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Abstract

NLP models often rely on superficial cues
known as dataset biases to achieve impressive
performance, and can fail on examples where
these biases do not hold. Recent work sought to
develop robust, unbiased models by filtering bi-
ased examples from training sets. In this work,
we argue that such filtering can obscure the
true capabilities of models to overcome biases,
which might never be removed in full from
the dataset. We suggest that in order to drive
the development of models robust to subtle bi-
ases, dataset biases should be amplified in the
training set. We introduce an evaluation frame-
work defined by a bias-amplified training set
and an anti-biased test set, both automatically
extracted from existing datasets. Experiments
across three notions of bias, four datasets and
two models show that our framework is sub-
stantially more challenging for models than the
original data splits, and even more challenging
than hand-crafted challenge sets. Our evalua-
tion framework can use any existing dataset,
even those considered obsolete, to test model
robustness. We hope our work will guide the
development of robust models that do not rely
on superficial biases and correlations. To this
end, we publicly release our code and data.1

1 Introduction

NLP models often exploit repetitive patterns in-
troduced during data collection, known as dataset
biases, to achieve strong performance (Poliak et al.,
2018; McCoy et al., 2019).2 This trend has led to at-
tempts of improving the evaluation of NLP models
by creating test sets that are different from the train-
ing sets, e.g., from a different domain (Williams
et al., 2018) or a different distribution (Koh et al.,
2021), and challenge sets that focus on counterex-
amples to known biases in the training set, which

1https://github.com/schwartz-lab-NLP/
fight-bias-with-bias

2Instances that can be solved using such biases are typi-
cally referred to as “biased” (He et al., 2019).

Figure 1: To guide the development of models robust to
subtle biases, we propose to extract bias-amplified splits
for existing benchmarks. Our approach first partitions a
given dataset into biased and anti-biased instances. It
then constructs a biased training set and an anti-biased
test set, which are used to evaluate model generalization.

we refer to as anti-biased examples (Jia and Liang,
2017; Naik et al., 2018; Utama et al., 2020).

To address these gaps, some works used bal-
ancing techniques to create unbiased datasets, by
filtering out biased examples (Zellers et al., 2018;
Le Bras et al., 2020; Swayamdipta et al., 2020),
or injecting anti-biased examples into the train-
ing sets (Nie et al., 2020; Liu et al., 2022a). In
this work we argue that in order to encourage the
development of robust models, we should in fact
amplify biases in the training sets, while adopting
the challenge set approach and making test sets
anti-biased (Fig. 1).

Amplifying dataset biases might seem counter-
intuitive at first. Our work follows recent work that
challenged the assumption that biases can ever be
fully removed from a given dataset (Schwartz and
Stanovsky, 2022), arguing that models are able to
pick up on very subtle phenomena even in partially
balanced (or mostly unbiased) datasets (Gardner
et al., 2021). As a result, dataset balancing, while
potentially improving generalization, might make
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it harder to develop models that are resilient to such
biases; these biases “hide” in the balanced training
sets, and the way models handle them is hard to
evaluate and make progress on.3 Instead, we argue
that academic benchmarks should include training
splits that mainly consist of biased examples (see
Fig. 2). Such splits will drive the development
of robust models that generalize beyond biases,
ideally even subtle ones.

We present a simple method to implement our
approach (Sec. 2). Given a dataset in which both
training and test sets are divided into biased and
anti-biased subsets, we remove the anti-biased in-
stances from the training set and the biased ones
from the test set. The new splits then form a chal-
lenging evaluation setting. We assume that biased
instances constitute the majority of a dataset (Gu-
rurangan et al., 2018; Utama et al., 2020), and thus
the resulting training sets are similar in size to the
original ones (though the test sets are smaller).

To discern biased and anti-biased instances, we
consider three model-based approaches (Sec. 3):
(a) dataset cartography (Swayamdipta et al., 2020),
which uses training dynamics to profile the diffi-
culty of learning individual data instances. In this
approach, we identify instances that are hard-to-
learn as anti-biased (Sanh et al., 2021; He et al.,
2019); (b) partial-input models (Kaushik and Lip-
ton, 2018; Poliak et al., 2018), which are forced
to rely on bias, regarding instances on which they
fail as anti-biased; and a method we introduce for
identifying (c) minority examples (Tu et al., 2020;
Sagawa et al., 2020), which groups a dataset’s in-
stances using deep clustering (Caron et al., 2018)
and regards the minority-label instances within
each cluster as anti-biased.

We apply our framework to MultiNLI (Williams
et al., 2018) and QQP (Wang et al., 2018), on
which trained models exceed human performance.
We also experiment with two datasets that are
considered more challenging: Adversarial NLI
(ANLI ; Nie et al., 2020) and WANLI (Liu et al.,
2022b). We use a ROBERTA-BASE (Liu et al.,
2019b) model for selecting biased and anti-biased
instances according to each method, and evaluate
the performance of ROBERTA and DEBERTA (He
et al., 2021) LARGE models under our proposed set-
ting (Sec. 4). While anti-biased instances are natu-
rally challenging for models, amplifying biases in

3Indeed, training on adversarial data doesn’t necessarily
generalize to non-adversarial data (Kaushik et al., 2021).

Figure 2: Different approaches to data collection. In
standard datasets (1), the training and test sets mostly
contain a majority of biased instances. Challenge sets
(2) curate anti-biased test sets. Balancing and filtering
methods (e.g., adversarial filtering, 3) collect unbiased
training and test sets. Our framework (4) contains bi-
ased training sets and anti-biased test sets.

the training set makes them even more challenging;
using the partial-input and minority examples meth-
ods, we observe mean absolute performance reduc-
tions of 15.8% and 31.8%, respectively. Using
instances detected with dataset cartography leads
to smaller (though still large) reductions of 10.1%.

We compare bias-amplified splits to hand-
crafted challenge sets such as HANS (McCoy et al.,
2019), and find that our automatically-generated
anti-biased test sets are both of similar difficulty
to such challenge sets, and capture a more diverse
set of biases. Our framework can further be used
to augment existing challenge sets, as training on
bias-amplified data increases their difficulty.

Next, we investigate how many anti-biased ex-
amples are required for generalization, by gradually
re-inserting such instances to the training set (Liu
et al., 2019a). While models greatly benefit from
observing small amounts of anti-biased instances,
anti-biased test sets remain challenging, and addi-
tional performance gains require much larger quan-
tities (Sec. 5). We then show that standard debias-
ing methods applied to bias-amplified training sets
lead to little to no gains in performance (Sec. 6).

