.53) 0.61(0.55) 0.66(0.44) 0.74(0.30)

UNTS 0.63(0.69) 0.61(0.79) 0.79(0.22) 0.74(0.12)
EditUTS 0.60(0.47) 0.50(0.42) 0.71(0.18) 0.71(0.33)
BRTLTS 0.69(0.34) 0.63(0.70) 0.77(0.32) 0.84(0.42)
BTTS10 0.76(0.74) 0.64(0.88) 0.84(0.49) 0.77(0.36)

Table 7: Average pairwise absolute agreement and Co-
hen’s quadratic weighted kappa (in bracket) for anno-
tators for the systems on four aspects described in Sec-
tion 4.1. BTTS10 indicates the semi-supervised BTTS
model with 10% training data.
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