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Abstract

Is the output softmax layer, which is adopted
by most language models (LMs), always the
best way to compute the next word probabil-
ity? Given so many attention layers in a mod-
ern transformer-based LM, are the pointer net-
works redundant nowadays? In this study, we
discover that the answers to both questions
are no. This is because the softmax bottle-
neck sometimes prevents the LMs from pre-
dicting the desired distribution and the pointer
networks can be used to break the bottleneck
efficiently. Based on the finding, we propose
several softmax alternatives by simplifying the
pointer networks and accelerating the word-by-
word rerankers. In GPT-2, our proposals are
significantly better and more efficient than mix-
ture of softmax, a state-of-the-art softmax al-
ternative. In summarization experiments, with-
out significantly decreasing its training/testing
speed, our best method based on T5-Small im-
proves factCC score by 2 points in CNN/DM
and XSUM dataset, and improves MAUVE
scores by 30% in BookSum paragraph-level
dataset.

1 Introduction

When recurrent neural networks such as
LSTM (Hochreiter and Schmidhuber, 1997)
are the mainstream language model (LM) ar-
chitecture, pointer networks, or so-called copy
mechanisms (Gu et al., 2016), have been shown
to improve the state-of-the-art LMs for next word
prediction (Merity et al., 2017) and summariza-
tions (See et al., 2017) by a large margin. However,
after transformer (Vaswani et al., 2017) becomes
the dominating LM architectures, the pointer
networks are rarely used in the state-of-the-art
pretrained LMs.One major reason is that the
attention mechanism in every transformer layer
can learn to copy the words from the context, so it
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Figure 1: Illustration of the softmax bottleneck and
pointer network using an example from Chang and
McCallum (2022). GPT-2 cannot output both king or
woman as the possible next word due to the parallel-
ogram structure in the output word embedding space,
while the pointer network could solve this by directly
copying words from the context. The standard softmax
estimate the probabilities of outputting king and woman
by the dot products between the hidden state h., - and
their global word embeddings. By contrast, The pointer
networks compute the dot products between the pro-
jected current hidden state h., s and projected hidden
states h. . for king and woman to estimate their proba-
bilities.

seems to be redundant to add a copying mechanism
on top of the transformer.

In this paper, we demonstrate that the architec-
tures like pointer networks can still substantially
improve the state-of-the-art transformer LM archi-
tectures such as GPT-2 (Radford et al., 2019) and
TS5 (Raffel et al., 2020) mainly due to breaking the
bottleneck of their final softmax layer (Yang et al.,
2018; Chang and McCallum, 2022).

In Figure 1, we illustrate a simple example from
Chang and McCallum (2022) to explain the soft-
max bottleneck and why the pointer networks could
alleviate the problem. When predicting the next

12707

Findings of the Association for Computational Linguistics: ACL 2023, pages 12707-12730
July 9-14, 2023 ©2023 Association for Computational Linguistics



king or woman

Softmax

Global Word Embeddings

. : ® .0
Dot Dot
F%D
GPT-2
...king ... woman first the jester decided on the
Input After debating whether to bow to the
context Gt  king or the woman first, the jester decided on the

Figure 2: We simplify the pointer network / reranker
by using another embedding h,, s for the words in the
context / the top-k likely words.

word, most LMs would try to output a hidden state
h., v that is close to all the next word possibilities.
For example, when the next word should be either
king or woman with similar probabilities, the ideal
hidden state is supposed to be the average of the
global output word embeddings of king and woman.
However, there might be other interfering words
(queen and man in this case) between the ideal next
word candidates, which force the LM to output the
wrong distribution.

To solve this problem, we can let the LMs pre-
dict the probability of copying the words in the
context separately by paying attention to the previ-
ous hidden states (Gu et al., 2016) and we call this
kind of architecture pointer networks in this paper.
That is, we can compute the dot products with the
hidden states of king h, ;. and the hidden states of
woman h ,, rather than with their global output
word embeddings in order to estimate the probabili-
ties of copying these two words in the context. Our
experiments show that the pointer networks consis-
tently improve the performance of GPT-2 in next
word prediction and the quality of summarization
from T5 and BART.

Contrary to the mainstream explanation in pre-
vious pointer network literature, we discover that
most of the improvements in our experiments do
not come from the attention mechanism. To study
these improvements, we propose a very simple
pointer network variant that does not use any pre-
vious hidden states and we show that the proposed
method can achieve similar improvements.

As shown in Figure 2, we simply project the last
hidden state into two embeddings. One embedding

h,, g is to compute the dot product with the context
words, and h,, y is for the dot product of the other
words. Then, the GPT-2 can output the hidden state
for context words h,, s as the average embedding
of the king and woman without interfered by the
words of man and queen that are handled by h,, y.
We call this method context partition. In addition to
words in the context, we can also use another em-
bedding for the top-k likely next words. This can
be viewed as a very simple and efficient alternative
to a reranker, so we call it reranker partition.

In our experiments, we show that the context par-
tition performs similarly to pointer networks while
combining a pointer network, context partition, and
reranker partition would significantly outperform
each individual method. Compared to the state-of-
the-art solutions for alleviating the softmax bottle-
neck such as mixture of softmax (Yang et al., 2018;
Chang and McCallum, 2022), our proposed method
is more efficient while achieving lower perplexity
on GPT-2. Furthermore, we find that adding a very
expensive word-by-word reranker only improves
our method slightly, which suggested the difficulty
of further improving the final softmax layer over
the proposed alternatives.

In the text completion task using GPT-2, we find
that the proposed softmax alternatives reduce hal-
lucination by copying more proper nouns from the
context even though we did not provide any part-
of-speech information during training. In summa-
rization, our methods and pointer networks output
a more specific summary, increase the factuality,
and consistently improve 9 metrics, especially in
the smaller language models. Finally, we show that
the softmax bottleneck problem is not completely
solved in GPT-3.5 in the limitation section.

1.1 Main Contributions

* We propose a series of efficient softmax alter-
natives that unify the ideas of pointer network,
reranker, multiple embeddings, and vocabulary
partitioning.'

* We evaluate the proposed softmax alternatives
in text completion tasks and summarization
tasks using various metrics to identify where
our methods improve the most.

* Our experiments indicate pointer networks and
our proposed alternatives can still improve the
modern transformer-based LMs. By breaking

'Our codes are released at https://github.com/iesl/
Softmax-CPR
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the softmax bottleneck, our methods learn to
sometimes copy the context words to reduce
generation hallucination and sometimes exclude
the context words to reduce the repetition. Be-
sides, we find that the softmax bottleneck prob-
lem won’t be completely solved by the huge
size of GPT-3.5.

2 Background

Before introducing our method, we would first
briefly review the problem we are solving and its
state-of-the-art solutions.

2.1 Softmax Bottleneck Problem

Most LMs use a softmax layer to compute the final
probability of predicting the word z:

exp(Logit(x, ¢t))
> exp(Logit(a/, ¢t))’

where c; is the context words. Typically, the logit
Logit(z,¢;) = (h)Tw,, k2! is the Mth-layer
hidden state given the input context ¢; and w,, is
the output word embeddings for x.

One problem is that the output word embeddings
w,, are global and independent to the context. After
pretraining, the similar words would have similar
output word embeddings. However, the similarity
structure in the word embedding space might pre-
vent LMs from outputting the desired distribution.
The parallelogram structure among the embeddings
of king, queen, woman, and man is a simple exam-
ple. Chang and McCallum (2022) generalize this
observation and show that some words in a small
subspace would create some multi-mode distribu-
tions that a LM cannot output using a single hidden
state h., in the softmax layer.

PM(JJ’Ct) =

ey

2.2 Mixture of Softmax Method

To overcome the bottleneck, one natural solution is
to have multiple hidden states and each hidden state
corresponds to a group of possible words (Yang
et al., 2018). For example, we can have one hidden
state for king and another hidden state for woman.

One major concern of this mixture of softmax
(MoS) approach is the computational overhead.
MoS needs to compute the final softmax multi-
ple times and merge their resulting distributions.
That is, we need to compute the dot products be-
tween every hidden state and all the words in the
vocabulary, which is expensive especially when the
vocabulary size is large.

Abbr. | Partition (.5)
Decoder context
Encoder input
Decoder context
Encoder input

Top k

‘Word Emb (e;)
Global word emb
Global word emb
Decoder state
Encoder state
Global word emb

Context Partition

Encoder Partition

PS (LD) (Merity et al., 2017)
PG (LE) (See et al., 2017)
Reranker Partition

~ T om0

Table 1: Comparison of different softmax alternatives
and their abbreviation (Abbr.) using Equation 3. PS:
Pointer Sentinel. PG: Pointer Generator. LD: local
decoder embedding. LE: local encoder embedding.

2.3 Multiple Input State Enhancement

In MoS, the multiple hidden states come from the
linear projections of the last hidden state. Chang
and McCallum (2022) point out that the total de-
gree of freedom among the multiple hidden states
is limited by the dimensionality of the hidden state.

To allow LMs to move multiple hidden states
more freely, Chang and McCallum (2022) propose
to concatenate the projection of a block of hidden
state with the last hidden state hé‘f S0 as to increase
its dimensionality:

Qo = B2 © GELU (L'(@:,nh5™)) . @)

Ct—i

where G F LU is the non-linear transformation used
in GPT-2 and L" is a linear transformation that al-
lows us to consider more hidden states without sig-
nificantly increasing the model size. @i,mhé\:[__im
is the concatenation of a block of hidden states. We
set the block size to be 3x3 in our GPT-2 experi-
ments and 1x3 in our summarization experiments
(i.e., considering the last 3 hidden states in the last
layer as shown in Figure 3).