Our findings may change the way we evaluate
the robustness of NLP models, and in particular
their level of generalization beyond the biases of
their training sets. Our method requires no new
annotation or any task-specific expertise. It allows
to rejuvenate datasets previously considered as ob-
solete, and thus reuse the intensive efforts used in
their curation. We release our new dataset splits
along with code for automatically creating bias-
amplified splits for other datasets.
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2 Amplifying Dataset Biases to Advance
Model Robustness

This section motivates our approach in view of
recent developments in NLP, provides a general
overview of the framework we use to implement it,
and discusses its applications.

2.1 Motivation: Data Balancing Hides Biases

This paper focuses on the problem of creating
robust models that generalize beyond dataset bi-
ases. A common approach to addressing this prob-
lem is removing these biases from the training
data (Zellers et al., 2018; Le Bras et al., 2020).
This approach is intuitive—if a model doesn’t ob-
serve these biases in the first place, it is less likely
to learn them, and will thus generalize better.

Despite the appeal of this approach, it suffers
from several problems. First, recent work has ar-
gued that models are sensitive to very fine-grained
biases, which are hard to detect and filter (Gard-
ner et al., 2021). Other works have shown that
training on bias-filtered datasets does not neces-
sarily lead to better generalization (Kaushik et al.,
2021; Parrish et al., 2021), indicating that while
such training sets are less biased, models might
still rely on biases to solve them. Finally, recent
studies argued that even with our utmost efforts, we
may never be able to create datasets that contain
no exploitable biases (Linzen, 2020; Schwartz and
Stanovsky, 2022).

As a result, this paper argues that mitigating the
negative effect of dataset biases is not only a data
problem, but needs to also come from better model-
ing. But how can we create a testbed for developing
models that overcome these biases? We argue that
training on datasets filtered for such biases will
not suffice in developing such models, and in fact
make it harder to do so; as subtle biases still “hide”
inside filtered training sets, it is much harder to
track them, evaluate their impact and importantly—
develop models that learn to ignore them.

Instead, in this paper we propose that when eval-
uating model robustness, dataset biases should be
amplified by training mostly on biased instances,
while using anti-biased instances for evaluation
(Fig. 2). This simple setting defines a challenging
test, where models must counteract dataset biases
and learn generalizable solutions in order to suc-
ceed, as the anti-biased test set cannot be solved
using the biased training set’s statistical cues.

2.2 Framework for Amplifying Dataset Biases

We describe our approach for amplifying dataset
biases during training to evaluate model general-
ization. Given a dataset split into training and test
sets D “ Dtrain Y Dtest, we begin by dividing its
instances across both splits into biased and anti-
biased subsets.4 To evaluate a model’s robustness,
we first train it on the portion of biased train in-
stances Dtrain

biased . We assume most data instances are
biased (Gururangan et al., 2018), so this process
results in small reductions in training set sizes com-
pared to Dtrain. We then evaluate the model on the
anti-biased test instances Dtest

anti-biased , and compare
it to the performance of the same model trained
on the full training set. Drops in performance be-
tween the two indicate that the model struggles to
overcome its training set biases.

2.3 Discussion

Applications We suggest our framework as a tool
for studying and evaluating models. As such, it is
orthogonal to data collection procedures. Impor-
tantly, we do not suggest to intentionally collect bi-
ased data when curating new datasets. Nonetheless,
data collected in large quantities tends to contain
unintended regularities (Gururangan et al., 2018).
We therefore propose to use bias-amplified splits to
complement benchmarks with challenging evalua-
tion settings that test model robustness, in addition
to the dataset’s main training and test sets.

Such splits, when created using the methods we
consider in this work, can be created automatically
and efficiently for any dataset. These include newly
collected datasets, but also existing ones, such as
obsolete benchmarks on which model performance
is too high to measure further progress, allowing
for the rejuvenation and reuse of benchmarks.

Anti-biased vs. challenge sets Our framework
provides an evaluation environment to assess model
robustness, similar to challenge sets. However,
unlike challenge sets, which are often manually
curated with protocols designed to create diffi-
cult examples, our approach is automatic and uses
data collected using the exact same protocol as
the model’s training data. Still, we find that anti-
biased test sets are challenging for models and can
capture more diverse biases, and moreover—that
training on bias-amplified data further enhances

4We consider three different notions of biased instances
(Sec. 3), but other definitions (e.g., Godbole and Jia, 2023, see
Sec. 7 for discussion) could be integrated into our framework.
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the difficulty of existing challenge sets (Sec. 4.2).
Consequently, our framework can be employed to
evaluate robustness in tasks where challenge sets
are unavailable, or in conjunction with existing
challenge sets for a more comprehensive evalua-
tion.

Can models generalize from biased data? A
natural question to ask about our approach is
whether we can truly expect models to generalize
from a biased training distribution. Although the
biased training sets could be solved by capturing
only a subset of relevant features, their instances
can still provide valuable information for learning
additional features that are important for general-
ization yet under-utilized by models (Shah et al.,
2020; Geirhos et al., 2020). Previous work has
proposed techniques to encourage models to learn
diverse, unbiased representations from extremely
biased training distributions, mostly focusing on
domains outside of NLP (Kim et al., 2019; Bahng
et al., 2020; Pezeshki et al., 2021). This is likely
due to the difficulty of defining and controlling bi-
ased distributions in textual domains. Our work
paves the way for implementing and evaluating
such methods specifically for NLP.

Related to this concern is our decision to leave
no anti-biased instances in the training set. In-
deed, it is likely that for many biases, at least some
counter-examples will be found in the training set.
We admit that this decision is not a major com-
ponent of our approach, and it could be easily
implemented with a small number of anti-biased
instances in the training set instead. To avoid de-
ciding on the numeric definition of small, and to
make the setup as challenging as possible, we ex-
periment throughout this paper with no (identified)
anti-biased instances in training. In Sec. 5 we
study the effect of using limited amounts of such
counter-examples, by reinserting some anti-biased
instances into training.

3 Definitions of Biased and Anti-biased
Examples

Our approach requires a drop-in method for clas-
sifying a dataset’s examples into biased and anti-
biased instances. We consider the following model-
based methods for doing so. We note that none of
them requires any prior knowledge or task-specific
expertise. All methods can be computed automati-
cally at the reasonable cost of training and evaluat-
ing a (possibly smaller) model on the dataset.

Dataset Cartography (Swayamdipta et al.,
2020) is a method to automatically characterize
a dataset’s instances according to their contribution
to a model’s performance, by tracking a model’s
training dynamics. Specifically, measuring each
instance’s confidence—the mean of the predicted
model probabilities for the gold label across train-
ing epochs—reveals a region of easy-to-learn in-
stances with high confidence which the model con-
sistently predicts correctly throughout training, and
a region of low-confidence hard-to-learn instances,
on which the model consistently fails during train-
ing. We follow previous work which considered
instances that models find easy or hard to solve
as more likely to be biased or anti-biased, respec-
tively (Sanh et al., 2021; He et al., 2019).

