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Abstract

The generative retrieval model depends solely
on the information encoded in its model param-
eters without external memory, its information
capacity is limited and fixed. To overcome the
limitation, we propose Nonparametric Decod-
ing (Np Decoding) which can be applied to
existing generative retrieval models. Np De-
coding uses nonparametric contextualized vo-
cab embeddings (external memory) rather than
vanilla vocab embeddings as decoder vocab em-
beddings. By leveraging the contextualized vo-
cab embeddings, the generative retrieval model
is able to utilize both the parametric and non-
parametric space. Evaluation over 9 datasets (8
single-hop and 1 multi-hop) in the document
retrieval task shows that applying Np Decod-
ing to generative retrieval models significantly
improves the performance. We also show that
Np Decoding is data- and parameter-efficient,
and shows high performance in the zero-shot
setting.!

1 Introduction

Text retrieval is often formulated as finding the
most relevant items from a large corpus given an
input query. The bi-encoder approach of using an
encoder to map the documents and the query to
a common vector space and performing a nearest
neighbor search has been a common practice in text
retrieval tasks (Karpukhin et al., 2020; Wu et al.,
2020; Ni et al., 2021). Despite its high performance
and popularity, it has an embedding space bottle-
neck (Luan et al., 2021; Lee et al., 2022); limited
expressiveness due to fixed-size embeddings and
misses the fine-grained interaction between embed-
dings as they interact in L2 or inner product space.
Moreover, the bi-encoder approach requires large
storage space to save all document embeddings.

*Work done during internship at KAIST AL
!The code and datasets used in our work is at
https://github.com/amy-hyunji/Contextualized-Generative-
Retrieval.

jay.eong@kakaocorp.com

A recently-proposed alternative to the bi-encoder
approach is using a generative retrieval model (Cao
et al., 2021; Tay et al., 2022; Bevilacqua et al.,
2022; Lee et al., 2022; Wang et al., 2022; Lafferty
and Zhai, 2003; Croft and Lafferty, 2010). It is an
autoregressive model that retrieves the most rele-
vant sequence by generating the target sequence
(e.g., title, passage, document ID) token-by-token.
It overcomes the embedding space bottleneck by
interacting in the parametric space. Also, it is stor-
age efficient by not having any external memory.
However, the information capacity of such fully
parametric models tends to be bounded by their
sizes as it has to encode all information in its pa-
rameters (Tay et al., 2022; Roberts et al., 2020).

To this end, we propose Nonparametric Decod-
ing (Np Decoding), a decoding method for gener-
ative retrieval models. It uses nonparametric con-
textualized vocab embeddings rather than vanilla
vocab embeddings as decoder vocab embeddings.
The contextualized vocab embeddings are output
embeddings of an encoder that constructs a non-
parametric dense vector space and are frozen dur-
ing the training step whereas the vanilla vocab em-
beddings are trainable model vocab embeddings
that construct a parametric space of the model.
Therefore, by using Np Decoding, the generative
retrieval model does not have to rely solely on its
own parameters but can utilize the surrounding
information encoded in the contextualized vocab
embeddings (external memory). Note that while it
utilizes the dense vector space as in the bi-encoder
approach, unlike the approach, it does not have
embedding space bottleneck as it is a variant of
the generative retrieval model, and saves storage
space by storing only clustering centroid embed-
dings (Section 3.5).

As shown in Figure 1, any generative retrieval
model can incorporate Np Decoding by replacing
the decoder vocab embeddings from the vanilla
embedding matrix to contextualized embedding
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Figure 1: Np Decoding can be applied to any generative retrieval model by replacing the decoder vocab embeddings from the
vanilla embedding matrix with the contextualized embedding matrix (CE). CE is composed of the output embeddings of the
language model encoder (CE Encoder). Only the retrieval target sequences are added to CE, which in this figure we use the title
(Cape Town) as the target sequence. Unlike vanilla vocab embeddings, contextualized vocab embeddings that consist CE contain
context information, and a single token can have multiple token embeddings. This creates a more expressive and fine-grained
contextualized embedding space compared to vanilla embedding space as shown on the right side of the figure.

matrix (CE) for both the training and the infer-
ence steps. By the replacement, Np Decoding has
two key benefits over vanilla decoding. First, the
generative retrieval model can utilize not only its
parametric space but also its nonparametric space.
The nonparametric space is constructed with de-
coder vocab embeddings of Np Decoding (CE),
nonparametric and context-aware embeddings that
capture surrounding information. Second, CE al-
lows a token to have multiple token embeddings,
unlike vanilla vocab embeddings where a token has
a unique embedding. Therefore, the decoder vocab
embedding space of CE becomes more expressive
and fine-grained (right side of Figure 1). Since hav-
ing a well-constructed CE is important for achiev-
ing high performance, we propose three different
encoders (CE Encoder) used to output contextual-
ized vocab embeddings added to CE (Section 3).
We demonstrate that CE Encoder with contrastive
learning results in a significant increase in perfor-
mance.

The main contributions of our paper are as fol-
lows:

* We propose Nonparametric Decoding (Np De-
coding), a simple and novel decoding method
that can be applied to all existing generative
retrieval models. Experimental results over
9 datasets show that Np Decoding can signif-
icantly improve the performance of existing
generative retrieval models by leveraging both
the parametric and the nonparametric space;
4.4% R-precision improvement for single-hop,
5.4% Recall@2 improvement for multi-hop
datasets.

* We present various CE Encoder and show that
training CE Encoder with contrastive learning
further increases the performance by a large
margin.

* We show generative retrieval models with Np
Decoding are data- and parameter-efficient,
and show higher performance in a zero-shot
setting.

2 Related Work

Generative Retrieval Generative retrieval mod-
els retrieve relevant items by generating sub/either
the identifiers or entire sequences of the items.
GENRE (Cao et al., 2021) retrieves a document
by generating the titles with a constrained beam
search. DSI (Tay et al., 2022) assigns a unique ID
to each item in the corpus and retrieves the item
by generating the ID of the most relevant docu-
ment. SEAL (Bevilacqua et al., 2022) retrieves any
span from any position in the corpus by using FM-
Index. GMR (Lee et al., 2022) retrieves the most
relevant item by generating the whole sequence.
Though high performance, as generative retrieval
models solely rely on the information stored in
their parameter, the information capacity is limited
and fixed. To overcome the limitation, we propose
Nonparametric Decoding (Np Decoding) for gen-
erative retrieval models. By replacing the decoder
vocab embeddings with nonparametric contextual-
ized vocab embeddings, the model is able to utilize
not only the parametric space but also the nonpara-
metric space of contextualized embeddings.
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Memory Augmented Models KNN-LM (Khan-
delwal et al., 2020), TRIME (Zhong et al., 2022),
RAG (Lewis et al., 2020), and RETRO (Borgeaud
et al., 2022) are memory augmented models which
use both the parametric space of the model and
the non-parametric space of the external memory.
KNN-LM improves the LM performance by gener-
ating the next token through interpolation between
the nearest neighbor distribution (distance in the
contextualized embedding space) and the model
vocab distribution only during the inference step.
TRIME expands the work to use the objective also
during the training step. RAG and RETRO first
retrieve relevant texts with the retriever from the
external memory and generate the output based
on the retrieved texts. Moreover, concurrent work
NPM (Min et al., 2022) proposes a nonparametric
masked language model which operates over the
nonparametric distribution of the external memory.
Generative retrieval models with Nonparametric
Decoding also utilize the external memory, but
rather than considering it as an external source,
it is incorporated with the model by utilizing the
external memory as decoder vocab embeddings.