3 Methods

To break the softmax bottleneck more efficiently
compared to MoS, our overall strategy is simple.
If we can identify a small partition of words that
are very likely to become the next word, we can
just compute the dot products between a hidden
state and the embeddings of these likely words
instead of all the words as in MoS. For example,
if we can identify king and woman are much more
likely to appear than queen and man, we can only
compute the dot product between a hidden state
and the embeddings of king and woman without
being interfered by other words.

Specifically, when we compute the next word
probability in Equation 1, the logit of the word =
given the context c;

fg;sem ifxesS

, 3
g;vww O/W 3

Logit(x, ¢;) = {
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Figure 3: Architectures of our method for TS/BART that computes Logit- 5 pp in Equation 6. In GPT-2, we use
same architecture except that we take the 3x3 input hidden state block rather than the 1x3 block and there are no
encoder-related components, which are marked by dotted lines.

where f., 5 = Lé(qct) and f., v = L{,(qct) are
the linear projections of the hidden state concate-
nation q., in Equation 2. As shown in Table 1,
different softmax alternatives have different ways
of constructing this set S and use different word
embeddings e.

To simplify our explanation, we will focus on
the decoder-only LM (i.e., GPT-2) first and extend
our method to encoder-decoder LM (i.e., T5 and
BART).

3.1 GPT-2

We will explain each softmax alternative individu-
ally and their connections to previous work such as
pointer networks or rerankers.

3.1.1 Pointer Network (P) as Local Word
Embedding

Similar to Pointer Sentinel (PS) (Merity et al.,
2017), we treat the words in the context differently
(S = {z|x € ¢}) and let their word embeddings
e, come from the previous hidden states:

ZE:I ]lc,’;:mL{D(qci)
t b
Zi:l ]lcézac

4

x = fz,ct,LD =

where ¢! is the ith input words in the context c,

L{D is a linear layer, and 1;_, = 1 if ¢; = x.
As aresult, we can use the GPT-2 model to not

only predict the hidden state f., s = fe,.Pp =

LJI; p(@c,) and fe, v but also predict the word em-
bedding of context words e,. Unlike the global
word embedding w,,, the local word embedding e,
is context-dependent, so the LM can break the soft-
max bottleneck by adjusting the similarity of words
based on the context. For example, GPT-2 could
increase the similarity between eyine and €yoman to
output the high probability for both words easily.

We call this version of pointer network local
decoder (LD) embedding, which has some minor
differences compared to PS (Merity et al., 2017)
and other variants. For example, we merge their
logits while PS merges their probabilities. PS does
not do normalization when computing e,. In our
experiments, we would show that these pointer net-
work variants all have very similar improvements
in modern LMs.

3.1.2 Context Partition (C)

To understand the source of the improvements from
pointer networks, we simplify their architectures by
setting the word embedding e, = w, and the par-
tition .S is still the set of context words. Although
much simpler, the LM with this context partition
method can still break the softmax bottleneck by
properly coordinating the hidden state specifically
for the context words f., s = fe,.c Lé(qct)
and the hidden state for other words f, yy. Com-
pared to the pointer network, one advantage of
context partition is that the LM can still leverage
the learned global word similarity when estimating
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the probabilities of context words.

3.1.3 Reranker Partition (R)

In some cases, the possible next words might not
be mentioned in the context. For example, in the
context My favorite actor is Ryan [MASK], the
next word could be Reynolds, Gosling, or the last
names of other Ryan. Hence, using only the context
partition does not completely solve the multimodal
distribution problem.

Inspired by the idea of the reranker, we set S to
be the top k£ words with the highest logits _cht?wa.
In practice, finding an ideal %k could be difficult.
When £k is small, the reranker partition might not
include the very likely next word. When £ is large,
the reranker partition might not be able to separate
the output candidates and the interfering words.
To alleviate the problem, we can have multiple
reranker partitions and use different hidden state
embeddings (e.g., f, r1 and f., re) for different
partitions.

3.1.4 Hybrid Approach (CPR)

Local embeddings in the pointer networks and
global embeddings in the context partition are com-
plementary. Using local embeddings is representa-
tional powerful while using global embedding can
leverage the global similarity of words. Hence, we
can combine the two methods by summing their
dot products.

For the methods that use different .S, we can
simply determine an order of computing the dot
products and let the later dot products overwrite
the existing values. In our experiments, we always
use the order illustrated in Figure 3. That is, we
compute the logits (Logit-pp(x, ct)) by

.fg;cwx + f(,jl;PDfI,Ct7LD lfx I~ Ct
f£7R1wx ifx e W(kl) —
FT gy ifx € Wks) = W(ki) —c;

fngx Oo/wW

&)

where W (k2) is the top k2 words with the highest
cht’VwI and W (k1) is the top k; words with the
highest max(cht’wa, ch,,,R2ww)-

3.2 T5 and BART

In the encoder-decoder architectures, our local de-
coder embedding, context partition, and reranker
partitions are still applicable. Besides, we can lever-
age the words in the encoder input to further im-
prove the performance.

3.2.1 Encoder Partition (E) and Local
Encoder Embedding (P)

Similar to the context partition, the encoder par-
tition handles the words in the encoder input 1
differently by setting S = {z|x € I'} and using the
global word embedding e; = w.

As in Equation 4, we can also let the hidden
states in the last layer pass through another linear
layer L{ () to predict the embeddings of the words
in the encoder input. The method is called local
encoder (LE) embedding.

3.2.2 Hybrid Approach (CEPR)

Similar to GPT-2, we combine local encoder em-
bedding and encoder partition for computing the
probabilities of the words that are in the encoder
context but not in the decoder context. As shown
in Figure 3, we compute Logitpr(z, ct) by

Il cwe + £l ppfoeip ifx €
cht,Ewr + fg,PEfx7I,LE ifrel—c¢
Fo pws ifx € Wk) —ci—1

fCTt’V'wx O/W

» (6)

which is the same as Equation 5 except that we add
the encoder partition and local encoder embedding,
and we remove the second reranker partition.

4 Experiments

The pointer network was a popular technique in
language modeling (Merity et al., 2017) and sum-
marization (See et al., 2017). Thus, we also focus
on these two fundamental applications.

4.1 GPT-2

We follow the setup in Chang and McCallum
(2022) to continue training GPT-2 on Wikipedia
2021 and OpenWebText (Radford et al., 2019).

4.1.1 Perplexity Comparison

In Table 2, we first compare their predictions on
the next word distribution using the testing data
perplexity, which is a standard metric in the LM
architecture studies. In the table, Mi refers to mul-
tiple input state enhancement, which is proposed
to break the softmax bottleneck more effectively
(please see details in Section 2.3 and Chang and
McCallum (2022)).

As we can see, Softmax + CPR:20,100 + Mi,
which combines all the efficient approaches (i.e.,
context partition, reranker partition, and local de-
coder embedding), results in better performance
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GPT-2 Small GPT-2 Medium

Model Name Size Time (ms) OWT () Wiki(]) Size Time (ms) OWT (}) Wiki({)
Softmax (GPT-2) 125.0M 82.9 18.96 24.28 | 355.9M 207.8 15.81 20.12
Softmax + Mi 130.9M 85.6 18.74 24.08 | 366.4M 213.8 15.71 20.07
Mixture of Softmax (MoS) (Yang et al., 2018) | 126.2M 130.2 18.97 24.10 | 358.0M 262.9 15.71 19.95
MoS + Mi (Chang and McCallum, 2022) 133.3M 133.2 18.68 23.82 | 370.6M 268.2 15.61 19.86
Pointer Generator (PG) (See et al., 2017) 126.2M 106.0 18.67 23.70 | 358.0M 237.8 15.72 19.95
Pointer Sentinel (PS) (Merity et al., 2017) 126.2M 94.1 18.70 23.79 | 358.0M 218.3 15.72 19.95
Softmax + R:20 + Mi 132.1M 90.4 18.67 24.03 | 368.5M 203.6 15.64 19.94
Softmax + R:20,100 + Mi 133.3M 101.1 18.69 23.93 370.6M 228.5 15.61 19.89
Softmax + C + Mi 132.1M 94.8 18.48 23.56 | 368.5M 222.7 15.60 19.83
Softmax + P + Mi 133.3M 99.1 18.58 23.66 | 370.6M 214.7 15.63 19.90
PG + Mi 133.3M 111.2 18.43 23.43 370.6M 242.5 15.60 19.89
PS + Mi 133.3M 98.0 18.48 23.53 370.6M 224.6 15.60 19.87
Softmax + CR:20,100 + Mi 134.5M 113.3 18.46 2348 | 372.7M 234.5 15.54 19.75
Softmax + CPR:20,100 + Mi 136.8M 119.9 18.43 2342 | 376.9M 249.9 15.53 19.71
MoS + CPR:20,100 + Mi 139.2M 165.1 18.39 23.29 | 381.1M 300.6 15.44 19.57

Table 2: Comparison of different methods on top of GPT-2. Wiki and OWT refer to the testing perplexity of
Wikipedia 2021 and OpenWebText, respectively. Lower perplexity is better. Time is the inference time of a batch;
Mi is the multiple input hidden state enhancement; C is the context partition; R:20,100 is the reranker partition with
k1 = 20 and ko = 100; P is the pointer network (i.e., local decoder embedding). Please see Equation 5 for the

details of CPR. The best scores are highlighted.

and faster inference speed than the mixture of soft-
max (MoS) (Yang et al., 2018; Chang and McCal-
lum, 2022). The inference speed is measured by
our pure PyTorch implementation, which we be-
lieve could be further accelerated by implementing
some new PyTorch operations using CUDA code.
If only using one method, the context partition
(Softmax + C + Mi) is better than the reranker
partitions (Softmax + R:20,100 + Mi) while per-
forming similarly compared to local decoder word
embedding (Softmax + P + Mi), Pointer Generator
(PG + Mi) (See et al., 2017), and Pointer Sentinel
(PS + Mi) (Merity et al., 2017).2 Their similar per-
formances indicate that the improvement of pointer
networks come from breaking the softmax bottle-
neck. The significantly better performance of PS +
Mi compared to PS further supports the finding.
To know how well our method breaks the soft-
max bottleneck, we implement a word-by-word
reranker model on GPT-2, which appends the most
likely 100 words to the context when predicting
each next word (see Appendix C.3 for more details).
In Table 3, we show that our efficient softmax al-
ternative Softmax + CPR:20,100 + Mi achieves
significantly lower perplexity. Furthermore, the
word-by-word reranker is at least 10 times slower
during training. Combining word-by-word reranker
with our method only improves the perplexity very

Notice that the pointer networks from the previous work
were originally designed for RNN. To add them on top of the
transformer based LMs and make it more comparable to our
methods, we simplify their architectures a little. Please see
Appendix C.2 for more details.