To estimate the confidence of test instances, we
make predictions with a partially trained model
at the end of each epoch on the test set (as typi-
cally done on the validation set), and use the aver-
age confidence scores across epochs.5 To choose
anti-biased examples, we use the q% most hard-to-
learn instances in each of the training and the test
sets individually, where q is a hyperparameter. We
consider all other examples as biased.

Partial-input baselines is a common method for
identifying annotation artifacts in a dataset. The
method works by examining the performance of
models that are restricted to using only part of the
input. Such models, if successful, are bound to rely
on unintended or spurious patterns in the dataset.
Examples include question-only models for visual
question answering (Goyal et al., 2017), ending-
only models for story completion (Schwartz et al.,
2017) and hypothesis-only models for natural lan-
guage inference (Poliak et al., 2018).

Held-out instances where such baselines fail are
considered anti-biased and less likely to contain
artifacts (Gururangan et al., 2018).6 Generating a
biased training set for this method is not trivial, as
the partial-input model is likely to fit to the training
data during training, and thus almost all examples
will be labeled biased. We therefore follow the
dataset cartography approach with a partial-input
baseline, and compute the mean confidence score
for each instance across epochs. We select the q%

5We emphasize that we are not fine-tuning on the test set,
nor using it to select any hyperparameters. This process only
annotates the biased and anti-biased portions of the test set.

6Such instances might still contain more complex artifacts
that are only detectable when jointly inspecting all parts of the
input (Feng et al., 2019).

13172



most hard-to-learn instances as anti-biased.

Minority examples Current models are typically
sensitive to minority examples that defy common
statistical patterns found in the rest of the data, es-
pecially when the amount of such examples in the
training set is scarce (Tu et al., 2020; Sagawa et al.,
2020). Minority examples are often detected by
heuristically searching for spurious features cor-
related with one label in the instances of another
label (e.g., high word overlap between two non-
paraphrase texts). Motivated by recent work that
leverages instance similarity in the representation
space of fine-tuned language models for various use
cases (Liu et al., 2022b; Pezeshkpour et al., 2022),
we propose a model-based clustering approach to
automatically detect minority examples.

We follow a three-step approach. First, we clus-
ter the training set using [CLS] token representa-
tions extracted from a model trained on the dataset.
Second, to detect minority examples in the training
set, we inspect the distribution of instances over
the task labels L within each cluster ci. We define
a cluster ci’s majority label as the label ℓi P L
associated with the most instances in ci. We con-
sider all other labels as ci’s minority labels. In-
stances belonging to their cluster’s minority labels
are regarded as minority examples, and accordingly
anti-biased, while and all others are considered bi-
ased. Finally, to detect minority examples in the
test set, we extract [CLS] representations for all
test instances, and assign each instance to the clus-
ter of its nearest neighbor in the training set using
Euclidean distance. If the test instance px, yq is
assigned to cluster ci, we consider px, yq as a ma-
jority example iff it belongs to ci’s majority label,
i.e., if y ““ ℓi. 7

Our preliminary experiments show that stan-
dard clustering algorithms tend to create label-
homogeneous clusters, i.e., they are less likely
to cluster together instances from different labels.
We thus use DEEPCLUSTER (Caron et al., 2018),
which we find to create more label-diverse clus-
ters. DEEPCLUSTER alternates between grouping
a model’s representations with a standard cluster-
ing algorithm8 to produce pseudo-labels, and fine-

7Note that unlike the methods described above for detect-
ing anti-biased subsets, the minority examples approach does
not require a pre-determined size for the resulting subset, as it
is induced by the clustering.

8We use Ward’s method (Ward Jr, 1963), a popular deter-
ministic algorithm for hierarchical clustering which has the
same objective function as K-means.

tuning a new pretrained model to predict these
pseudo-labels. We perform one iteration of deep
clustering and then cluster the representations of
the DEEPCLUSTER model to obtain the final clus-
tering. App. C shows details and preliminary re-
sults on alternative clustering methods.

4 Models Struggle with Amplified Biases

We next use our framework to evaluate the extent
to which models generalize beyond the biases of
their training sets.

4.1 Experimental Setup

We create bias-amplified splits for four datasets:
two (QQP , Wang et al., 2018; and MultiNLI ,
Williams et al., 2018) that were shown to con-
tain considerable biases (Zhang et al., 2019; Gu-
rurangan et al., 2018); and two additional datasets
(ANLI , Nie et al., 2020; and WANLI, Liu et al.,
2022b) designed to contain smaller proportions of
biased instances. QQP is a duplicate question iden-
tification dataset, while the other three are natural
language inference (NLI) datasets.

We split all datasets into biased and anti-biased
parts according to each of the three methods de-
scribed in Sec. 3. We use a ROBERTA-BASE (Liu
et al., 2019b) model for all three methods: we fine-
tune the model on each dataset to compute training
dynamics for dataset cartography, and also to ex-
tract and cluster [CLS] representations for identi-
fying minority examples; we separately train the
model on partial inputs to obtain training dynamics
for partial-input baselines. We use hypothesis-only
baselines for NLI datasets. For QQP, we use the
first question of each pair.

We then evaluate the performance of ROBERTA

and DEBERTA (He et al., 2021) LARGE models
under our proposed framework. We train models
on the biased training split obtained from each of
the three methods, and report their performance on
the corresponding anti-biased test sets.9 Since the
number of biased training instances is induced by
the clustering in the minority examples approach,
but is a hyperparameter q for the two other ap-
proaches, we adjust q to create equally sized train-
ing sets for all three methods. This results in 79%
of the training set for MultiNLI , 82% for QQP and

9We use the validation sets of QQP and WANLI, and the
validation-matched set for MultiNLI , as their test sets are not
publicly available.
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MultiNLI QQP WANLI ANLI
Orig. Cart. ParIn Mino. Orig. Cart. ParIn Mino. Orig. Cart. ParIn Mino. Orig. Cart. ParIn Mino.