3 Nonparametric Decoding

Generative retrieval is the task of retrieving the
most relevant retrieval target (e.g., title, passage,
document identifier) by generating the target token-
by-token when given an input query. The training
objective of the generative retrieval model is to
maximize

n

P((t1,-- ta)lg) = [[ P(tila t<i) (D)

i=1

where ¢, denotes the tokens of the retrieval target
and ¢ is the input query. Such an approach has
shown high performance while using a low stor-
age footprint (Cao et al., 2021; Tay et al., 2022;
Bevilacqua et al., 2022; Lee et al., 2022). However,
it has limitation in that the model depends solely
on the information encoded in its own parameters.
Thus, the performance is likely to be bounded by
how much information can be stored in the model
parameter (Tay et al., 2022; Roberts et al., 2020).
To address the limitation, we propose a new
decoding method called Nonparametric Decod-
ing (Np Decoding) for generative retrieval. To in-
corporate Np Decoding on the existing generative
retrieval model, the only amendment is to use the
frozen contextualized vocab embedding (external

memory) rather than the vanilla vocab embedding
as the decoder vocab embedding during each gen-
eration step (Figure 1). The embeddings are the
output embeddings of an encoder when given a tar-
get sequence as input. Note that existing generative
retrieval models such as GENRE and DSI utilize
the pre-trained language model architecture as-is:
vanilla vocab embedding as the decoder vocab em-
bedding.

In Section 3.1, we show the key benefits of us-
ing Np Decoding over vanilla decoding. For Sec-
tion 3.2 to Section 3.4, we show the details of base
Np Decoding (BASE), and two variants (ASYNC,
CONTRA). In Section 3.5, we describe how we
reduce the number of contextualized token embed-
dings.

3.1 Key Benefits

Using Np Decoding has two key benefits over
vanilla decoding. First, the generative retrieval
model with Np Decoding can utilize not only the
information encoded in its own parameters (para-
metric space) but also the surrounding information
encoded in the contextualized vocab embeddings
(nonparametric space) during each decoding step.
Second, the generative retrieval model with Np
Decoding has more expressive and fine-grained
decoder vocab embedding space than that of the
model with vanilla decoding. As in Figure 1, Np
Decoding allows a single token to have multiple
contextualized token embeddings for the decoder
vocab embeddings (e.g., the same token "Cape" has
two different contextualized embeddings) depend-
ing on the surrounding information of the token,
whereas vanilla decoding allows only a single to-
ken embedding for a single token. Note that we do
not save all possible token embeddings, but reduce
the number of tokens to save without performance
degradation by practical tactics (Section 3.5).

3.2 BASE Nonparametric Decoding

In this work, we propose three different Np De-
coding (Base Nonparametric Decoding and two
variants) which we name the three different Np De-
coding based on the characteristics of the Contex-
tualized Embedding Encoders (CE Encoder). CE
Encoder is an encoder that outputs contextualized
token embeddings when given a target sequence
(e.g., title, document ID, passage) as input. The
contextualized token embeddings are added to CE?,

"Details of how we construct CE for different target se-
quences are in Section 4.3.
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Figure 2: Token-level contrastive learning of CONTRA Np
Decoding. Given a query ("how many players on a box
lacrosse team") and target sequence ("Box lacrosse"), we train
T5 on token-level contrastive learning where all tokens of the
target sequence are the positive pairs and the rest of the tokens
in CE are negative pairs.

the decoder vocab embedding matrix of generative
retriever with Np Decoding. BASE Nonparametric
Decoding (BASE) uses the most basic CE Encoder,
the pre-trained TS5 encoder as-is. CE is constructed
once with the output embeddings of CE Encoder
before the generative retrieval training step. Note
that during the training step of the generative re-
trieval, CE Encoder is frozen (Figure 1).

3.3 ASYNC Nonparametric Decoding

Asynchronous Nonparametric Decoding (ASYNC)
uses CE Encoder which is asynchronously replaced
every N epoch by the encoder of generative re-
triever during the generative retrieval training step.
By replacing CE Encoder periodically, ASYNC has
more coherency between CE Encoder and the gen-
erative retriever than BASE. After every replace-
ment (/N epoch), we construct a new CE with the
output embeddings of replaced CE Encoder and
resume training the generative retriever. Note that
during the generative retrieval training step, CE
Encoder is frozen but simply replaced, and only
generative retriever is trainable. We keep N = 20
for all experiments. See Appendix C.3 for details
on how N affects the performance.

3.4 CONTRASTIVE Nonparametric Decoding

CONTRASTIVE Nonparametric Decoding
(CoNTRA) uses CE Encoder trained on token-level
contrastive learning. The CE Encoder constructs
CE, the nonparametric decoder vocab space of
generative retrieval model with Np Decoding.
The token-level contrastive learning (Equation 2)
is performed as an intermediate step before
training T5 on the generative retrieval task
(Equation 1). Bi-encoder retrieval models with
contrastive loss have shown high performance

as the model learns to construct well-structured
global embedding space and regularize the space
to be uniform (Ni et al., 2021; Gao et al., 2021b;
Gao and Callan, 2022; Izacard et al., 2022). In a
similar way, CE Encoder with contrastive learning
constructs a more meaningful dense vector space
(non-parametric space of the generative retriever)
than CE Encoder of BASE.

As in Figure 2, given a query, we train the first
output embedding of the T5 decoder® with all to-
kens of the target sequence as positive pairs and
the rest of the tokens in CE* as negative pairs. Af-
ter training TS5 with token-level contrastive learn-
ing, we construct the CE with its encoder as CE
Encoder, and then further train the model on the
generative retrieval task.