Softmax + Mi 29.33 Softmax + wbwR:100 + Mi 28.89
Softmax + Softmax +
CPR:20,100 + Mi 28.46 CPR:20,100 + wbwR:100 + Mi 2840

Table 3: Comparison between our method and word-
by-word reranker for the most likely 100 words
(wbwR:100). The numbers are the validation perplexi-
ties on Wikipedia 2021 after training for 0.15 epochs.

All Proper Noun
Model Name Ref Context | Ref Context
Softmax + Mi 2290 24.04 | 749 14.84
MosS + Mi 22.88 2398 | 7.70 1549
PS + Mi 22.85 25.01 | 816 1821
Softmax + CPR:20,100 + Mi | 23.05 2536 | 8.16 17.92

Table 4: ROUGE-1 F1 (%) of different methods on GPT-
2. We compare the scores between the generated text
and the reference (i.e., continuation), and between the
generation and context. More methods and metrics are
reported in Table 8.

slightly, which suggests the challenges of further
improving LM by breaking softmax bottleneck.

4.1.2 Generated Text Comparison

Next, we would like to understand how the distri-
bution improvement affects the text generation. We
sample some contexts in the test set of Wikipedia
2021 and compare the generated text quality of the
different models given the contexts. The quality
is measured by the ROUGE-1 F1 scores between
the generated text and the actual continuation. To
know how much the different models copy from
the context, we also report the ROUGE-1 scores
between the generation and the contexts.

The results in Table 4 show that different meth-
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ods have very similar overall ROUGE-1 scores.
Nevertheless, compared to Softmax + Mi, Soft-
max + CPR:20,100 + Mi is 21% more likely to
copy the proper nouns (i.e., entity names) from the
context and 9% more likely to generate the proper
nouns in the actual continuation. This suggests that
our method could alleviate the common incoher-
ence problem of entities in generated text (Shuster
et al., 2022; Papalampidi et al., 2022; Zhang et al.,
2022; Guan et al., 2022; Goyal et al., 2022b). In
Table 8, we compare methods using more metrics
to further support the conclusion.

4.1.3 Qualitative Analysis

In Table 5, we visualize some distributions to ex-
plain our improvements. The softmax layer of GPT-
2 is unable to properly learn to copy or exclude the
word from the input context. For example, Softmax
+ Mi and MoS + Mi might output “There are plates,
keys, scissors, toys, and balloons in front of me, and
1 pick up the phone”, which causes a hallucination
problem, while Softmax + CPR:20,100 + Mi and
Pointer Sentinel (PS) + Mi can output the men-
tioned options with similar probability by copying
the words in the context. In addition, GPT-2, MoS,
and PS + Mi are very likely to output ““I like tennis,
baseball, golf, basketball, and tennis”. This repeti-
tion problem happens because the next word should
be some words similar to the listed sports names
except for the sports that have been mentioned and
the softmax layer has difficulties in outputting a
donut-shape next word distribution in embedding
space. In contrast, Softmax + CPR:20,100 + Mi
can learn to exclude the listed sports by putting
very negative logits on the context words, which
yield the desired donut-shape distribution.

4.2 T5 and BART in Summarization

We test our methods on two popular encoder-
decoder LMs, T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020). We fine-tune the pre-
trained LMs with different softmax alternatives on
two news summarization datasets: CNN/DM (See
et al., 2017) and XSUM (Narayan et al., 2018),
one narrative summarization dataset: BookSum at
paragraph level (KryScinski et al., 2021), and one
dialogue summarization dataset: SAMSUM (Gliwa
et al., 2019).

In the main paper, we evaluate the quality of
summaries using four metrics. ROUGE-1 F1 (Lin,
2004) measures the unigram overlapping between
the generated summary and the ground truth sum-

mary; CIDEr (Vedantam et al., 2015) adds a tf-
idf weighting on the n-gram overlapping score
to emphasize correct prediction of rare phrases;
factCC (Kryscinski et al., 2020) evaluates the fac-
tuality of the summary; MAUVE (Pillutla et al.,
2021) compares the word distribution of summary
and ground truth in a quantized embedding space.
To further support our conclusions, we also com-
pare the quality measured by several other metrics
and their model sizes in Table 9 and Table 10.

The results are reported in Table 6. Similar to
the GPT-2 experiments, the results are generally
better as we combine more partitions and local
embedding approaches. This demonstrates that we
can directly fine-tune the LMs with our softmax
alternatives without expensive pretraining.

Unlike the GPT-2 experiments, multiple input
hidden state enhancement (Mi) is not very effective,
so we mainly compare the methods without Mi (i.e.,
qe, = hé\;[ , unlike Equation 2). We hypothesize
one possible reason is that we haven’t pretrained
the T5 and BART with our softmax alternatives.

Our improvements are larger in smaller models.
This is probably because in a smaller word embed-
ding space, there are more likely to be interfering
words between the desired next word possibilities.
Compared to our methods, the pointer networks
perform well in BART-base but usually perform
worse in other LMs. We need further investigations
in the future to explore the reasons.

Compared to ROUGE-1 score, the improvement
percentage of CIDEr is overall higher. One ma-
jor problem of the summarization LMs is that the
generated summary contains too many commonly
used phrases (King et al., 2022) and our consider-
ably higher CIDEr scores indicate the alleviation
of the problem. Our improvement on the factCC
is also significant (Cao and Wang, 2021). Finally,
our MAUVE improvement percentage on Book-
Sum Paragraph dataset could reach around 30% in
T5-Small. We hypothesize this is because we often
mention the global entity names in the news (e.g.,
Obama) while the meaning of names in stories (e.g.,
John) is often defined by the context.

5 Related Work

Repetition and hallucination are two common prob-
lems in language generation tasks. One common
solution for repetition is to avoid outputting the
words in the context, which is often called unlike-
lihood training (Welleck et al., 2020; Jiang et al.,
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Input Context

There are plates, keys, scissors, toys,
and balloons in front of me, and T
pick up the

Choosing between John, Alex,
Mary, Kathryn, and Jack, I decided
to first talk to

I like tennis, baseball, golf, basketball,
and

Softmax + Mi

keys 0.108, pieces 0.045, key 0.036,
phone 0.020, balloons 0.019

John 0.108, the 0.102, them 0.095,
him 0.045, my 0.032

tennis 0.089, baseball 0.075, football
0.041, basketball 0.036, I 0.032

Mixture of Softmax (MoS) + Mi

keys 0.085, phone 0.035, key 0.031,
pieces 0.029, balloons 0.016

John 0.099, the 0.097, them 0.083,
Alex 0.055, Mary 0.040

baseball 0.076, basketball 0.062, tennis
0.059, golf 0.037, bad 0.035

Pointer Sentinel (PS) + Mi

keys 0.091, plates 0.079, scissors
0.050, balloons 0.034, toys 0.033

John 0.130, the 0.105, Alex 0.076,
them 0.076, Mary 0.037

tennis 0.095, golf 0.050, baseball 0.043,
10.038, other 0.038

Softmax + CPR:20,100 + Mi

keys 0.077, balloons 0.052, plates
0.036, toys 0.030, pieces 0.030

the 0.106, John 0.099, my 0.060,
Alex 0.057, them 0.044

football 0.075, volleyball 0.058,
soccer 0.056, 10.047, bad 0.038

Table 5: Prediction visualization of three input contexts. We show the top five words with the highest prediction
probabilities of each model. The reasonable next word predictions are boldfaced.