Tr
ai

n full 90.40.2 59.90.7 79.70.6 71.90.3 92.00.1 59.40.4 78.60.2 73.50.3 76.20.1 19.73.4 59.50.6 60.21.6 55.40.1 14.80.6 34.91.0 44.30.4
rand 90.30.1 59.50.7 79.70.7 71.91.0 91.60.1 57.80.4 78.00.5 71.81.0 76.00.1 17.60.9 58.03.0 59.22.2 55.10.7 15.71.0 34.11.4 44.21.1

bias 88.4˚
0.7 51.70.5 68.20.3 50.51.2 88.3˚

1.9 49.00.3 60.31.8 31.30.4 74.9˚
1.0 13.70.8 43.52.9 25.82.4 51.2˚

1.9 5.80.7 16.01.0 12.30.8

Table 1: Accuracy of our approach with ROBERTA-LARGE models. Different rows correspond to different training
schemes: the full dataset (full), a biased subset (bias) and a random subset the size of bias (rand). Column groups
correspond to different datasets. Individual columns represent testing schemes: the original validation/test set (Orig.)
and the anti-biased test splits: dataset cartography (Cart.), partial-input (ParIn) and minority examples (Mino.).
Reported values are averaged across three random seeds, with standard deviation as subscripts. Results in the last
row (bias) are of training on the biased split and testing on the respective anti-biased split, except for Orig. values
(marked with ˚), which are averaged over runs on all three biased splits. Model evaluation on bias-amplified splits
results in weak performance on anti-biased test instances compared to the original data splits.

ANLI , and 87% for WANLI.10 See App. A.2 for
more details on the experimental setup.

Baselines We compare against two baselines: the
original training split (100% train) and a random
sample of the same size as the biased training splits
(random). In addition to the anti-biased test set,
we also report performance on the original test set
to validate that the model’s training data (the biased
training instances) is sufficient for learning the task.

Hyperparameters selection Our approach for
identifying minority examples is based on clus-
tering the representations of a fine-tuned model.
The clustering algorithm we use, DEEPCLUSTER

(Sec. 3), has three hyperparameters: the number of
final clusters k, the number of pseudo-labels m for
representation learning, and the Transformer layer
from which [CLS] representations are extracted
for clustering. We use k “ 10 clusters for all
datasets, and search for a good configuration for
the other two hyperparameters on SST-2 (Socher
et al., 2013): for each set of hyperparameters, we
apply the minority examples method to create bi-
ased training and anti-biased test splits, and train
two ROBERTA-BASE models—one on the biased
training split, and a baseline model on an equally-
sized random training subset. We select the hy-
perparameters that lead to the largest performance
drop on anti-biased test instances between the two,
and use them in all further experiments to cluster
other datasets; see App. C.3 for details.

10When selecting minority examples for MultiNLI and
QQP , we consider all labels but a cluster’s majority label as
minority labels. Using this setting for ANLI and WANLI
results in specifying more than 40% of the training set as
minority examples. This leaves too few biased instances
for training and substantially changes the original training
distribution. Therefore, for these datasets, we use the label
with the least instances within a cluster as its minority-label.

4.2 Results
Models struggle with biased training sets Tab. 1
shows our results for ROBERTA-LARGE. We ob-
serve that the baseline models struggle with all
anti-biased test sets, even when training on the full
training set. The anti-biased test splits based on
dataset cartography prove to be the most initially
difficult, with the splits created using the two other
methods overall similar in difficulty. Still, model
performance on anti-biased instances drops fur-
ther when training on biased training splits; taking
the mean across datasets, performance drops by
8.4% for dataset cartography-based splits, 16.2%
for partial-input , and 32.5% for minority examples .
Results for DEBERTA-LARGE (App. B.1) follow
the same trends, with mean performance reduc-
tions of 11.8% for dataset cartography, 15.4% for
partial-input , and 31.1% for minority examples .

We also observe that training on biased splits
leads to minor reductions on the full test sets, in-
dicating that while current models trained on our
training splits fail to generalize beyond the biases
in these sets, they are seemingly able to learn the
tasks at hand.

Anti-biased test sets are as challenging as manual
challenge sets We further compare model perfor-
mance on our anti-biased test splits to performance
on challenge sets collected manually. Particularly,
we compare the splits created with the minority
examples method for MultiNLI and QQP , to the
HANS (McCoy et al., 2019) and PAWS (Zhang
et al., 2019) challenge sets, respectively.

Our results (Tab. 2 for HANS , Tab. 3 for PAWS )
show that, when training on the full dataset, our
automatically curated test splits are more difficult
than the HANS challenge set, but not as challeng-
ing as PAWS (Mean column). Interestingly, train-
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MultiNLI -anti-biased HANS
E N C Mean E ␣E Mean

full 51.43.5 75.51.0 77.82.3 71.90.3 99.80.2 56.50.8 78.20.5
rand 51.13.2 75.62.8 78.01.6 71.91.0 99.80.1 55.71.1 77.80.5

biased 45.11.7 48.92.3 57.61.4 50.51.2 99.80.1 2.90.9 51.40.4

Table 2: Accuracy of ROBERTA-LARGE models trained
on different subsets of MultiNLI , when evaluated on
the dataset’s anti-biased test split and on HANS . Model
performance is reported per label (Entailment: E, Neu-
tral: N, Contradiction: C, Not entailment: ␣E) and over
all examples (Mean). Biased and anti-biased splits are
created with the minority examples method. Anti-biased
sets are comparably difficult to manually designed chal-
lenge sets, yet capture diverse biases in all task labels.

QQP -anti-biased PAWS
D ␣ D Mean D ␣ D Mean

full 80.90.4 69.90.5 73.50.3 94.20.6 17.73.5 51.51.7
rand 80.00.4 67.81.3 71.81.0 95.20.3 13.41.5 49.60.9

biased 27.92.3 33.01.4 31.30.4 95.60.8 4.90.8 44.50.1

Table 3: Accuracy of ROBERTA-LARGE models trained
on different subsets of QQP , when evaluated on the
dataset’s anti-biased test split and on PAWS . Model
performance is reported per label (Duplicate: D, Not
duplicate: ␣D) and over all examples (Mean). Biased
and anti-biased splits are created with the minority ex-
amples method.

ing on biased splits (final row) makes the challenge
sets dramatically more difficult, but our anti-biased
splits are even more challenging in this setup—the
model performs 0.9% worse on MultiNLI com-
pared to HANS , and 13.2% worse on QQP com-
pared to PAWS .

We further find that anti-biased test splits are
more diverse than the challenge sets, as difficult
instances affected by biases arise in all labels in
the anti-biased splits, while mostly in one label in
the challenge sets. Our results suggest that bias-
amplified splits can augment existing challenge sets
by boosting their difficulty or uncovering instances
that influence the biases they test.