Step 1. Token-level Contrastive Learning
Given a training dataset of pairs {(g,¢)} where ¢
is the query text, and ¢ is the retrieval target (e.g.,
the title of the document to retrieve) composed
of multiple tokens #; (1 < ¢ < k where k is the
length of the target), we split the training dataset
into k separate pairs {(g,¢;)} to construct the train-
ing dataset of query-token. With the query-token
dataset, we train the first output token embedding
from the TS decoder to be close to all token em-
beddings in 7 when given query g as an input
to generative retriever (Figure 2). 7 is a set of
positive token embeddings® (tokens that make up
one retrieval target), and 7 — is the set of negative
token embeddings® (all other token embeddings in
CE). The objective is to minimize the contrastive
loss:

+ + — -
L(qvtl s 7t|7‘+|7t1 s T )t|7’—|)
= —log D tteTt e<et’>
2t+67'+ €<q’t+> + 21’1767—7 €<q’t7>
(2

where ( , ) is the inner product value between
the two embeddings. We also experiment with a
contrastive loss having a single token per target as
positive and in-batch negatives loss (Appendix A.1)
where the contrastive loss with multiple tokens

3We use the embedding of decoder (Ni et al., 2021), not
the encoder, to initialize generative retriever with both the
encoder and the decoder trained on contrastive learning.

*As we freeze the token embeddings (CE) and only train
the T3, calculating over entire embedding space is possible.
CE used in the step is constructed with the output embeddings
of the pre-trained TS5 encoder model.

T = {ti‘—f" ,t:} (k= |7—+|)

T ={ty, ot}
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(Equation 2) as positive shows the highest perfor-
mance, which we hypothesize is because the posi-
tives have similar content information encoded.

Step 2. Generative Retrieval After training T5
with token-level contrastive learning, we use the
trained encoder as CE Encoder and construct a new
CE. We then further train the model on the genera-
tive retrieval task using the newly constructed CE
as the decoder vocab embeddings’.

3.5 Clustering

To construct CE, the decoder vocab embedding ma-
trix of generative retriever, we first extract all con-
textualized embeddings of each target token with
CE Encoder. As it requires a large storage footprint
to save all the embeddings, we reduce the number
of embeddings by using clustering and saving only
the representative embeddings of each cluster. To
be specific, we perform k-means clustering over
the contextualized embeddings of the same token
(which might have different surrounding contexts)
and leave only the k centroid embeddings® as the
decoder vocab embeddings of the token. We keep
k =5 for all experiments. When k = 5, it only re-
quires 0.3% of storage footprint compared to when
saving all contextualized token embedding. Also,
it requires only 0.34GB more storage compared
to the vanilla vocab embeddings (k = 1) which is
marginal compared to the storage footprint to save
the model parameters (3GB). See Appendix A.2
for details.

4 Experimental Setup

In section 4.1 and section 4.2, we describe the base-
lines and the datasets we used for experiments. In
section 4.3, we show how we construct CE depend-
ing on which generative retriever we combined
with. We experiment over 9 datasets. Results show
that by simply replacing the decoding strategy, gen-
erative retrieval shows significantly higher perfor-
mance. See Appendix B for more details about
setups.

"The generative retrieval model is initialized with the T5
trained with token-level contrastive learning.

8When the number of extracted contextualized embeddings
of a token is smaller than k£, we do not perform k-means
clustering but use its own contextualized embedding. Also,
we use a single non-contextualized embedding for special
tokens such as the EOS token or PAD token.

4.1 Baselines

BM25 (Robertson and Zaragoza, 2009) is a term-
matching model relying on an efficient algorithm.
DPR (Karpukhin et al., 2020) is a bi-encoder re-
trieval model which retrieves the most relevant doc-
ument by performing a nearest neighbor search
over dense vector space. Sentence-TS5 (Ni et al.,
2021) is similar to that of DPR but with TS5 (Raf-
fel et al., 2020) as the base model. MDR (Xiong
et al., 2021b) is an extension of DPR to multi-hop
datasets by iterating over a single query. More de-
tails about the baselines are in Appendix B.2. See
Section 2 for descriptions of GENRE (Cao et al.,
2021), DSI (Tay et al., 2022), and GMR (Lee et al.,
2022).

4.2 Datasets & Evaluation Metrics

We use 9 datasets with various characteristics:
FEVER (Thorne et al., 2018), AY2 (Hoffart et al.,
2011), TREX (ElSahar et al., 2018), zsRE (Levy
et al.,, 2017), NQ (Kwiatkowski et al., 2019),
TQA (Joshi et al., 2017), WOW (Dinan et al.,
2019), NQ-320k (Tay et al., 2022), and Hot-
potQA (Yang et al., 2018). For all datasets except
for NQ-320k and HotpotQA, we use dataset and
corpus from KILT (Petroni et al., 2021). To com-
pare with DSI (Tay et al., 2022), we experiment
over NQ-320k, a restricted setting from the official
NQ dataset; it uses about 4% of Wikipedia as the
corpus set. Note that the NQ of the KILT version
and the official version is different (Details are in
Petroni et al. (2021)). HotpotQA (Yang et al., 2018)
is an open-domain multi-hop question-answering
dataset that needs two Wikipedia pages to answer
the question. For HotpotQA we used the official
version of the dataset and the corpus.

We evaluate all results of the KILT version with
R-precision, a metric widely used to evaluate re-
trieval performance in KILT. It is calculated as &
where R is the number of Wikipedia documents in
each provenance set, and 7 is the number of related
documents among the top-R retrieved documents.
The results of NQ-320k and HotpotQA are evalu-
ated using Hits@N (N={1, 10}), which shows the
proportion of the correct documents ranked in the
top N predictions.

4.3 Details of Constructing CE

The choice of which output embeddings of CE En-
coder to save when constructing CE depends on the
target sequence of the generative retrieval model.
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Hits@l Hits@10

Model | FEVER AY2 TREX zsRE NQ TQA WOW | Avg BM25 11.6 34.4
Sentence-T5 224 63.3

BM25 38.2 14 574 663 234 252 239 | 337

DPR 73.0 46 729 941 601 639 365 | 636 DSlNaive 13.3 33.6
DSTsemantic 35.6 62.6

GENRE* 70.3 756 739 970 518 650 592 | 704 DSIye-BASE 58.7 731

G*-BASE 73.3 730 792  99.1 590 682  6L1 | 733 DSIyye-CONTRA 60.4 75.8

G*-ASYNC 74.7 746 782 989 592 684 619 | 737

G*-CONTRA 77.1 755 813 992 598 686 624 | 74.8 GENRE* 53.7 64.7
GENRE*-BASE 62.2 78.8
GENRE*-CONTRA | 63.4 81.1

Table 1: R-precision(%) for document retrieval task on test dataset when

trained with each dataset (KILT version). G*-BASE, G¥*-ASYNC, and G*-

CONTRA are the results when adding Np Decoding on GENRE*. The best
and second best of each dataset in bold and underline respectively.

In this work, we focused on applying Np Decoding
to generative retrieval models that use representa-
tive words as the target sequence (DSI and GENRE)
and leave extending the work to generative retrieval
models that need the whole sequence as the target
sequence (GMR and SEAL) as future work.

Np Decoding on GENRE* As the target se-
quence of GENRE*? is the title of the most relevant
document, we construct CE with the output embed-
dings of document titles. To additionally encode
the content of the document in the title embeddings,
we input the title and the document content!” into
CE Encoder and save only the output embeddings
of the title when constructing CE.