CNN/DM XSUM BookSum Paragraph SAMSUM
Model Name R1 CIDEr factCC  MAUVE R1 CIDEr factCC  MAUVE R1 CIDEr factCC  MAUVE R1 CIDEr factCC  MAUVE
T5-Small
Softmax (S) 38.255 0.442 0462 0.861 28.713 0.446  0.254 0.939 16313 0.083  0.424 0.328 39.472 0817  0.577 0.898
CopyNet (Gu et al., 2016) | 37.990 0.438  0.482 0.865 28.573 0442 0274 0.940 16.666  0.092  0.439 0.402 39.525 0.853  0.579 0.924
PG (See et al., 2017) 37913 0442 0.467 0.874 28.777 0450  0.257 0.931 16.432  0.088  0.429 0.376 32451 0.585 0552 0.153
PS (Merity et al., 2017) | 38.058 0.444  0.466 0.854 28.442 0435 0.267 0.932 16.408 0.090 0.436 0.395 38.731 0.817 0.578 0.865
S +R:20 37.881 0433 0474 0.872 28.557 0.440  0.256 0.931 16336 0.086  0.431 0.370 39.073 0.752 0579 0.847
S+E 38.137 0441 0477 0.866 | 28.723 0444 0272 0.942 16.542  0.090  0.435 0390 | 39.056 0.784  0.579 0.904
S+CE 38461 0460 0475 0.874 | 29.155 0464 0270 0.948 16.628 0.093  0.436 0.403 | 40.055 0.835 0.583 0.943
S + CER:20 38.346 0450  0.482 0.890 | 29.067 0459  0.276 0.942 16.638  0.093  0.436 0.400 | 40.505 0.846  0.580 0.915
S + CEPR:20 38.807 0.456 0.481 0.877 | 29.395 0474 0273 0.942 16.894  0.098  0.440 0.418 | 40.127 0.891  0.582 0.946
S + CEPR:20 + Mi 38.675 0451 0475 0.878 |29.348 0470 0.275 0.946 16.738  0.096  0.438 0.426 | 40328 0.874  0.582 0.932
T5-Base
Softmax (S) 40.198 0.504  0.478 0.907 33.571 0.667  0.249 0.979 16.761 0.096  0.424 0.467 44348 1.046 0.574 0.986
CopyNet (Gu et al., 2016) | 39.940 0.507 0.484 0.903 33.557 0.666  0.253 0.979 16918 0.101 0.430 0.531 44.141 1.052  0.570 0.973
PG (See et al., 2017) 39982 0489 0.485 0911 33.605 0.663  0.255 0.982 16.611 0.095 0.423 0.463 37597 0.784  0.548 0.140
PS (Merity etal., 2017) | 40.018 0.495  0.483 0914 | 33.638 0.672 0.249 0.983 16,905 0.100  0.428 0.504 | 43.098 1.008 0.575 0.946
S + CEPR:20 40354 0511 0.487 0.919 | 33.700 0.675  0.260 0.980 | 16.997 0.100  0.432 0.549 | 44.860 1.064 0.573 0.963
S + CEPR:20 + Mi 40.510 0.506  0.481 0918 | 33.853 0.683  0.263 0.983 16975 0.101  0.431 0.546 | 44488 1.055 0.576 0.980
BART Base
Softmax (S) 39.390 0.428 0.479 0.900 | 35675 0814 0.241 0.985 16393  0.094 0.414 0404 | 45132 1129  0.567 0.966
CopyNet (Gu et al., 2016) | 39.385 0.438  0.484 0.906 35515 0814  0.251 0.988 16.642  0.100  0.422 0.495 44316  1.103  0.577 0.970
PG (See et al., 2017) 39.264 0.444 0489 0.909 35.653 0.810 0.242 0.987 16.402  0.094 0414 0.402 45278 1.153  0.578 0.977
PS (Merity et al., 2017) | 39.471 0.459  0.490 0.906 35411 0.809  0.247 0.986 16.718 0.099  0.422 0.492 44575 1.084  0.573 0.974
S +R:20 39.181 0434 0475 0.905 35586 0.808  0.247 0.988 16419 0.096 0418 0.439 45.024 1154 0.572 0.970
S+E 39.267 0439 0.483 0.907 35.698 0.819 0.241 0.988 16.442  0.097 0.415 0.429 44.825 1.106  0.572 0.981
S+CE 39416 0442 0481 0.908 | 35727 0.812 0.241 0.988 16.555  0.096  0.417 0435 | 44295 1.116 0572 0.985
S + CER:20 39421 0439 0482 0.900 | 35576 0.812 0.236 0.987 16.553  0.096  0.418 0.454 | 45.054 1.150 0.576 0.988
S + CEPR:20 39.723 0441 0483 0.908 | 35732 0.822 0.242 0.986 16.664  0.098  0.420 0.467 | 44732 1.115 0575 0.974
S + CEPR:20 + Mi 39.626 0442  0.482 0.907 | 35846 0.828 0.245 0.986 16.597 0.097 0419 0.466 | 44.728 1.132  0.574 0.988
BART Large

Softmax (S) 40.749 0424 0.495 0.899 38.828  0.921 0.263 0.988 17.271 0.103  0.420 0.461 47384  1.187  0.574 0.975
CopyNet (Gu et al., 2016) | 40.622 0.407  0.487 0.890 38.576  0.920 0.258 0.989 17.342 0106  0.425 0.512 47911 1232 0.573 0.980
PG (See et al., 2017) 40.766  0.407  0.489 0.902 38.869 0.944  0.256 0.990 17.289 0.103  0.424 0.470 47737 1.199  0.573 0.964
PS (Merity et al., 2017) | 40.643  0.424  0.502 0.907 38.886 0.952  0.255 0.988 17.382  0.105 0.426 0.527 48253 1.246  0.574 0.986
S + CEPR:20 40.876 0.458  0.500 0.925 38.991 0955 0.248 0.990 17.337 0106 0.423 0.467 47253 1.298 0.572 0.976
S + CEPR:20 + Mi 40.441  0.463  0.500 0.927 | 38.705 0.965 0.242 0.991 16995 0.105  0.421 0482 | 47488 1.271  0.571 0.986

Table 6: The performance on test sets of four summarization datasets. R1 is ROUGE-1 F1 (%). E refers to the
encoder partition; C is the context partition; R:20 is the reranker partition with k1 = 20; The P in CEPR means using
the pointer networks for both encoder (LE) and decoder (LD); Mi is the multiple input hidden state enhancement;
PS means Pointer Sentinel and PG means Pointer Generator. CEPR is described in Equation 6. The model size,
inference time, and more metrics are reported in Table 9 and Table 10.

2022b; Su et al., 2022). However, when LM should
mention some names in the context, this might ex-
acerbate the hallucination problem. In contrast, our
method can learn to copy and exclude the words in
context as in Table 5.

To alleviate the hallucination problem or sat-
isfy some constraints, many recent generation mod-
els rerank the generated text (Deng et al., 2020;
Gabiriel et al., 2021; Cobbe et al., 2021; Ravaut
et al., 2022; Krishna et al., 2022; Glass et al.,
2022; An et al., 2022; Arora et al., 2022; Adolphs
etal., 2022; Meng et al., 2022; Mireshghallah et al.,
2022; Kumar et al., 2022; Wan and Bansal, 2022;
Jiang et al., 2022a). Although being effective, the

rerankers usually slow down significantly the train-
ing and/or inference speed (as our word-by-word
reranker baseline) and might occupy extra memory
resources.

Our analyses demonstrate that parts of the hal-
lucination and repetition problem come from the
softmax bottleneck. The findings provide an expla-
nation for the effectiveness of prior studies such
as the above reranker approaches and pointer net-
works (Li et al., 2021; Zhong et al., 2022; Ma et al.,
2023). Another example is encouraging the word
embeddings to be isotropy (Wang et al., 2020; Su
et al., 2022). Their improvement might also come
from reducing linear dependency of the candidate
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word embeddings. Nevertheless, their side effect
of breaking the similarity structure in the word em-
bedding space might hurt the generation quality
in some cases. Concurrently to our work, Wan
et al. (2023) also use the softmax bottleneck the-
ory (Chang and McCallum, 2022) to explain the
improvement of a pointer network. Their empirical
results also support our conclusion that softmax
bottleneck is a major reason that causes the factual-
ity problem of LMs.

Our work is motivated and inspired by Chang
and McCallum (2022). In their work, they also
propose to use different hidden states for differ-
ent vocabulary partitions, but their partitioning is
global and needs to be combined with the mixture
of softmax (MoS) approach, which adds a signif-
icant overhead compared to the standard softmax
layer. Our dynamic partitioning methods not only
perform better but greatly reduce the overhead by
removing the reliance on MoS.

6 Conclusion

Since the transformer becomes the mainstream en-
coder and decoder for LMs, the output softmax
layer seems to be the only reasonable option for
computing the word probability distribution. Al-
though being simple and efficient, the softmax layer
is inherently limited while the existing solutions
are relatively slow (Chang and McCallum, 2022).
This work proposes a series of softmax alternatives
that can improve the text generation models with-
out increasing the computational costs significantly.
Our experiments suggest that the main improve-
ment of the pointer network on top of a transformer
comes from breaking the softmax bottleneck. Our
results also indicate that the alternatives could al-
leviate some problems of hallucination, repetition,
and too generic generation. Furthermore, all of the
proposed alternatives can be applied to the LMs
that have already been pretrained using softmax
without requiring retraining from scratch. For the
practitioner, we recommend using all the partition-
ing methods together to get the best performance,
or using only the simple context partition to keep
the architecture simple while getting the majority
of the gain.

7 Acknowledgement

We thank Nadar Akoury and the anonymous re-
viewers for their constructive feedback. This work
was supported in part by the Center for Data Sci-

ence and the Center for Intelligent Information Re-
trieval, in part by the Chan Zuckerberg Initiative
under the project Scientific Knowledge Base Con-
struction, in part by the IBM Research Al through
the AI Horizons Network, in part using high per-
formance computing equipment obtained under
a grant from the Collaborative R&D Fund man-
aged by the Massachusetts Technology Collabo-
rative, and in part by the National Science Foun-
dation (NSF) grant numbers I1S-1922090 and IIS-
1763618. Any opinions, findings, conclusions, or
recommendations expressed in this material are
those of the authors and do not necessarily reflect
those of the sponsor.