Discussion Overall, bias-amplified splits prove
to be extremely difficult for strong models. Such
splits could be used to identify models that success-
fully generalize beyond substantial biases, and are
more likely to overcome subtler ones. Importantly,
bias amplification remains challenging even when
applied to recent datasets that contain fewer biased
instances (e.g., ANLI and WANLI), or when com-
pared to hand-crafted challenge sets. They could
therefore be used to complement model evaluation
on future, more challenging datasets. Finally, our

Figure 3: Accuracy for ROBERTA-LARGE models fine-
tuned on bias-amplified splits created with the minor-
ity examples method, while gradually reinserting anti-
biased instances back into the training set. Reported
values are averaged across three random seeds. We in-
terpolate and place stars (‹) at points where the model
regains 50% of its original performance. Models gener-
alize from small amounts of anti-biased instances, but
require much larger quantities to achieve comparable
performance gains.

splits can be created automatically for any existing
dataset, even those for which model performance
on the standard splits exceeds human performance,
such as MultiNLI and QQP .

5 How Many Anti-biased Examples are
Needed for Generalization?

So far, we have seen that amplifying dataset biases
by eliminating all anti-biased instances from the
training set uncovers shortcomings in model gen-
eralization. We next study the effect of allowing
some anti-biased instances in the training set (Liu
et al., 2019a). We fine-tune ROBERTA-LARGE on
all four datasets using the biased splits created us-
ing the minority examples method, while gradually
reinserting 10%, 20%, 35%, 50% and 70% of the
anti-biased instances back into the training set.11

Our results (Fig. 3) show that reinserting 20%
of the anti-biased training instances allows the
model to close approximately 50% of the gap from
its baseline performance on the anti-biased test
set. Surprisingly, performance grows slowly when
restoring additional anti-biased instances, and does
not match the full training set’s levels even when
adding 70% of anti-biased instances. This indi-

11Note that the anti-biased instances still constitute a mi-
nority within each cluster, as even 100% of the anti-biased
instances is considered a minority.
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Figure 4: Accuracy for models trained on bias-amplified
splits of WANLI created with the minority examples
method, while gradually reinserting anti-biased in-
stances back into the training set.

cates that the model is capable of generalizing from
small amounts of anti-biased instances, but is in-
efficient in gaining further improvements. Results
for the other models (Fig. 4) show a similar trend.

On the one hand, our results encourage care-
ful data collection in order to fill gaps in dataset
coverage (Parrish et al., 2021; Liu et al., 2019a).
On the other hand, our findings indicate that data
curation is not a sufficient solution, as models strug-
gle on minority examples even when observing all
available instances, and collecting more instances
results in smaller further gains. Thus, it is also
necessary to develop robust models that can better
generalize from biased data. Our proposed frame-
work provides a testbed for doing so.

6 The Effect of Debiasing Methods

Recently proposed methods were shown to be ef-
fective in improving the out-of-distribution gener-
alization of models, either by adjusting the training
loss to account for biased instances (model debias-
ing; He et al. 2019; Clark et al. 2019), or by filtering
the training set to increase the proportions of differ-
ent kinds of instances found to be advantageous for
generalization (data filtering; Le Bras et al. 2020;
Yaghoobzadeh et al. 2021; Liu et al. 2021). We
now examine whether such methods improve the
generalization of models trained on bias-amplified
training sets to anti-biased test instances.

We consider a ROBERTA-LARGE model trained
on bias-amplified splits of MultiNLI and QQP
based on minority examples . For model debiasing,
we apply the self-debiasing framework suggested

MultiNLI -anti-biased QQP -anti-biased

biased 50.51.2 31.30.4

self-debiasing 50.70.9 33.11.7
ambiguous filtering 51.40.4 32.51.9

100% train 71.90.3 73.50.3

Table 4: Accuracy of ROBERTA-LARGE models trained
on MultiNLI and QQP with different training schemes:
a biased subset, two debiasing methods applied to the
biased subset, and the full training set. We use the
biased and anti-biased splits created with the minority
examples method. Applying model debiasing or data
filtering approaches in the bias-amplified setting results
in only slight improvements on the anti-biased test sets.

by Utama et al. (2020)12 with example reweight-
ing (Schuster et al., 2019) to down-weight the loss
function for biased instances; for data filtering, we
apply dataset cartography to identify ambiguous
instances—examples for which the model’s con-
fidence in the gold label exhibits high variability
across training epochs—and train on the 33% most
ambiguous ones, as shown to benefit generaliza-
tion in Swayamdipta et al. (2020). Importantly, we
apply both methods to the bias-amplified training
split (rather than the original training set) and do
not train on any other instances during the debias-
ing or filtering procedures.

Our results (Tab. 4) show that neither debiasing
nor filtering result in substantial improvements on
anti-biased data. This indicates that such methods
are less effective when training sets lack sufficient
anti-biased instances, and highlights the need for
methods that could improve model generalization
when additional data curation is impractical. Our
findings are also in line with recent results showing
that various robustness interventions struggle with
improving upon standard training in real-world
distribution shifts (Koh et al., 2021) or dataset
shifts (Taori et al., 2020; Awadalla et al., 2022).

7 Related Work

Biased splits The concept of re-organizing a
dataset’s training and test splits is often used to cre-
ate more challenging evaluation benchmarks from
existing datasets by inserting bias into the train-
ing set. Søgaard et al. (2021) showed that using
biased splits better approximates real-world perfor-

12In self-debiasing, a biased version of the model is used
to detect biases. We follow Utama et al. (2020) and obtain
such models by training on 2000 examples and 3 epochs for
MultiNLI , and 500 examples and 4 epochs for QQP .
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mance compared to standard, random splits. Koh
et al. (2021) and Santurkar et al. (2021) simulated
real-world distribution shifts by filtering out dif-
ferent kinds of data from the training and test sets,
based on manually crafted heuristics. Agrawal et al.
(2018) ignored the dataset’s original training and
test splits altogether and re-split instances to create
biased splits for VQA using dataset-specific heuris-
tics. Unlike such approaches, our method automati-
cally constructs biased splits using dataset-agnostic
approaches, and follows the original training and
test splits. Concurrently to this work, Godbole and
Jia (2023) re-split datasets by placing all examples
that are assigned lower likelihood by an LM in the
test set, and more likely examples in the training
set. In some sense, that work also creates an “easy”
training set and a “hard” test set, and can thus be
considered a special case of our approach.

Challenge sets Given the exceptional perfor-
mance of modern NLP tools on standard bench-
marks, challenging test sets were created to better
assess model capabilities across various tasks (Is-
abelle et al., 2017; Naik et al., 2018; Marvin and
Linzen, 2018). Such approaches often rely on hu-
man experts to identify model weaknesses and cre-
ate challenging test cases using instance perturba-
tions (Jia and Liang, 2017; Glockner et al., 2018;
Belinkov and Bisk, 2018; Gardner et al., 2020) or
rule-based data creation protocols (McCoy et al.,
2019; Jeretic et al., 2020). Some approaches au-
tomated certain parts of these procedures, yet still
require human design or annotation (Bitton et al.,
2021; Li et al., 2020; Rosenman et al., 2020).