Np Decoding on DSI As the target sequence
of DSI is the document ID of the most relevant
document, we construct CE with the document
ID'!. As in GENRE*-Np Decoding, we input the
document ID with the document content as the
input of CE Encoder.

5 Experimental Results

In this section, we demonstrate the benefits of us-
ing Np Decoding in generative retrieval models by
comparing the performance of existing generative
retrieval models (DSI, GENRE*) with and without
the method in document retrieval tasks.

GENRE?* is GENRE trained with T5-large. We used TS
as a base model for a fair comparison with other base models.
See Appendix C.2 for a performance comparison between
GENRE#* (T5-large) and GENRE (Bart-large).

%We use the first five paragraphs of the document to the
maximum of 512 tokens as the document content due to lim-
ited input length.

TAs the document ID of official DSI is not released, we
assign the document ID with arbitrary unique integers (naively
structured identifiers, DSInaive). DSINaive With our document
ID shows 12.5 and 22.4 for Hits@1 and Hits@10.

Table 2: Hits@1 and @10 in NQ-320k. Re-
sults of BM25, Sentence-T5, DSInaive, and
DSIsemantic are from Tay et al. (2022). Best of
each section in bold.

5.1 Vanilla Decoding vs. Np Decoding

Table 1 shows that using Np Decoding improves
task-specific performance on various datasets, with
an average of 4.4% improvement. The improve-
ment is especially significant on datasets with
a large number of training examples (FEVER,
TREX), which we assume is because the model
can learn more about the new vocab embeddings
(CE) during the training step.

Table 2 shows the results of NQ-320k when ap-
plying Np Decoding on DSI and GENRE*. The
two models differ in that the retrieval target of DSI
is document ID and that of GENRE* is document
title. Np Decoding enhances DSI and GENRE* by
24.8% and 9.7% in Hits@1. The results suggest
that applying Np Decoding is especially helpful
for cases where the vanilla vocab embeddings of
the target sequence have less information; improve-
ment is higher in DSI than in GENRE*. As the doc-
ument ID is constructed with arbitrary unique in-
tegers, the vanilla vocab embeddings of document
ID contain less semantic information and have not
seen the relationship between the document and
the ID during the pretraining step. In contrast, as
the title uses vanilla vocab embeddings of natu-
ral language, the embeddings would contain more
information compared to that of the document ID.

Table 3 shows that using Np Decoding also im-
proves performance on HotpotQA, the multi-hop
retrieval dataset; GENRE*-CONTRA shows a 7%-
increase in performance compared to GENRE* in
Recall@2. Also, compared to GMR, as GENRE*-
CONTRA is able to capture the entire context in-
formation with just title generation by using the
contextualized embeddings, it shows higher per-
formance and faster inference speed. Furthermore,
when compared to a multi-hop bi-encoder model
MDR-, a variant of MDR without advanced tech-
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niques like linked negatives, memory bank, and
shared encoder, GENRE*-CONTRA shows higher
performance, whereas lower performance com-
pared to MDR, a model with all the techniques
are applied. We expect that applying such tech-
niques to generative retrieval models would also be
helpful and leave it as a future work. More details
about the results and how we extend GENRE* in
the multi-hop setting are in Appendix C.1.

5.2 Benefits of Nonparametric Decoding

We found three major benefits of using Np Decod-
ing over vanilla decoding for generative retrieval.

(1) Parameter-Efficient GENRE*-BASE trained
with T5-base (54.0 and 66.4) shows higher per-
formance in NQ and TQA compared to GENRE*
trained with T5-large (51.8 and 65.0) while T5-
large has 3.5 times more parameters than T5-base.
Also, DSI-BASE (58.7) shows about 1.5 % higher
performance in NQ-320k Hits@1 compared to DSI
T5-XXL with Semantic String Docid (the best-
performing model in Tay et al. (2022)) (40.4),
which has 14 times more parameters than DSI-
BASE, demonstrating that a retrieval model with
Np Decoding is more parameter efficient.

(2) Data-Efficient GENRE*-CONTRA trained
on NQ and TQA together has similar performance
to GENRE trained on the entire KILT dataset to-
gether, despite having only 5% as many training
examples. To be specific, when evaluated on R-
precision, GENRE*-CONTRA performs 60.3/68.9,
and GENRE performs 60.3/69.2 in NQ/TQA, re-
spectively (Table 7 in Appendix C.2). Such results
demonstrate that using Np Decoding is advanta-
geous in the low-resource setting as it can utilize
the information in the non-parametric space.

(3) Robust to Zero-Shot Table 5 shows that
GENRE*-BASE is stronger than GENRE* in the
KILT zero-shot setting where both models are
trained on NQ and TQA together and are evaluated
on the other 9 datasets in KILT that are not used
during the training step. GENRE*-BASE shows
an average of 3% improvement over GENRE*.
GENRE*-BASE is able to generalize well to out
of domains as it does not rely only on the infor-
mation encoded in the parametric space but also
utilizes the nonparametric space of CE which is
shared across all domains; Np Decoding makes
the generative retrieval model more robust in the
zero-shot setting.

Table 3: Recall rate of HotpotQA official full-wiki dev set.
Results of DPR, MDR-, and MDR are from Xiong et al.
(2021b) and results of GMR are from Lee et al. (2022). MDR-
indicates a variant of MDR without linked negatives, memory
bank, and shared encoder. Best among each method in bold.

Method ‘ Model Recall@2 Recall@10
DPR 25.2 454
Bi-Encoder MDR- 59.9 70.6
MDR 65.9 71.5
GMR 57.7 58.8
G ati GENRE* 56.1 58.4
CHErAlVe | GENRE*-BASE 61.9 653
GENRE*-CONTRA 63.1 66.8

(4) Robust to Low Lexical Overlap To evalu-
ate whether the model leverages the information
encoded in CE when using Np Decoding, we test
the performance of GENRE*-BASE and GENRE*
on queries that are likely to require utilizing infor-
mation from document content (queries with low
lexical overlap with the target sequence) in order
to find the answer. We divide the queries in the NQ
dev set into low- and high-overlap sets using the
TF-IDF score. GENRE* and GENRE*-BASE both
show relatively high performance on queries in the
high-overlap set compared to the low-overlap set
as it is easier to infer the correct retrieval target
from the query alone even if the model does not
know the document content. However, GENRE*-
BASE shows about 7% higher performance on the
low-overlap set and 5% higher performance on
the high-overlap than GENRE*. This shows that
GENRE* with Np Decoding (GENRE*-BASE) is
robust on queries in the low-overlap set by utilizing
the information encoded in CE. (More details in
Appendix C.2.)

5.3 What is Well-Constructed Contextualized
Embedding Matrix (CE)?

We found that the choice of CE plays an important
role in the performance when applying Np Decod-
ing. We analyzed four factors that are especially
important to create a well-constructed contextual-
ized embedding matrix (CE). See Appendix C.3
for various analyses of contextualized token em-
beddings and more details of each subsection.