8 Limitations

In our experiments, we find that the improvement
of our methods tend to be larger in relatively
smaller language models. Due to our limited ac-
cess of computational resources, we are not able
to try our methods on larger LMs. To know if a
larger LM still suffers from the softmax bottleneck
problem, we input the examples we used in Table 5
to GPT-3.5 and report their results in Figure 4.

We find that although GPT-3.5 greatly reduces
the chance of hallucination compared to GPT-2,
the next word distribution is still not ideal. For ex-
ample, in Figure 4a, although the incorrect answer
queen receives only a small probability, GPT-3.5
puts around 67% probability on woman. Similarly,
even though GPT-3.5 is unlikely to hallucinate the
sentence: There are plates, keys, scissors, toys, and
balloons in front of me, and I pick up the phone
as GPT-2, Figure 4b and Figure 4d show that the
output distribution is still heavily biased toward
one of the options and the most likely next word
could change if the order of the options in the con-
text changes. These results suggest that increasing
model size indeed alleviates the softmax bottleneck
problem but the problem is not completely solved
even if a huge hidden state size (12k) and model
size (175B) are used (Brown et al., 2020). We
expect that adding our methods to the large LMs
could rectify the biased distributions as shown in
our experiments on smaller LMs (Table 5). There-
fore, although improving smaller LMs has already
had wide applications in practice, trying our meth-
ods on a larger LM is a promising next step, which
we haven’t been able to do.

The current implementation of our methods also
has some room for improvements. Our codes cur-
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After debating whether to bow to the king or the woman first, the jester decided on the woman, since she was
the highest-ranking individual

king = 29.41%
latter = 0.46%

(a) The example where the next word should be either woman
or king (or their synonym such as former and latter).

Choosing between John, Alex, Mary, Kathryn, and Jack, T decided to first talk to John.

Jack = 1916%
Mary =18.65%

(c) The example where the next word John, Alex, Mary,
Kathryn, and Jack should receive similar probabilities.

There are plates, keys, scissors, toys, and balloons in front of me, and I pick up the scissors.

T pick up the scissors and

otal: -1.67 logprob on 1 tokens

o

(b) The example where the next word plates, keys, scissors,
toys, and balloons should receive similar probabilities.

There are toys, plates, scissors, keys, and balloons in front of me, and I pick up the kelys.

The keys are cold and metallic scissors = 4691%
balloons = 18.40" t-davinci-003

plates =177
toys =118%

Total: -1.26 logprob on 1 tokens
96.72% probabiity covered ntop 5 logits) mum length 10

(d) Same as above except that the order of the objects in the
context is different.

Figure 4: The next word probabilities outputted by GPT-3.5 (text-davinci-003).

rently contain some unnecessary computation to
circumvent the restrictions of PyTorch library, so
we should be able to further accelerate it by writing
CUDA code. Furthermore, our codes haven’t sup-
ported the pretraining of BART or T5. We expect
that completing the future work could make our
method faster and better.

Since the focus of this paper is improving the
architecture of general transformer decoder, our
evaluation of each application is not as compre-
hensive as the studies for a particular application.
For example, although we test our methods using
many metrics and the metrics show a consistent
trend, there are many other factuality metrics we
haven’t tried (Li et al., 2022). We also haven’t
conducted human evaluation to further verify our
conclusion because conducting human evaluation
properly is challenging (Karpinska et al., 2021)
and time-consuming. In addition, if we include
more words in a context partition, the performance
might be better at the cost of extra computational
overhead. We leave the analyses of the tradeoff as
future work.

9 Ethics Statement

In our experiments, we find that our methods usu-
ally copy more words from the context or encoder
input. The tendency might have some potential
issues. For example, our improvements might be
reduced on the languages with more morphology.
Furthermore, in some summarization applications,
increasing the factuality by increasing the extrac-
tiveness might not be ideal (Ladhak et al., 2022;
Goyal et al., 2022a).

As described in Section 2.1, one major limita-
tion of the popular softmax layer is its global word

embeddings. The problem would become more se-
rious when there are more tokens whose meanings
are locally defined (e.g., names in the BookSum
dataset). Our methods would be more useful in
those circumstances and might alleviate some bi-
ases described in Shwartz et al. (2020) and Ladhak
et al. (2023). Moreover, the meaning of tokens
are also locally defined in many other applications
such as variables in code or math problems, the
new terminologies in a scientific paper, or the prod-
ucts in a sequential recommendation problem. We
believe that our methods could become an efficient
alternative of reranker (Cobbe et al., 2021; Welleck
et al., 2022) and create impacts in those areas.
Finally, our results show that when there are
some uncertainties in the next word (e.g., could be
king or woman), existing LMs could have some
difficulties of copying the words from the context
and our methods alleviate the problem. Thus, our
methods should also be able to improve the lexi-
cally controllable language generation models that
put the desired keywords into the context such as
Goldfarb-Tarrant et al. (2019) and Lu et al. (2021).
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Figure 5: The model size versus the model loss in
Wikipedia test data after training for 0.4 epochs. The
left side points are the results from GPT-2 Small and the
right side points come from GPT-2 Medium. The lower
curves are better.

A Appendix Overview

In the appendix, we first analyze our methods using
more metrics in Appendix B and describe what
we learn from the results. Next, we provide some
details of our methods and baselines in Appendix C.
Finally, we specify some experiment setups and
hyperparameters in Appendix D.

B More Results and Analysis

In this section, we will report more results and
provide more detailed analyses accordingly to in-
vestigate the advantages of different methods.

B.1 GPT-2 Experiments

Kaplan et al. (2020); Henighan et al. (2020) demon-
strate that the loss decreases linearly as the log of
the model size increases. Therefore, a new architec-
ture needs to perform better than the old architec-
ture with a similar model size to verify that the im-
provement does not come from memorizing more
information through the extra parameters. From the
loss versus log(model size) curve in Figure 5, we
can see that our proposed methods are significantly
better than MoS and slightly better than a pointer
network baseline as the model becomes larger.
We use the following metrics to measure the text
generated by GPT-2.
* ROUGE-1 (R1): The prediction F1 for unigram
in the actual continuation.

* ROUGE-1 Context (R1C): The prediction F1
for unigram in the context.

1. 1
000 —8— Softmax

CopyNet
0.975 A —A— Softmax + CEPR:20
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loss.

0.900
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In(number of parameters)

Figure 6: The model size versus the model loss in
CNN/DM test set. The left side points are the results
from T5-Small and the right side points come from T5-
Base. The lower curves are better.

* ROUGE-1 Proper (R1P): The same as
ROUGE-1 except that only the proper nouns
are considered. We measure this metric because
the correctness of the entity name prediction is
critical to the factuality of the generation.

* ROUGE-1 Proper Context (R1PC): The same
as ROUGE-1 Context (R1C) except that only
the proper nouns are considered.

* ROUGE-2 (R2): The prediction F1 for bigram
in the actual continuation.

* Proper Noun Ratio (P Ratio): The average
number of proper nouns in the generation di-
vided by the average number of proper nouns in
the actual continuation. The LMs usually gener-
ate fewer proper nouns compared to the actual
continuation (See et al., 2019), so the values are
usually lower than 1. The P Ratio closer to 1 is
better.

¢ CIDEr (Vedantam et al., 2015): A metric for
measuring the quality and specificity of the gen-
eration.

e NIST (Doddington, 2002): Similar to CIDEr.
CIDEr uses tf-idf to weigh the n-gram while
NIST measures the information gain.

The results are reported in Table 8. In terms
of R1, R2, CIDEr, and NIST, our proposed meth-
ods such as Softmax + C + Mi and Softmax +
CPR:20,100 + Mi are significantly better than the
pointer network baselines PS + Mi and PG + Mi.
Comparing with Softmax + CPR:20,100 + Mi, PS
+ Mi has a significantly higher P Ratio and R1PC
but similar R1P. This indicates that PS + Mi copies
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Diagonal (e.g., king or woman) Edge (e.g., king or queen)
Analogy Relation Types — capital-  capital- city-in- . capital-  capital- city-in- .
® Models | P valid corlr)lmon w?)rld st}:ne family valid corflmon w[:)rld st};te family
Softmax + Mi 2.27 3.36 1.94 2.32 3.09 | 2.13 2.61 1.90 2.21 2.49
MoS + Mi (Chang and McCallum, 2022) | 1.86 2.62 1.66 1.86 3.59 1.87 2.24 1.66 1.90 3.10
Softmax + C + Mi 1.78 2.19 1.62 1.87 2.17 1.79 2.13 1.63 1.88 2.07
Softmax + CPR:20,100 + Mi 1.69 2.03 1.54 1.81 2.09 | 1.69 2.01 1.55 1.81 1.97

Table 7: Comparing the perplexity of different GPT-2 Small models using the synthetic dataset from Chang and