Inserting instances from challenge sets to the
training set was shown to potentially alleviate their
difficulty (Liu et al., 2019a), perhaps similarly
to how model performance in our framework im-
proves when reintroducing anti-biased examples
to the training set (Sec. 5). Other work extracted
challenging test subsets from existing benchmarks
for focused model evaluation (Gururangan et al.,
2018). Our framework can similarly be used to
better evaluate model generalization, but without
requiring additional annotations or task-specific ex-
pertise, and using data that was collected in the
exact same procedure as the model’s training data.
We further showed (Sec. 4) that our framework
can be used along with existing challenge sets to
increase their difficulty.

Dataset balancing Recent work proposed meth-
ods to collect benchmarks with balanced and ide-
ally unbiased training and test splits. Such bench-
marks often use a model-in-the-loop during data
collection and task crowd workers to write exam-
ples on which models fail (Bartolo et al., 2020; Nie
et al., 2020; Kiela et al., 2021; Talmor et al., 2021),
or used adversarial filtering to remove examples
from existing or newly collected datasets that were
easily solved by models (Zellers et al., 2018, 2019;
Dua et al., 2019; Le Bras et al., 2020; Sakaguchi
et al., 2021). Parrish et al. (2021) proposed to use
an expert linguist-in-the-loop during crowdsourc-
ing to improve data quality and diversity. Other
work used generative methods to enrich existing
datasets and compose new machine-generated ex-
amples similar to challenging seed examples (Lee
et al., 2021; Liu et al., 2022a). Other studies argued
that despite our best efforts, we may never be able
to create datasets that are truly balanced (Linzen,
2020; Schwartz and Stanovsky, 2022). Our frame-
work can be used to expose biases in such datasets
and to automatically augment them with more chal-
lenging evaluation splits.

8 Conclusion

Recent approaches in NLP attempted to eliminate
dataset biases from training sets to produce robust
models and reliable evaluation settings, yet model
generalization remains a challenge, and subtler bi-
ases persist. In this work, we argued that to pro-
mote robust modeling, models should instead be
evaluated on datasets with amplified biases, such
that only true generalization will result in high
performance. We presented a simple framework
to automatically create bias-amplified splits for a
given dataset, finding that such splits are difficult
for strong models when created for either obsolete
or difficult datasets, and could potentially expose
differences in generalization capabilities between
models. Our results indicate that bias amplification
could ease the creation of robustness evaluation
tests for new datasets, as well as inform the devel-
opment of robust methods.
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Limitations

In our experiments, we evaluated models by fine-
tuning on bias-amplified splits, but we did not ex-
plore the robustness of few-shot methods. Such
methods are intuitively less likely to be affected by
slight changes in the distribution of examples they
observe. However, recent work has shown that they
could still be affected by dataset biases (Utama
et al., 2021; Li et al., 2022), and we will use our
framework to explore this in future work.

We note that our approach is less suitable for
datasets with relatively small test sets. In such
cases, extracting an anti-biased test split, which
consisted of 13-21% of the original test set in the
benchmarks we considered, will result in a test
set too small to reliably evaluate models. How-
ever, the methods we used to extract bias-amplified
splits (Sec. 3) could be tuned to produce larger test
sets (while keeping the amount of anti-biased in-
stances in the training set relatively small), e.g.,
by selecting a lower number of biased training in-
stances (q, Sec. 4.1).

Throughout this paper, we used the term “bias”
to describe statistical regularities in datasets that
can be exploited by models as unintended shortcut
solutions. While we do not explore model robust-
ness to other types of data biases (e.g., different
kinds of societal biases) our framework could po-
tentially be used to evaluate how models handle
such cases by revising the definitions of biased and
anti-biased instances used to create the evaluation
splits. We leave such applications of our framework
to future work.
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A Experimental Details

A.1 Datasets

We experiment with four large datasets: QQP ,
MultiNLI , WANLI and ANLI . We also run a hyper-
parameter search on SST-2 , and evaluate model per-
formance on HANS and PAWS . Sizes of the differ-
ent datasets are reported in Tab. 6. Our implemen-
tation loads all datasets from Huggingface Datasets
Hub using the datasets python library (Lhoest et al.,
2021). All datasets are for English tasks.

QQP We experiment with the Quora Question
Pairs13 (QQP ) dataset using the version released
under the GLUE benchmark (Wang et al., 2018).
QQP is a dataset for the task of predicting whether
pairs of questions have the same intent, i.e., if they
are duplicates or not. The dataset is based on actual
data from Quora.

Natural Language Inference (NLI) The task
of natural language inference involves predicting
the relationship between a premise and hypothesis
sentence pair. The label determines whether the
hypothesis entails, contradicts or is neutral to the
premise.

MultiNLI We experiment with the multi-genre
MultiNLI dataset (Williams et al., 2018), which
was crowdsourced by tasking annotators to write
hypotheses to a given premise for each of the three
labels. MultiNLI contains ten distinct premise gen-
res of written and spoken data: (Face-to-face, Tele-
phone, 9/11, Travel, Letters, Oxford University
Press, Slate, Verbatim, Government and Fiction,
of which five are included in the train and dev-
matched sets. We don’t use the dev-mismatched
set in our experiments. We use the version released
under the GLUE benchmark (Wang et al., 2018).

Adversarial NLI We experiment with Adversar-
ial NLI (ANLI) (Nie et al., 2020), a large-scale
human-and-model-in-the-loop natural language in-
ference dataset collected over multiple rounds, us-
ing BERT (Devlin et al., 2019) and ROBERTA (Liu
et al., 2019b) as adversary models. Although each
of the dataset’s rounds can be used as separate
evaluation settings (e.g., training on the first round
and testing on the second), the data collected over
all rounds can also be concatenated and used for
training and evaluation; both settings were used in

13https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

the original paper. In our experiments we take the
concatenation approach.

WANLI We experiment with WANLI (Liu et al.,
2022b), an NLI dataset collected based on worker
and AI collaboration. WANLI was created by
identifying examples with challenging reasoning
patterns in MultiNLI and using a LLM to com-
pose new examples with similar patterns. The gen-
erated examples were then automatically filtered,
and finally revised and labeled by human crowd-
workers. WANLI is more challenging to models
than MultiNLI , and using WANLI instances for
training was shown to improve out-of-distribution
generalization.

SST-2 We run a hyperparameter search on SST-2 .
The Stanford Sentiment Treebank (Socher et al.,
2013) is a sentiment analysis corpus with fully
labeled parse trees for single sentences extracted
from movie reviews. SST-2 refers to a binary clas-
sification task on sentences extracted from these
parse tress (negative or somewhat negative vs some-
what positive or positive, with neutral sentences
discarded). We use the version of SST-2 released
under the GLUE benchmark (Wang et al., 2018).