(1) Coherency between Generative Retrieval
and CE Encoder Table 1 shows that ASYNC,
which replaces CE using the encoder of generative
retriever every N epochs, tends to show higher per-
formance than BASE Np Decoding, which uses
fixed CE. Also, updating CE more frequently
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Table 4: Top-3 prediction results of GENRE*-BASE, GENRE*-BASE-Short, and GENRE* on NQ dev set in KILT. Highlights

on the correct target sequence.

Query Prediction Results

GENRE#*-BASE

Therefore sign , Infinity symbol, Equation

what do the 3 dots mean in math GENRE*-BASE-Short

Slashed zero, Homo sapiens, Equation

GENRE*

Ellipsis, Infinity symbol, Homo sapiens

GENRE#*-BASE

Noli Me Téngere (novel) , Noli Me Tangere (opera), Noli Me Tangere (Bernini)

rizal finished all the chapters of the novel

noli me tangere in GENRE#*-BASE-Short

Noli me tangere, Noli Me Tangere (novel) , Noli Me Tangere (opera)

GENRE*

Noli me tangere, Non ¢ I’inferno, Noli Me Tangere (opera)

Table 5: R-precision(%) for the test sets of document retrieval tasks on datasets in KILT. Both GENRE* and GENRE*-BASE
are trained with NQ + TQA; other datasets are not seen during the training time. Best in Bold.

In-Domain Datasets

Out-of-Domain Datasets (Inference Only, Zero-Shot)

NQ TQA | FEVER AY2  WnWi

WnCw

T-REX zsRE HoPo ELIS WoW ‘ OoD Avg

GENRE* 52.7 64.8 64.2 9.1 2.8
GENRE*-BASE ~ 59.4 68.7 67.0 10.3 54

3.4 539 76.1 343 11.2 48.9 33.8
7.8 59.1 79.2 375 12.5 51.7 36.7

(smaller N) leads to better performance. Such re-
sults suggest that having high coherency between
generative retriever and CE Encoder improves the
performance. However, as it needs extra cost to
construct CE for each update, there is a tradeoff
between the computation overhead and the perfor-
mance.

(2) Contrastive Learning Table 1,2,3 show that
CONTRA shows consistently higher performance
than BASE. The results indicate that CE Encoder
trained on contrastive loss tends to construct bet-
ter CE by leveraging the benefits of contrastive
learning of constructing well-structured overall em-
bedding space and regularizing the space to be uni-
form (Ni et al., 2021; Gao et al., 2021a,b; Izacard
etal., 2022). When we calculate Lypiformity, 8 met-
ric which checks how well the embedding space
is constructed (Wang and Isola, 2020), CONTRA
(-19.7) shows a lower number than BASE (-18.2)
where the lower the better.

(3) Contextualized Embeddings Size CE con-
tains multiple contextualized embeddings for each
token where the number of embeddings per token
is controlled by the clustering method. In Figure 3,
the performance shows the highest performance
when using a maximum of five contextualized em-
beddings per token, and using a number higher
or lower than five tends to decrease the perfor-
mance for both NQ and TQA. This suggests that
having too many vocab embeddings can be distract-

<
o

— NQ TQA

R-precision
2 @ o o o
2 8 2 & 8

%
=)

0 5 10 15 20 25 30
# of cluster

Figure 3: Effect of the maximum number of clusters (number
of contextualized vocab embeddings) for each token on the
performance of GENRE*-BASE. The results when the number
of clusters is zero are the results of GENRE*.

ing while having too few can be not representative
enough; the number of clusters should be neither
too few nor too many.

(4) Longer Context We compare the results be-
tween BASE-Short and BASE where BASE-Short
is a variant of BASE where CE is constructed using
shorter context (only the title without the docu-
ment content) as input to CE Encoder. While both
BASE and BASE-Short use CE as decoder vocab
embeddings, the contextualized vocab embeddings
of BASE-Short contain less contextual information
compared to those of BASE due to shorter context
input to CE Encoder. Therefore, as shown in Ta-
ble 4, BASE-Short performs poorly in cases where
the document content is necessary for successful
retrieval. Additionally, BASE-Short has lower R-
precision in both NQ and TQA (58.4% and 68.2%)
compared to BASE (59.4% and 68.7%), indicating
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a correlation between performance and the amount
of contextual information in CE (non-parametric
space).

6 Conclusion

In this paper, we propose Nonparametric Decod-
ing (Np Decoding), a new decoding method that
can be applied to canonical generative retrieval
models by simply replacing the decoder vocab em-
beddings from vanilla vocab embeddings to non-
parametric contextualized vocab embeddings (out-
put embeddings of an encoder). This way, the
generative retrieval does not rely solely on the in-
formation encoded in its own model parameters
but can also utilize the information encoded in the
contextualized embeddings. Using Np Decoding
in generative retrieval significantly improves the
performance, achieves higher data and parameter
efficiency, and shows more robustness in the zero-
shot setting. In future work, we plan to apply Np
Decoding to various other tasks beyond task re-
trieval.

7 Limitations

Np Decoding uses k-means clustering to reduce
the number of contextualized embeddings, the per-
formance varies by how the contextualized em-
beddings are clustered. As the process is rela-
tively inconsistent, reducing the number with other
methods would make the model performance more
consistent. Also, as it is not trivial to add new
contextualized token embeddings on top of pre-
constructed CE due to the clustering step, we did
not perform on dynamic corpus setup where new
items are added or updated.

Np Decoding is applicable to all generative re-
trieval models including GMR or SEAL which
needs all token embeddings, however, we focused
on generative retrieval models with representative
output as the retrieval target in this work. Also,
while it is a general approach applicable to all
encoder-decoder models, we focused on applying
the method to T5.
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A Nonparametric Decoding

A.1 Different Types of Contrastive Loss for
CONTRA Np Decoding

We experiment with three different types of con-
trastive loss when training CONTRA. In this section,
we show the losses and how the results differ by
each loss.

Given a training dataset of pairs {(q,?)} where
q is the query text, and ¢ is the retrieval target (title
of the document to retrieve) composed of multiple
tokens ¢t; (1 < ¢ < k where k is the length of the
target), we split all tokens into %k separate pairs
{(q,t;)} to construct the training dataset of query-
token. The three loss differs in what the model
considers as a negative set and a positive set.

Loss 1: Neg: In-Batch Negatives / Pos: Single
Token Embedding With the query-token dataset,
we train generative retriever’s first output token
representation from the decoder to be close to all
tt € {t;, - ,t;} (embedding of any token in the
retrieval target £) given the query ¢ as an input to
generative retriever. The objective is to minimize
the contrastive loss to make the query text embed-
ding q be closer to positive token embedding t:

L(q7t+atfa"' 7tﬁ‘—‘) (3)

+
6<q,t >

<q,tt> <q,t7>
e q, —|—Zt_e7__€ q,

= —log 4)

where ( , ) is the inner product value between
the two embeddings, and 7~ = {t ,- - ,t‘_T,‘}
is the set of negative token embeddings, which
are other token embeddings in the training
batch that are not paired with ¢ (in-batch nega-
tives (Karpukhin et al., 2020)).