McCallum (2022).
Model Name R1 RIC RIP RIPC R2 P Ratio CIDEr NIST
Softmax (GPT-2) 22.668 23.548 7.323 14340 3.219 0.885 0.182 1.792
Softmax + Mi 22903 24.036 7.493 14.840 3.289 0.877 0.190 1.829
Mixture of Softmax (MoS) (Yang et al., 2018) | 22.965 24.233 7.760 15.762 3.260 0.885 0.188 1.846
MoS + Mi (Chang and McCallum, 2022) 22.876 23979 7.703 15493 3.270 0.889 0.188 1.829
Pointer Generator (PG) (See et al., 2017) 23.055 24.872 8.052 17.830 3311 0.889 0.193 1.856
Pointer Sentinel (PS) (Merity et al., 2017) 23.007 24.444 7.677 16.146 3302 0.873 0.189 1.840
Softmax + R:20 + Mi 22941 23970 7.467 14733 3.303 0.896 0.188 1.833
Softmax + R:20,100 + Mi 22909 23938 7.537 15.066 3.280 0.870 0.190 1.829
Softmax + C + Mi 23.116 25.027 7.894 17.048 3372 0917 0.197 1.873
Softmax + P + Mi 23.015 25.080 7.895 17.184 3.346 0.877 0.196 1.847
PG + Mi 22.827 24759 8.049 17.874 3.289 0914 0.191 1.819
PS + Mi 22.846 25.008 8.159 18208 3.307 0.921 0.194 1.823
Softmax + CR:20,100 + Mi 23.017 25.056 8.089 17.798 3.328 0.894  0.198 1.858
Softmax + CPR:20,100 + Mi 23.053 25.361 8.160 17.921 3.363 0.882 0.197 1.863
MoS + CPR:20,100 + Mi 23.047 25.173 8.187 18.198 3.314 0902 0.198 1.868

Table 8: Comparison of the continuation generated by GPT-2 Small in Wikipedia test data. Table 4 is a short
summary of this table. The meaning of the metrics is described in Appendix B.1. Higher R1C and R1PC mean
copying more words from the context. A higher P Ratio means generating more proper nouns. All ROUGE scores

are percentages.

more proper nouns from the context while there
is a similar number of proper nouns that are in ac-
tual continuation, so Softmax + CPR:20,100 + Mi
actually has a higher accuracy on the proper noun
prediction.

In text corpus such as Wikipedia, we do not know
the ground truth next word distribution and which
context leads to multiple probable next words, so
we cannot quantitatively analyze the improvement
on the ambiguous contexts. To alleviate the con-
cern, we test our methods on the synthetic dataset
constructed by Chang and McCallum (2022). The
dataset is built using templates and Google anal-
ogy dataset (Mikolov et al., 2013), so we know the
ground truth next word distribution. The dataset
consists of the ambiguous contexts such as I went
to Paris and Germany before, and I love one of
the places more, which is, where the next word
is either the diagonal words of the parallelogram
such as Paris and Germany or the edge words such
as Paris and France. For the details of the experi-
mental setup, please refer to Chang and McCallum
(2022).

In Table 7, we can see that Softmax +

CPR:20,100 + Mi achieves the lowest perplexity
in all subsets and outperforms the Softmax + Mi
baseline by a large margin, especially in the diago-
nal subset where the ground truth word embedding
distribution has multiple modes. Notice that the
performance of MoS + Mi is worse than what re-
ported in Chang and McCallum (2022) probably
because we shared the input and output word em-
beddings.

B.2 Summarization

Compared to Figure 5, Figure 6 shows that our
methods improve the loss of TS in CNN/DM more
than GPT-2 in Wikipedia.

In Table 9 and Table 10, we compare the dif-
ferent summarization models by their model size,
evaluation losses, inference time, and other met-
rics which we use in subsection B.1. The pointer
network baselines and our methods significantly
improve most metrics over the softmax baseline,
which is used ubiquitously in nearly all LMs. Al-
though our method generally improves less on the
T5-Base model, the percentages of additional pa-
rameters and inference time overhead are much
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CNN/DM

XSUM

Models Size Loss (1) R2 R1P PRatio NIST | Loss (}) R2 R1P PRatio NIST
\ T5-Small
Softmax (S) 60.8M 0.995  15.147 0462 0915 4.650 | 0.538 7.098 0292 0853 2.738

CopyNet (Gu et al., 2016) | 61.3M 0.966 14942 0.458
PG (See et al., 2017) 61.3M 0978 14789 0.453
PS (Merity et al., 2017) 61.3M 0970  14.866 0.455

0985 4.607 | 0.533 7.055 0286 0.865 2.742
0943 4589 | 0.535 7211 0288 0.849 2.744
0946 4.629 | 0.535 7.000 0.283 0.853 2.718

S +R:20 61.0M 0.985 14.831 0.456 0928 4.603 0.534 7.085 0.287 0.858 2.730
S+E 61.0M 0.956 14935 0.457 0950 4.629 | 0.530 7.152  0.292 0.864 2.759
S+CE 61.3M 0.954 15.124 0.462 0956 4.691 0.528 7.304 0.297 0.873 23815
S + CER:20 61.5M 0.953 14996 0.463 0953 4.667 0.527 7.194 0296 0.871 2.800
S + CEPR:20 62.6M 0944 15.194 0476 0971 4.739 | 0.525 7.363 0.305 0.878 2.844
S + CEPR:20 + Mi 65.5M 0.943 15.094 0471 0976 4720 | 0.523 7.340 0305 0.874 2.840
‘ T5-Base
Softmax (S) 223.5M | 0.850 16.410 0.491 0959 4.948 0.417 10.773 0386 0910 3.454

CopyNet (Gu et al., 2016) | 224.7M | 0.833  16.253 0.486
PG (See et al., 2017) 2247M | 0.840 16.134 0.485
PS (Merity et al., 2017) | 224.7M | 0.836  16.275 0.490

0979 4915 | 0416 10.804 0387 0915 3.467
0955 4923 | 0417 10815 0389 0915 3.466
0978 4908 | 0417 10.838 0386 0915 3.473

S + CEPR:20 227.6M | 0.821 16292 0497 0990 4966 | 0.412 10778 0389 0.930 3477
S + CEPR:20 + Mi 234.1M | 0.821 16457 0.499 0987 4997 | 0412 10921 0391 0929 3.511

\ BART Base
Softmax (S) 1400M [ 0.874 15613 0471 1.028 4641 [ 0391 12944 0428 0928 3.833

CopyNet (Gu et al., 2016) | 141.2M | 0.837  15.675 0.470
PG (See et al., 2017) 1412M | 0.845 15485 0.465
PS (Merity etal., 2017) | 141.2M | 0.838  15.689 0.468

1.013  4.685 | 0.387 12.740 0424 0934 3.818
1.018 4.669 | 0389 12.849 0425 0928 3.827
0996 4.750 | 0.387 12.690 0.423 0926 3.796

S +R:20 140.6M | 0.863 15486 0468 1028 4.655| 0389 12.804 0426 0941 3.824
S+E 140.6M | 0852 15412 0466 1018 4652 | 0389 12893 0428 0933 33844
S+CE 1412M | 0851 15555 0471 1.013 4692 | 03838 12.830 0426 0934 3.827
S + CER:20 141.8M | 0850 15550 0469 1.022 4672 | 0387 12787 0423 0940 3.821
S + CEPR:20 1441M | 0841 15778 0471 1.025 4724 | 0387 12.824 0423 0942 3.829
S + CEPR:20 + Mi 150.6M | 0.843 15632 0472  1.027 4700 | 0.387 12969 0426 0.939 3.847
\ BART Large
Softmax (S) 4073M | 0794 16386 0.488 1.091 4.654 | 0359 15386 0476 1.006 4.136

CopyNet (Gu et al., 2016) | 409.4M | 0.774  16.268 0.485
PG (See et al., 2017) 409.4M | 0.780 16.344 0.486
PS (Merity et al., 2017) | 409.4M | 0.774  16.142 0.484
S + CEPR:20 4147M | 0.780  16.394 0.488

S + CEPR:20 + Mi 4262M | 0.769  16.085 0.483

1.113 4619 | 0358 15293 0473 0995 4.144
1.097 4.656 | 0.358  15.544 0475 0995 4.186
1.099 4.654 | 0358 15.547 0475 1.000 4.227
1.073 4767 | 0359 15466 0476 0982 4.240
1.032 4811 | 0.347 15371 0475 0957 4.292

Table 9: Comparison of the summaries generated by different models in the test sets of CNN/DM and XSUM
datasets. We also report the number of parameters of each model. From top to bottom, the four sections are
the results of TS-Small, T5-Base, BART Base, and BART Large. The meaning of the metrics are described in
Appendix B.1. R2 (ROUGE 2-F1) scores are percentages. Within each section, we highlight the smallest loss, the P
Ratio that is closest to 1, and highest numbers in the other metrics.

smaller. Although our methods tend to improve
less in larger language model, we still improve
BART Large very significantly in NIST, CIDEtr,
and MAUVE, and Mi seems to become more effec-
tive in BART Large.

The testing set of SAMSUM dataset only has
819 samples, so some metrics such as R1 and R2
are not as stable as other three datasets. PG (See
et al., 2017) for T5-Small and T5-Base perform
much worse in SAMSUM dataset. We hypothesize
that it is because the dialog input in SAMSUM
dataset is very different from the pretraining data
of TS, which makes training PG unstable.

In most datasets and models, the R Ratio from
our method is significantly closer to 1 than the soft-
max baseline, which means the average number of

proper nouns in our summaries is much closer to
the average number of proper nouns in the human-
written summary. For example, in BookSum Para-
graph, we improve its R Ratio by 26%, which par-
tially explains our large MAUVE improvement in
Table 6. Notice that our methods do not always
output more proper nouns. For example, for BART
Base in CNN/DM dataset, our methods reduce the
R Ratio of the softmax baseline, which is larger
than 1. This shows that our methods could learn
when we should copy the proper nouns according
to the training data.