HANS We evaluate models on HANS (Heuristic
Analysis for NLI Systems; McCoy et al. 2019), a
challenge set used to assess whether NLI models
adopt invalid syntactic heuristics that succeed for
the majority of NLI training examples (e.g., lexical
overlap implies that the label is entailment), instead
of learning more generalizable solutions. HANS
contains many entailment examples that support
these heuristics, and many non-entailment exam-
ples where such heuristics fail. When evaluating
NLI models that were trained with 3-way labels
(as in MultiNLI ), we map contradiction or neu-
tral predictions to the non-entailment label. HANS
was created by automatically filling in words in
templates devised by human experts.

PAWS We evaluate models on PAWS (Para-
phrase Adversaries from Word Scrambling; Zhang
et al. 2019), a challenge set for the paraphrase iden-
tification task that focuses on non-paraphrase pairs
with high lexical overlap. Challenging pairs are
generated by controlled word swapping and back
translation, followed by fluency and paraphrase
judgments by human raters. We evaluate models
on the test set of the PAWSWiki dataset.
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MultiNLI QQP WANLI ANLI
Orig. Cart. ParIn Mino. Orig. Cart. ParIn Mino. Orig. Cart. ParIn Mino. Orig. Cart. ParIn Mino.

Tr
ai

n full 91.10.1 64.40.6 81.40.3 74.31.0 93.00.0 66.00.2 81.30.1 77.60.7 77.10.5 26.42.9 62.62.0 61.71.3 67.50.5 35.01.2 50.00.6 58.30.6
rand 91.10.1 64.70.7 81.50.4 75.10.6 92.80.1 65.50.3 81.10.4 77.40.1 77.30.4 26.42.1 60.84.0 61.02.6 67.60.4 34.61.0 49.11.2 58.50.8

bias 89.4˚
0.6 56.60.3 71.80.5 57.50.5 89.4˚

1.8 52.60.4 63.90.3 36.80.9 76.6˚
0.9 22.21.1 49.61.0 31.81.5 60.2˚

2.6 12.90.6 28.31.3 21.40.8

Table 5: Accuracy of our approach with DEBERTA-LARGE models. Different rows correspond to different training
schemes: the full dataset (full), a biased subset (bias) and a random subset the size of bias (rand). Column groups
correspond to different datasets. Individual columns represent testing schemes: the original validation/test set (Orig.)
and the anti-biased test splits: dataset cartography (Cart.), partial-input (ParIn) and minority examples (Mino.).
Reported values are averaged across three random seeds, with standard deviation as subscripts. Results in the last
row (bias) are of training on the biased split and testing on the respective anti-biased split, except for Orig. values
(marked with ˚), which are averaged over runs on all three biased splits.

Train Validation Test

QQP 363,846 40,430 -
MultiNLI 392,702 9,815 -
ANLI 162,865 3,200 3,200
WANLI 102,885 5,000 -
SST-2 67,349 872 -
HANS - - 30,000
PAWS - - 8,000

Table 6: Datasets sizes. Development set in MultiNLI
is the matched validation set (we did not use the mis-
matched validation set).

A.2 Experimental Settings

We experiment with the BASE and LARGE vari-
ants of ROBERTA (Liu et al., 2019b) and DE-
BERTA (He et al., 2021). Our implementation and
pretrained model checkpoints use the Huggingface
Transformers library (Wolf et al., 2020). For DE-
BERTA, we use the latest v3 checkpoints. When
partitioning datasets to biased and anti-biased sub-
parts, we use the training dynamics and represen-
tations of a ROBERTA-BASE model. We create
biased training and anti-biased test sets based on
a single run of the model. All further experiments
(e.g., training DEBERTA-LARGE on biased in-
stances and testing it on anti-biased instances) are
run with 3 random seeds, using the same train and
test splits.

Bias-amplified split sizes Tab. 7 reports the sizes
of the bias-amplified biased train and anti-biased
test splits created based on each of the three meth-
ods (Sec. 3) we experimented with.

Hyperparameters For fine-tuning, we did not
optimize the hyperparameters and instead used pa-
rameters that were included in the hyperparame-

ter search on down-stream tasks from the origi-
nal papers, except for training LARGE models for
5 epochs instead of 10. We also used an early-
stopping patience threshold of 3 epochs. We re-
port all fine-tuning hyperparameters in Tab. 8 and
Tab. 9.

Average runtimes For ROBERTA-BASE, each
train run was performed on a single RTX 2080Ti
GPU (10GB). For all other models, each train run
was performed on a single Quadro RTX 6000 GPU
(24GB). We report average runtimes (training and
inference combined) in Tab. 10.

B Additional Results

B.1 Main Results for DEBERTA

Tab. 5 shows our results for DEBERTA-LARGE for
the experiment described in Sec. 4.1.

C Clustering Algorithm for Detecting
Minority Examples

Minority examples (Tu et al., 2020; Sagawa et al.,
2020) are often detected by searching for spuri-
ous features correlated with one label in the in-
stances of another label (e.g., high word overlap
between two non-paraphrase texts). Motivated by
recent work that leverages [CLS] token similarity in
fine-tuned models between different instances (Liu
et al., 2022b; Pezeshkpour et al., 2022), we pro-
posed a model-based clustering approach to auto-
matically detect minority examples (Sec. 3)

Our approach is based on simple analyses ap-
plied to the clustering of a given dataset’s [CLS]
model representations. In this work we used
the deep clustering algorithm described in Sec. 3,
DEEPCLUSTER (Caron et al., 2018), to perform
the clustering. In this appendix we provide more
details on the algorithm (App. C.1), its implemen-
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MultiNLI QQP WANLI ANLI
train test train test train test train test

dataset cartography 309,873 2,070 297,735 7,346 89,402 656 134,068 566
partial-input 309,873 2,070 297,735 7,346 89,402 656 134,068 566
minority examples 309,873 2,044 297,735 7,462 89,402 637 134,068 938

Table 7: Sizes of the train and test bias-amplified splits created with each of the considered methods (Sec. 3).
Since the number of biased train instances is induced by the clustering in the minority examples approach, but is a
hyperparameter q for the two other approaches, we simply adjust q to create equally sized training sets for all three
methods. We use the same q used for choosing biased train instances when choosing anti-biased test instances. We
note that for the minority examples method, the training set clustering and the predicted test set clustering (based
on a simple nearest neighbor classifier fitted on the training set) are two different clusterings, which can result
in different proportions of minority examples between the train and test sets. This explains the difference in the
amounts of anti-biased test instances between minority examples and the other two methods.