Loss 2: Neg: Contextualized Embedding Ma-
trix / Pos: Single Token Embedding The loss
differs from the upper loss in that it considers all
embeddings in contextualized embedding matrix
except the single positive embedding as negative
rather than performing the in-batch negatives which
consider the subset of contextualized embedding
matrix as negatives. The equation is same as Equa-
tion 3, but elements in 7~ are all other token em-
beddings in contextualized embedding matrix.

Loss 3: Neg: Contextualized Embedding Ma-
trix / Pos: Multiple Token Embedding The loss
differs from the upper loss in that it considers all
token embeddings in the title as positive embed-
dings; for each query ¢, there are more than one
positive contextualized token embeddings.

With the query-token dataset, where 7+ =
{tf.--- ,t]}, set of positive token embeddings,
we train generative retriever’s first output token
representation from the decoder to be close to all
token embeddings in 7 given the query ¢ as an
input to generative retriever. The objective is to
minimize the contrastive loss to make the query
text embedding q be closer to all positive token
embedding in 7 :

+ + - —
L(q,t{,- - 7t|7’+|7t17"' 7t|7-—|) )
+
= —log Dprers ST
Zt+eT+ e<att> Zt-e?’— e<a,t™>
(6)

where ( , ) is the inner product value between
the two embeddings, and 7~ = {t ,- - ’t\_T*\}
is the set of negative token embeddings, which
are all other token embeddings in contextualized
embedding matrix.

A.2 Clustering

Example When a token “the" appears in the cor-
pus 100 times, 100 different contextualized embed-
dings of “the” are extracted by the encoder model
at first. Then, we perform k-means clustering on
the 100 contextualized embeddings to cluster them
into at most £ clusters and save all centroid embed-
dings. We leave only the k centroid embeddings as
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the decoder vocab embeddings of the token “the”
and assign a new decoder token ID for each contex-
tualized embedding by the cluster it belongs to. By
repeating the process over all the tokens, each token
has a number of contextualized embeddings less
or equal to k. As there are multiple contextualized
token embeddings for a single token, we replace
the ground-truth target token IDs with the newly
constructed decoder token IDs to specify which
contextualized token embedding the ground-truth
target token ID is referring to.

Storage Footprint We analyzed how much stor-
age footprint can be saved through the clustering
method. When we use the KILT version Wikipedia
corpus and titles as the retrieval target, about 37M
token embeddings need to be stored. If the maxi-
mum number of token embeddings per token is set
to 5 (k = 5), only about 117K token embeddings
need to be stored. Also, vanilla vocab embeddings
of TS5 (k = 1) use about 32K token embeddings.
Therefore, when k& = 5, it only needs 0.3% of the
storage footprint compared to when storing all to-
ken embeddings of the title and about 3.7 times
more storage compared to the vanilla vocab em-
beddings. When k& = 5, it needs 0.47GB of stor-
age footprint to save all the vocab embeddings,
whereas the vanilla vocab embeddings (K = 1)
need 0.13GB. The increase in the storage footprint
of vocab embeddings (0.34GB) is marginal com-
pared to the storage footprint to save the model
parameters (3GB).

B Experimental Setup

B.1 GENRE?* and GENRE* with Np
Decoding

We train all models using a pre-trained T5-
large (Raffel et al., 2020) checkpoint from Wolf
et al. (2020) as the initial checkpoint (770M param-
eters). GENRE* and all generative retrieval models
with Np Decoding are trained with the same hy-
perparameter setting for a fair comparison. The
training was done on 8 32GB V100 GPUs or a
similar device. We train using Adafactor with a
learning rate le-4'? with a linear warm-up for the
first 10% of training and then linear decay with
batch size 512 till a maximum of 150 epochs with
early stopping. All results are from a single run.

2We also tried with a learning rate of le-3, a commonly
used learning rate, but le-4 shows consistently higher perfor-
mance.

B.2 BM25 & DPR

To match the setting (dataset) similar to other base-
line models, we train DPR (Karpukhin et al., 2020)
in a document retrieval task. Unlike Maillard et al.
(2021), which performs document retrieval tasks
by training the model on passage-level tasks and
considers the retrieval successful if it retrieves the
passage in the target document, we train DPR on
document-level tasks so that it retrieves the docu-
ment itself. We consider the first five paragraphs
as the content and train the model so that the query
embedding gets close to not the paragraph embed-
ding but the document embedding. We use only
the first five paragraphs of each document due to
the limit in input length, and to keep it the same as
the information used when dumping CE by CE En-
coder. The number of the corpus in the document
retrieval tasks is the same as the number of pages in
the KILT dataset. For BM25, we use pyserini (Lin
et al., 2021) where the corpus is the same as in
DPR. All results are from a single run.

B.3 Datasets

For zero-shot evaluation, we also evaluated over
WnWi (Guo and Barbosa, 2014) and ELI5 (Fan
et al., 2019).

B.4 Prefix Tree

We perform a constrained beam search with prefix
tree (Cao et al., 2021) during the inference step
to assure that all generated sequences are in the
corpus. The prefix tree is constructed with the
tokenization result of the corpus, and we perform a
constrained beam search by masking out the tokens
that do not create a sub-string of the text in the
corpus. We find the next tokens from the top-k
of the unmasked ones. While token ID was used
as the node of the prefix tree in previous works
since each token was mapped to a unique token
ID, we construct a prefix tree with the text of the
token as the node, because CE contains multiple
token IDs for a single token. Therefore, rather than
unmasking only a single token ID, we unmask all
token IDs that correspond to the text in order to
unmask a token. We keep the beam size to 10 for
all experiments following Cao et al. (2021).

C Experimental Results

C.1 Multi-hop Dataset

GENRE# in multi-hop setting During the infer-
ence step of GENRE*, in the first hop, GENRE*
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Table 6: HotpotQA bridge vs. comparison (Top2)

Bridge = Comparison
MDR 58.7 94.8
GMR 479 96.4
GENRE* 472 91.4
GENRE*-BASE 53.1 96.6
GENRE*-CONTRA 54.9 96.9

retrieves the title of the most relevant document
(T1) when given a query, and in the second hop,
GENRE?* retrieves the title of the most relevant
document (T2) when given the query, T1, and the
context of T1 as input to the model.

Bridge vs. Comparison Questions HotpotQA
contains both the bridge and the comparison ques-
tions; bridge questions are those that need to infer
the missing intermediate entity from the document
content of the first hop, and comparison questions
are those with the two entities mentioned simulta-
neously. We analyzed the performance of MDR,
GMR, GENRE*, and GENRE* with Np Decoding
(GENRE*-BASE, GENRE*-CONTRA) by dividing
the performance into bridge and comparison ques-
tions. GENRE* with Np Decoding shows the high-
est performance in comparison questions among
all models, and the highest performance in bridge
questions among the generative retrieval models.