C Method Details

We describe some details of our methods and base-
lines in this section.
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BookSum Paragraph SAMSUM
Models Time (ms) | Loss () R2 R1P PRatio NIST | Loss ({) R2 R1P PRatio NIST
\ T5-Small
Softmax (S) 30.1 0.654 1.673 0.149 0589 1383 | 0383 13.806 0.605 0.873 3.945
CopyNet (Gu et al., 2016) 37.0 0.646  1.722 0.183 0.747 1.440 | 0381 14.210 0.594 0.809 3.965
PG (See et al., 2017) 434 0.648 1.669 0.160 0.631 1413 | 0392 10.673 0.542 0.711 1.665
PS (Merity et al., 2017) 37.6 0.646  1.627 0.177 0.700 1.417 | 0383 13.817 0.583 0.794 3.960
S +R:20 329 0.652 1.663 0.159 0.677 1.403 | 0380 13.728 0.598 0.870  3.995
S+E 33.8 0.645 1710 0.171 0.673 1421 | 0370 13.557 0.602 0.892 3.906
S+CE 34.0 0.644 1.734 0.173 0.680 1.436 | 0368 14.136 0.619 0.892 3.971
S + CER:20 35.8 0.642 1710 0.174 0.693 1.434 | 0367 14281 0.627 0911 3.968
S + CEPR:20 384 0.641 1.768 0.184 0.725 1.461 | 0365 14.451 0.639 0909 4.034
S + CEPR:20 + Mi 41.7 0.641 1.733 0.185 0.721 1.458 | 0.365 14.193 0.630 0.922 4.011
‘ T5-Base

Softmax (S) 102.4 0.587 1.876 0.160 0.650 1.443 | 0308 17.662 0.672 0915 4.559
CopyNet (Gu et al., 2016) 110.3 0.582 1.867 0.187 0.744 1.481 | 0307 17.556 0.678 0901 4.544
PG (See et al., 2017) 117.7 0.585 1.832 0.159 0.647 1.434 | 0317 14.649 0.611 0.740 1.870
PS (Merity et al., 2017) 112.0 0582 1.899 0.176 0.718 1.465| 0308 17.502 0.660 0.897 4.453
S + CEPR:20 115.3 0.580 1.842 0.191 0.771 1.482 | 0300 18.082 0.677 0950 4.553
S + CEPR:20 + Mi 116.3 0.584 1.860 0.187 0.770 1.477 | 0.301 17.617 0.677 0.938 4.521

\ BART Base
Softmax (S) 46.6 0.624  1.807 0.141 0.656 1.425 | 0327 19379 0.672 0995 4.546
CopyNet (Gu et al., 2016) 57.8 0.613 1.806 0.166 0.728 1.454 | 0326 18.227 0.662 0944 4.535
PG (See et al., 2017) 64.8 0.624 1.864 0.140 0.668 1.428 | 0328 18.791 0.673 0963 4.537
PS (Merity et al., 2017) 57.9 0.613 1867 0.163 0.723 1.461 | 0324 18367 0.674 0951 4.573
S +R:20 50.5 0.627 1.807 0.154 0.720 1.430 | 0326 19.022 0.671 0971 4.608
S+E 54.2 0.620 1.825 0.150 0.688 1.429 | 0324 18.902 0.680 0.970 4.501
S+CE 56.5 0.619 1.847 0.153 0.685 1.441 | 0323 18.739 0.672 0949 4.537
S + CER:20 57.2 0.618 1.834 0.156 0.727 1444 | 0321 19.267 0.678 0.981 4.561
S + CEPR:20 58.8 0.618 1.865 0.157 0.742 1457 | 0321 18.631 0.670 0992 4516
S + CEPR:20 + Mi 63.2 0.620  1.827 0.158 0.733 1.442 | 0322 18.681 0.670 0987 4.439

\ BART Large
Softmax (S) 143.5 0.554  2.094 0.171 0.722  1.472 | 0303 20.848 0.711 1.006 4.621
CopyNet (Gu et al., 2016) 168.9 0.548 2.087 0.184 0.762 1.490 | 0.298 21.703 0.708 1.026 4.727
PG (See et al., 2017) 178.3 0.731  2.090 0.174 0.725 1.479 | 0301 21428 0.706 1.051 4.604
PS (Merity et al., 2017) 168.5 0.726  2.083 0.184 0.760 1.493 | 0300 22.144 0.710 1.036 4.779
S + CEPR:20 169.9 0.552 2069 0.178 0.763 1505 | 0302 21326 0.691 1.017 4.595
S + CEPR:20 + Mi 177.4 0.544 2024 0.175 0.737 1500 | 0294 21.244 0.713 0959 4.746

Table 10: Comparison of the summaries generated by different models in the test sets of BookSum and SAMSUM
datasets. We also report the inference time of one samples. The meaning of the metrics are described in Appendix B.1.
R2 (ROUGE 2-F1) scores are percentages. Within each section, we highlight the smallest loss, the P Ratio that is

closest to 1, and highest numbers in the other metrics.

C.1 Proposed Methods

To allow us to start from existing LMs that are
pretrained using softmax, we keep the modified
softmax layer initially working almost the same as
the original softmax layer. We initialize the linear
transformation weights of Lé p0)s L{ p0)s L£ 0,
and L{ () as 10719 . T. The other linear weights
L/ () are initialized as the identity matrix I.

In the local decoder embedding method Softmax
+ P + M, the initialization would give the 0 logit
to all context words. To solve the issue, we revise
Equation 3 a little and compute Logitp(z, ¢;) by

{fcj;vw:(: + f§7PDfx,ct,LD ifrecg

T
o v We O/W

(N

That is, we initially rely on the original softmax
layer to compute all the logits and let the term

fg; ppJu.c.,pp gradually influences the logits of
the context words.

In MoS + CPR:20,100 + Mi, our proposed
method only revises the logit in one of the soft-

max.

C.2 Pointer Network Baselines

The pointer networks are originally designed for
RNN, so we are unable to use exactly the same
formula proposed in the papers. Nevertheless, we
try our best to adapt the pointer networks for the
transformer encoder while keeping the gist of the
formulas. In all methods, to let the results more
comparable to our methods, we use f., pr and
L{ p to determine the probability of copying the
words from the context, and use fCTthz to deter-
mine the probability of generating all the words in
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the vocabulary.
In CopyNet (Gu et al., 2016), we compute the
probability of outputting the word x as

Prob(z|I,c;) o< exp (cht,wa)
1]

+3 - tnmsexp (£ pullp(rl) +0) . ®)
j=1

Notice that CopyNet needs to sum up the expo-
nential of dot products, which often causes over-
flow problems in GPT-2. We can set b to be a large
negative value initially to solve the problem, but
its perplexity is much worse than the other two
pointer network variants. Thus, we choose to skip
the CopyNet in the GPT-2 experiments.

In Pointer Generator (See et al., 2017), we com-
pute the probability of = using

€Xp (fg; Vwm>
Prob(z|l,c;) = pgen—7

Zy
1|
+(1 _pgen)z:ﬂ-[j:xPE(j|Ia Ct)’ (9)
j=1
where Pr(5|1,ct) =
exp(vT@nh(fe, p+LY (h2)+b))
s Pgen =

E
o(g"h}" + by,), the normalization term

ZV = ZZL‘EV exp <fg;’vwa:), and ZE e
7]

21 exp (thanh(fct,PE + L{E(h%[) + b))

J:

We skip the coverage mechanism in the pointer
generator paper to make it more comparable to
other methods. In TS5 experiments, its training loss
is sometimes very large, so we set b, as 3 initially
to keep the pye,, close to 1 (i.e., turn pointer part off

initially). In other experiments, we set by, = 0.

In Pointer Sentinel (Merity et al., 2017), the prob-
ability of = is computed by

T
Prob(z|l, ;) = goP I ee,v®Wr) (Fervwe)

A%
1] exp (fg;pEtanh(LiE(h%)) + b)
+> L, 7 . (10
j=1 P
exp(q? h2!)
9 = —7z = ad Z, = exp(qT R} +

Z';I:|1 eXp ( g;,PEtanh(LiE(h%)) + b)-

In our experiments, we find that the pointer net-
work variants usually have similar performance
(except that PG sometimes performs much worse

in summarization due to some training stability
issues). This suggests that the differences in the
pointer network variants often do not influence the
performance significantly, which justifies our sim-
plification of the formulas in the original paper
and supports our conclusion that the improvement
comes from breaking the softmax bottleneck.

Notice that in the above pointer network variants,
the pointer part can only increase the probability
of the context words from the generator part. As a
result, it cannot alleviate the repetition problem in
the last example of Table 5.

C.3 Word-by-word Reranker Baseline

We illustrate our word-by-word reranker (wbwR)
in Figure 7. The method has two stages. In the first
stage, we compute the logits using the projected
hidden state f, v and retrieve the top k words. At
the second stage, we append the top k£ words to the
input context along with the hidden state f., r for
reranking the context words.? We use the same po-
sitional embeddings for all candidates to encourage
the model to change the ranking of the words. Next,
we use the hidden states corresponding to the can-
didates to compute their local word embeddings as
fz,c.,Lp- Finally, we re-estimate the probabilities
of top k£ words by

{fg,vwm + Fopfoaip fee W)
o vWz O/W '
To improve the quality of our top k candidates,
the final loss is the addition of the wbwR loss at
the second stage and the loss of the original soft-
max layer that only uses the logits from fczfywm
at the first stage. When we combine the wbwR
with Softmax + CPR:20,100 + Mi, we simply use
Softmax + CPR:20,100 + Mi at the first stage and
use the wbwR to overwrite the logits of Softmax +
CPR:20,100 + Mi at the second stage.