Hyper-parameter BASE LARGE

Warmup Ratio 0.06 0.06
Learning Rate 1e-5 1e-5
Learning Rate Decay Linear Linear
Batch Size 32 32
Max. Train Epochs 10 5
Early Stopping Patience 3 3

Table 8: Hyperparamets for finetuning ROBERTA.

Hyper-parameter BASE LARGE

Warmup Steps 100 100
Learning Rate 1.5e-5 1e-5
Learning Rate Decay Linear Linear
Batch Size 32 32
Max. Train Epochs 10 5
Early Stopping Patience 3 3

Table 9: Hyperparamets for finetuning DEBERTA.

tation details (App. C.2), and the hyperparameter
search we ran to select a good configuration (App.
C.3). We also show preliminary results for using
alternative clustering methods for detecting minor-
ity examples (C.4.1) and for the difficulty of the
bias-amplified splits based on minority examples
detected over different random seeds (App. C.4.2).

C.1 DEEPCLUSTER

DEEPCLUSTER alternates between grouping the
model’s representations with a standard clustering
algorithm to produce pseudo-labels, and updating
the parameters of the model by predicting these
pseudo-labels. To apply DEEPCLUSTER to BERT-

Datasets ROBERTA DEBERTA

BASE LARGE BASE LARGE

MultiNLI 8 8 - 10
QQP 8 8 - 10
WANLI 2 4 2 4
ANLI 4 5 - 5
SST-2 1 - - -

Table 10: Average runtimes for fine-tuning, in hours.

like models,14 we consider a model fine-tuned on
the dataset to be clustered.15 We extract and clus-
ter its [CLS] token representations using a stan-
dard clustering algorithm, and then perform one
DEEPCLUSTER iteration by fine-tuning a new pre-
trained model with the pseudo-labels (instead of
the dataset’s gold labels) for one epoch.16 We then
cluster the representations from this second model
to obtain the final clustering.

C.2 Implementation Details

As the standard clustering algorithm at the base of
DEEPCLUSTER, we use Ward’s method (Ward Jr,
1963), a popular hierarchical clustering algorithm
which is deterministic and therefore stable across
different runs, a quality which we found preferable.
We use the fastcluster (Müllner, 2013) python im-
plementation with the default settings.

14DEEPCLUSTER is used in the original paper for pretrain-
ing Computer Vision models.

15Importantly, the model is fine-tuned on the task label,
rather than the clustering label (such labels do not exist a
priori, but are generated automatically).

16We emphasize that this pretrained was never fine-tuned
on any task labels, but only on the pseudo-labels.
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Applying Ward’s clustering to large-scale
datasets We did not have resources with enough
memory to cluster the entire training sets of
MultiNLI and QQP , which contain more than 320k
examples. We therefore approximate the clustering
assignment by clustering a random sample of 50%
of the training set, and then using a simple nearest-
neighbor classifier to predict the assignments for
the other 50%.17

Runtime Running DEEPCLUSTER requires (1)
fine-tuning a model for 1 epoch and then extracting
its representations, which takes 15–70 minutes on
a GPU, and (2) clustering the representations on
a CPU, which takes 40 minutes for WANLI and
ANLI , and 3 hours for MultiNLI and QQP .

C.3 DEEPCLUSTER Hyperparameters
DEEPCLUSTER has three hyperparameters:
the number of final clusters k, the number of
pseudo-labels m for representation learning,
and the Transformer layer from which [CLS]
representations are extracted for clustering.
We used k “ 10 clusters for all datasets, and
searched for a good configuration for the other two
hyperparameters on SST-2 (Socher et al., 2013),
which were then used for experiments on all other
datasets in the paper. We searched over m P
t10, 30, 50, 100, 300, 500, 1000, 1500, 3000u18

and representations from the last four layers of
ROBERTA-BASE.

For each set of hyperparameters, we applied
the minority examples method to create biased
training and anti-biased test splits, and trained two
ROBERTA-BASE models—one on the biased train
split, and a baseline model on an equally-sized
random train subset, finally choosing the hyperpa-
rameters that lead to the largest performance drop
on anti-biased test instances between the two. The
best hyperparameters were the layer before last of
ROBERTA-BASE (layer 11) and m “ 1500.

C.4 Preliminary Results
C.4.1 Using Standard Clustering to Detect

Minority Examples
Our preliminary experiments show that standard
clustering algorithms applied to the [CLS] repre-
sentations of models fine-tuned on the original task

17We fit the classifier on the clustered sample’s representa-
tions as inputs and clustering assignments as output labels.

18The number of pseudo-labels m can differ from the de-
sired number of final clusters k. Setting m " k yielded better
results in the original paper.

Figure 5: The mean proportions of majority and mi-
nority label instances within clusters for different clus-
terings of SST-2 , based on the [CLS] representations
of ROBERTA-BASE fine-tuned on the dataset. [CLS]
tokens are taken from the layer before last of the model.

tend to create label-homogeneous clusters, i.e., they
are less likely to cluster together instances from
different labels. In Fig. 5 we show the average pro-
portions of majority and minority instances within
clusters for different clusterings of SST-2 (which
has two task labels) based on ROBERTA-BASE

representations. We compare DEEPCLUSTER and
two standard clustering algorithms: K-Means and
Ward’s method. We find that the clusters of stan-
dard methods contain, on average, less than 5%
minority label instances, while clusters based on
DEEPCLUSTER are more label-diverse and con-
tain 15% minority label instances. When inspect-
ing how many individual clusters contain more
than 10% minority label instances, we find that for
both standard methods only one cluster (out of
10) meets this threshold, whereas there are 6 such
clusters with DEEPCLUSTER.

C.4.2 Difficulty of Minority Examples in
Bias-amplification Over Random Seeds

We ran a preliminary experiment on SST-2 to ex-
amine whether the difficulty of the bias-amplified
splits based on the minority examples method
varies with the seed used to collect data represen-
tations. We clustered SST-2 using DEEPCLUSTER

based on representations of ROBERTA-BASE. We
used 3 different seeds to fine-tune the model and
run DEEPCLUSTER, and created a bias-amplified
split from each resulting clustering. We then exam-
ined the performance drops between a ROBERTA-
BASE model trained on the biased vs. random split
(as in the hyperparameter search; see App. C.3).
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The mean absolute performance drop was -16.7,
with a standard deviation of 5.9. This indicates that
while there is variation between seeds, all cluster-
ings produced challenging settings. We conclude
that when seeking to create the most challenging
splits, running a hyperparameter search over mul-
tiple seeds on the dataset the splits are created for
would likely lead to better results. In this work, we
did not optimize the clustering hyperparameters for
each dataset, and therefore used one seed for all
clusterings.
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