C.2 Benefits of Nonparametric Decoding

Multitask Training Results in Table 7 show that
GENRE*-CONTRA outperforms GENRE* by 6%
in single-task which demonstrates the effectiveness
of Np Decoding. For both cases where the model
is trained over a single dataset and over NQ and
TQA together (NQ+TQA), GENRE* with Np De-
coding shows higher performance over GENRE*.
Note that due to limited available resources, we did
not train GENRE* with Np Decoding on the full
KILT dataset (ALL KILT) as in GENRE!3, DPR, or
SEAL. However, CONTRA trained on less than 5%
of the training dataset from the full KILT dataset
shows higher or comparable performance to those
models.

Robust to Low Lexical Overlap We first run
TF-IDF over all the queries of the NQ dev set in
KILT and divide the queries into two sets: low-

3GENRE uses 128 V100 GPUs with 32GB of memory for
about 33 hours.

overlap'* and high-overlap'>. Low-overlap is a set
of queries with a TF-IDF score lower than average,
and high-overlap is the rest of the queries.

Generative retrieval with Np Decoding shows
especially strong performance on queries in the
low-overlap set; queries that in most cases need
the context information unless the model saw the
information during the training step. We check four
sets:

1. GENRE+/BASE +: queries where both BASE
and GENRE* successfully retrieved

2. GENRE+/BASE-: queries where GENRE* suc-
cessfully retrieved and BASE failed

3. GENRE-/BASE +: queries where GENRE*
failed and BASE succeed

4. GENRE-/BASE-: queries where GENRE* and
BASE both failed.

Figure 4 and Figure 5 show the low-rate (blue)
and high-rate (red). Low-rate of each case is cal-
culated as %, where () is a set of queries in
each case and L is a set of queries in a low-overlap
set. High-rate of each case is calculated as @,

where H is a set of queries in a high-overlap set.

For both figures, GENRE-/BASE + shows a
higher number in low-rate, which indicates that
BASE tend to successfully predict queries in the
low-overlap set compared to GENRE*. Also, for
both figures, GENRE+/BASE + shows a high num-
ber in low-rate and GENRE-/BASE- shows a high
number of high-rate, which indicates that queries
in the high-overlap set tend to be easy questions
for both GENRE and BASE whereas queries in the
low-overlap set are difficult for both models.

Also, Table 8 shows samples of the top-5
prediction results of BASE and GENRE* where
BASE successfully retrieved the correct item and
GENRE* failed. Moreover, Table 9 shows the per-
formance of GENRE and GENRE*-BASE for low-
overlap and high-overlap sets. The results suggest
that BASE is robust on queries in the low-overlap
set compared to GENRE*.

C.3 What is Well-Constructed Contextualized
Embedding Matrix (CE)?

In this section, we analyze Np Decoding with
GENRE* so we skip the model name.

e.g., Q: During which season does cape town receive
rainfall / Target Document: Climate of South Africa

Be.g., Q: where was the world economic forum held this
year / Target Document: World Economic Forum
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Training Dataset Single (< 3%) NQ+TQA (< 5%)

NQ+TQA+HotpotQA+ELI5 (< 16%)  All KILT (100%)

Model NQ TQA | NQ TQA | NQ TQA  ELIS HotpotQA | NQ TQA

GENRE - - - - 583 69.6 13.2 403 60.3 69.2
GENRE* 51.8 65.0 527 64.8 54.2 67.8 13.8 435 - -

GENRE*-BASE 59.0 68.2 59.4 68.7 59.3 68.9 142 449 -

GENRE*-ASYNC 59.2 68.4 59.8 68.7 60.1 69.1 14.0 46.3 - -
GENRE*-CONTRA  59.8 68.6 60.3 68.9 60.7 68.6 14.9 47.0 - -

BM25 23.47 252" | 23.4f 25.2F 23.47  252f  5.3f 38.41 23.4"  25.2f

DPR 60.17  63.97 | 59.57 62.97 58.0F  63.2F  10.61 39.37 59.4 61.5

SEAL - - - - - - - - 63.2 68.4

Table 7: R-precision(%) for document retrieval task on NQ and TQA test dataset (KILT version). Results except for GENRE*
and GENRE* with Np Decoding (GENRE*-BASE, GENRE*-ASYNC, and GENRE*-CONTRA) are from the KILT leaderboard.
The column of the table is divided by how many training datasets are used. Numbers in the bracket are the rate of the number of
training datasets over the number of training datasets when using all KILT datasets. Results of GENRE and SEAL are from
Cao et al. (2021) and Bevilacqua et al. (2022), respectively. Results with T in BM25 and DPR are trained in the same setting as
GENRE* with Np Decoding (Appendix B.2). Best in bold.

Table 8: Top-3 prediction result of BASE, and GENRE*

Query Prediction Result
BASE Therefore sign , Infinity symbol, Equation
what do the 3 dots mean in math
GENRE Ellipsis, Infinity symbol, Homo sapiens
what does the pearl symbolize in the bible BASE Parable of the Pearl , Mitzvah, Pearl of Wisdom
GENRE Pearl of Great Price, Perlin, Promised Land
BASE Archie Marries Veronica/Archies Marries Betty , List of Riverdale characters,

does archie end up with betty or veronica in

Archie Buchanan

riverdale
GENRE

Riverdale (2017 TV series), List of Riverdale characters, Archie Mitchell

N BASE
actor who plays dr avery on grey’s anatomy

Jesse Williams (actor) , Jesse Williams, Jesse Spencer

GENRE

Marc Alaimo, Patrick Warburton, Jeffrey Dean Morgan

BASE

Evolution of the horse , Equis, Eurydice

when did equus first appear in fossil record

GENRE Equidae, Equis, Equinox
BASE Indian High Courts Act 1861 , High Court of Australia, Supreme Court of India
who decides the number of judges in the high
court GENRE Supreme Court of the United Kingdom, Supreme Court of India, High Court of
Australia

when’s the last time the philadelphia eagles

BASE Super Bowl XXXIX , New England Patriots, Super Bowl XXXVIII

played the new england patriots GENRE

New England Patriots, Philadelphia Eagles, History of the Philadelphia Eagles

rizal finished all the chapters of the novel noli BASE

Noli Me Téngere (novel) , Noli Me Tangere (opera), Noli Me Tangere (Bernini)

me tangere in

GENRE Noli me tangere, Non & I’inferno, Noli Me Tangere (opera)
during which season does cape town receive BASE Climate of South Africa , City of Cape Town, Cape Town water crisis
rainfall GENRE Cape Town, City of Cape Town, Cape Town water crisis

(1) Having High Coherency between Generative
Retrieval and CE Encoder We analyzed how
the performance changes according to how often
the replacement of CE Encoder by the encoder
of the generative retrieval occurs (replacement for
every N epoch) with ASYNC-Short. When com-
paring the performance with N = {10, 20,50},
ASYNC-Short shows the highest performance at

N = 10, and the performance tends to deteriorate
as N becomes larger. Also, all ASYNC-Short show
higher performance than BASE-Short, which uses
CE with no replacement during training (N = max
training epoch). Results show that although the
model requires high computation cost and longer
training time as N gets smaller, it is important to
have high coherency between the contextualized
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Figure 4: Red bar indicates the high rate and the blue
bar indicates the low rate. The rate is measured by NQ
dev set in KILT. Details about high-rate and low-rate is in
Appendix C.2.
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Figure 5: Red bar indicates the high rate and the blue
bar indicates the low rate. The rate is measured by TQA
dev set in KILT. Details about high-rate and low-rate is in
Appendix C.2.