Using this method, we can update the embed-
dings of the words that are not in the context and
allow the candidates to interact with the input con-
text to determine their probabilities as the classic
two-stage reranker while keeping the model size
roughly unchanged. Nevertheless, the method can
only change the probability of the top k£ words and
its computational overhead and memory require-
ment prevents us from using a very large k.

3The motivation is helping GPT-2 to output the local word
embedding of a candidate closer to the f., r if GPT-2 wants
to increase the probability of the candidate.
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Top k words (king, queen, woman, ...)

Global Word Embeddings

GPT-2 encoder
After debating whether to bow to the king or the woman first, the jester decided on the <|endoftext|> D king, quein, woman, ...

f

Softmax

‘ Local Word
Embeddings

Figure 7: Word-by-word reranker architecture.

Input for stage1:
T1T2T3T4T5T6 T7 T8 T9

Input1 for stage2 with past-key-value in position1:
T1 k1.1 k1.2 k1.3

T1 T2 k2.1 k2.2 k2.3

T1 T2 T3 k3.1 k3.2 k3.3

Input2 for stage2 with past-key-value in position4:
T4 k4.1 k4.2 k4.3

T4 T5 k5.1 k5.2 k5.3

T4 T5 T6 k6.1 k6.2 k6.3

Input3 for stage2 with past-key-value in position7:
T7 k7.1 k7.2 k7.3

T7 T8 k8.1 k8.2 k8.3

T7 T8 T9 k9.1 k9.2 k9.3

Figure 8: Our efficient implementation of word-by-word
reranker. Ti is tokens and ki.j is top-k tokens for Ti.

Unlike the standard GPT-2, we cannot get the
probability of all positions in one forward pass
because the input contexts are different when com-
puting the probability at each position and the input
of the second stage reranker depends on the results
of the previous forward pass at the first stage. To
speed up, we reuse the computed hidden states and
batchify the forward passes.

In our implementation, we first get the top & can-
didates corresponding to all tokens in the stagel
(just original GPT?2) as the input of stage2 reranker.
To avoid recalculating the hidden states of the con-
text at stage2, we store the hidden states using the
past-key-value in Hugging Face and only compute
the hidden states corresponding to the top &k candi-

date tokens at stage2.

We divide the computation of the whole input
sequence into several blocks as shown in Figure
8. In each block, we input a batch containing the
last few tokens and top k candidates into the GPT-2
while reusing the hidden states of their common
contexts from stagel. In this way, we can increase
parallelism by increasing the block size if the GPU
memory allows it.

Even though we spent substantial effort on opti-
mizing the wbwR, the method is still too slow to be
practically useful. Even if we use four RTX 8000
(a faster GPU with a larger memory), our wbwR
implementation is still around 10 times slower than
our proposed Softmax + CPR:20,100 + Mi that
uses only one RTX 2080.

D Experiment Details

For the reproducibility, we provide some
experimental configuration in this sec-
tion. Please see our codes (https:

//github.com/iesl/Softmax-CPR) for more
details.

D.1 GPT-2 Experimental Details

We mostly follow the experimental setup Chang
and McCallum (2022) except that we share the
input and output word embeddings as in the stan-
dard GPT-2 models. As in Chang and McCallum
(2022), we use the last 2% of the corpus as the test
set and the 2% before that as the validation set.* In

“We do not shuffle the corpus before splitting the datasets.

We found that our improvement could be even larger if we
shuffle the corpus to let the training data distribution closer to

12726


https://github.com/iesl/Softmax-CPR
https://github.com/iesl/Softmax-CPR

Train Val Test

CNN/DM 287113 13368 11490
XSUM 204045 11332 11334
BookSum Paragraph | 210931 27222 26025
SAMSUM 14732 818 819

Table 11: Dataset size of our four summarization tasks.

the word-by-word reranking experiment, we only
use first 100k tokens in validation set to speed up
the evaluation. To show that our model could be
added to existing pretrained models, we continue
training the pretrained GPT-2. For GPT-2 Small,
we train for 1 epoch, and for GPT-2 Medium, we
train for 0.4 epoch. We find that the performance
improvements usually do not change significantly
after training for 0.1 epoch.

As in Chang and McCallum (2022), we set the
sequence length as 200, batch size as 4, and learn-
ing rate for AdamW as le — 5. Our methods only
have two hyperparameters, k; and ko, and we try
values 20, 100, 200, 500 and select 20 and 100
using the validation data.

In the text completion experiment, we generate
360k continuations with a length of 50 given the
prompts in Wikipedia. We first sample 40k se-
quences in the test data of Wikipedia 2021. Next,
we use the first 20, 70, and 120 words in the se-
quence as our context and let the different models
generate the next 50 words as continuations. The
references are the actual next 50 words. All the
methods use Top-K sampling and K=5.

D.2 Summarization Experimental Details

BookSum dataset (Kryscinski et al., 2021) includes
three summarization tasks: Summarizing a book, a
chapter, and a paragraph. We test our methods us-
ing the paragraph summarization task due to the in-
put length restriction of BART and T5. The dataset
is constructed by automatically aligning the para-
graphs in a chapter with the sentences in a chapter
summary, which introduces noise to the dataset.
Similarly, XSUM uses the first sentence in news in-
stead of manually-written summary as the ground
truth reference. The relatively noisier datasets such
as XSUM and BookSum Paragraph, and smaller
dataset like SAMSUM could test the stability of the
methods. The sizes of the summarization datasets
could be found in Table 11.

We conduct the summarization experiments

the testing data distribution.

based on a summarization example code from Hug-
ging Face®. Most of our hyperparameters use the
default value in the code. In our preliminary study,
our improvement is not sensitive to the hyperparam-
eter choice (e.g., the improvement gap is similar
across different numbers of epochs). Thus, we do
not tune the hyperparameters for each method or
for each dataset unless we cannot reach a low train-
ing loss at the end.

In CNN/DM, XSUM, and SAMSUM datasets,
We train models for 3 epochs. In BookSum
datasets, We trained models for 5 epochs.® The
learning rate is set to be 5e — 05 except for BART
Large model in BookSum, where we use 1e — 05
to stablize the training of all methods.

All the experiments use batch size 8 and AdamW
with betas=(0.9,0.999), epsilon=1e — 06, weight-
decay=1.2e — 6. During the generation, we used
Top-K sampling (K=10) as our decoding method.
The maximum summary length is set as 128 and
maximum input length is 1024. We use warmup for
the first 1000 steps in all the experiments, which al-
lows us to change the architecture of T5 and BART
more significantly (e.g., using Mi) without having
a training stability issue.

The k in the reranker partition and the block
size of multiple input hidden states (Mi) is
coarsely tuned based on validation performance of
CNN/DM. Unlike considering the top 100 words
in the open-end text completion using GPT-2, we
find that reranking the top 20 words is sufficient for
our summarization models, probably because next
words are easier to predict in the summarization
task.

For our evaluation metrics, we use the default
setting for ROUGE’ and set use_stemmer=True.
When reporting the ROUGE scores, we follow the
conventions to show their percentages. We use
the default setting for MAUVES®, CIDER?, NIST'?,
For MAUVE, we insert a new line symbol after
every sentence as in the original Hugging Face

Shttps://github.com/huggingface/transformers/
blob/main/examples/pytorch/summarization/run_
summarization.py

The BookSum Paragraph is noisier, so we train longer to
be safe. And we find that different numbers of epochs do not
change the trend of the results.

"https://huggingface.co/spaces/
evaluate-metric/rouge

8https: //huggingface.co/spaces/
evaluate-metric/mauve

9https: //github.com/vrama91/cider

Ohttps://www.nltk.org/api/nltk
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summarization example code. For factCC metric'!,
we use the author-provided checkpoint to evalu-
ate CNN/DM results since factCC is originally
trained in CNN/DM. For the other three summa-
rization datasets, we follow the author’s codes to
constructed positive and negative data and contin-
ued training the CNN/DM factCC model on each
dataset with one epoch respectively. Then we eval-
uate different summarization tasks with the corre-
sponding factCC checkpoint.

D.3 Computational Environment and
Software

We implement our methods by revising the Hug-
ging Face library (Wolf et al., 2020). From Hug-
ging Face, we load the pretrained LMs including
GPT-2 Small'?, GPT-2 Medium!3, T5-Small'*, T5-
Base'>, BART Base'®, and BART Large!”. We use
SpaCy (Honnibal et al., 2020) to detect the proper
nouns.

For GPT-2 Medium, T5-Base, and BART Large,
we use NVIDIA GeForce RTX 8000 to train
the model and for other smaller models, we use
NVIDIA GeForce RTX 2080. Most of experiments
could be done within one week. In all the inference
time experiments, we use NVIDIA GeForce GTX
TITAN X, batch size 4 for GPT-2, and batch size 8
for BART and T5.

Uhttps://github.com/salesforce/factCC
12https://huggingface.co/gptz
13https://huggingface.co/gptz—medium
14https://huggingface.co/t5-sma11
Bhttps://huggingface.co/t5-base
Yhttps://huggingface.co/facebook/bart-base
17https://huggingface.co/facebook/bart—large
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assistance.
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v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section D

C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary

statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
For GPT-2 experiments, the perplexity on a large test set is known to have a very small variance.
For summarization experiments, we provide the results of lots of different metrics and most of the
metrics show the consistent trend. Due to sufficiently large test set, the papers in two domains
(self-supervised language modeling and summarization) often do not report their error bars.

v C4. 1If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section D

D Did you use human annotators (e.g., crowdworkers) or research with human participants?

Left blank.

L1 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

0 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

0J D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

[l D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

(] D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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