Table 9: R-precision(%) for the document retrieval task on
NQ dev dataset in KILT. See details about Low and High
Overlap in Appendix C.2.

Overlap GENRE*  GENRE*-BASE-Short =~ GENRE*-BASE

Low 45.8 51.6 52.7
High 713 75.3 75.8
Total 58.3 63.2 64.0

Table 10: R-precision(%) for the document retrieval task on
NQ and TQA test dataset in KILT. We compare the results
of GENRE*, BASE-Short, and BASE where the models are
trained with NQ+TQA. The results show the importance of
extracting contextualized embeddings with not only the title
but also the corresponding document content.

GENRE*  GENRE*-BASE-Short ~ GENRE*-BASE

NQ 52.7 58.4 59.4
Trivia 64.8 68.2 68.7

embeddings (output embeddings of CE Encoder)
and generative retriever by frequent replacement.

(2) Training CE with Contrastive Learning
Appendix A.1 shows the details of three different
contrastive losses that we experiment over when
training CONTRA Np Decoding. Table 11 show
the performance of CONTRA with different con-
trastive loss, which differs by what is considered
as the positive pair and the negative pair. Multiple
Token Emb considers all token embeddings in the
same target sequence as positive pairs, and Single
Token Emb considers all token embeddings sepa-
rately thus only one of the token embedding from
the title token embeddings is considered as positive
pair. In-Batch Negatives considers all embeddings
in a batch except for the positive embedding as
negative pairs, and Contextualized Embedding Ma-
trix considers all embeddings in the contextualized
embedding matrix (a matrix constructed with the
contextualized token embeddings) except for the
positive embeddings as negative pairs.

The model trained on contrastive loss with mul-
tiple token embeddings as positive pairs, and all
other embeddings in contextualized embedding ma-
trix as negative pairs (Loss3) show the highest per-
formance. The model trained on the same nega-
tive but with a single token embedding as positive
(Loss2) shows the lowest performance. The model
with single token embedding as positive and in-
batch negatives as negative pairs (Loss1) shows the
performance in-between.

As in Xiong et al. (2021a), the model with Loss2
and Loss3 has the benefits of looking at the global
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Table 11: R-precision(%) for the document retrieval task on NQ and TQA test dataset in KILT. See Appendix C.3 for details
about how the loss term differs. The loss term is used while training CONTRA in contrastive learning (step 1 of training CONTRA).

Positive

Negative

| NQ TQA

Single Token Emb
Single Token Emb
Multiple Token Emb

In-Batch Negatives 60.0  68.9
Contextualized Embedding Matrix | 58.9 68.4
Contextualized Embedding Matrix | 60.3  68.9

embedding space by considering the contextualized
embedding matrix as the negative pair, unlike Loss1
which only considers embeddings in the same batch
as negatives (in-batch negatives). However, Loss2
show lower performance than Loss1 as in the case
where the model considers a single token embed-
ding as a positive pair, the model considers the rest
of the token embeddings in the same title as the
negative pair. As the token embeddings in the same
title are matched with the same query, such a train-
ing method seems to make the model confused and
leads to bad performance. Thus when considering
a single token embedding as positive pair (Loss1 or
Loss2), it is better to consider only the embeddings
in the same batch as negatives (in-batch negatives)
rather than on all the token embeddings (Contex-
tualized Embedding Matrix) as there is a low pos-
sibility of the model to have two different token
embeddings of the same title in a batch.

(3) Contextualized Embeddings Size As saving
all contextualized token embeddings to use as the
vocab embedding matrix requires a large storage
footprint (= 148GB), we reduce the number of to-
ken embeddings by clustering and saving only the
k centroid embeddings for each token (Section 3.5).
Figure 3 shows the effect of the maximum number
of clusters for each token (k) on the performance.
Models with a £ = 5 (maximum of five different
contextualized token embeddings for each token)
show the highest performance and having k smaller
or larger than five decreases the performance. We
hypothesize that the performance of models with
k < 5 degrades because the number of the embed-
dings is too small to contain all different contextual
meanings of the token and thus will be closer to
vanilla token embedding. In contrast, the perfor-
mance of models with k£ > 5 decreases because the
search space of each generation step is too large
and the parametric space of the model becomes too
fine-grained which might distract the model.

(4) Longer Context To see how informative the
document context (length of the context) affects
performance, we compared the performance of

BASE, BASE-Short, and GENRE*. GENRE*,
which uses vanilla vocab embedding as the target
embedding, has to depend solely on the informa-
tion encoded in its own parameters (the parametric
space of the generative retrieval model). On the
other hand, BASE and BASE-Short can depend on
not only the parametric space of the generative re-
trieval model but also the non-parametric space of
corpus information embedded in the contextualized
target embedding. By utilizing the contextualized
target embedding, the model can know in which
context the token is used and discern documents
with different contexts.

Although both BASE and BASE-Short utilize
contextualized target embeddings, the contextu-
alized target embedding of BASE-Short contains
shorter context information compared to that of
BASE. Therefore, BASE-Short fails in cases where
the document content is necessary to retrieve the
target sequence successfully. It is difficult for the
model to predict the target without the help of the
document content about what information is in the
document or what relationship exists between the
query and the target sequence. We can see from
the table (Table 4) that BASE successfully retrieves
as such information is embedded in the contextual-
ized target embeddings whereas BASE-Short fails
as it does not contain the document content in its
embeddings. Also, Table 10 shows that there is
a correlation between the performance and how
much contextual information is encoded in the non-
parametric space.

Characteristics by different CE Encoder We
compare the contextualized token embeddings of
BASE, AsYNC, and CONTRA!® For 1000 cluster
embeddings, we check the rate of the same token
among the top-5 embeddings similar to the corre-
sponding embedding. BASE shows the lowest rate
of 50%. ASYNC and CONTRA show a similarly
high rate of 70%. The rate tends to increase as N
increases in ASYNC. Such results suggest that as

!We analyze the CE Encoder of step2 in CONTRA and last
replace CE Encoder for ASYNC.
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the same token has a similar lexical meaning, it is
better to have a relatively similar meaning. How-
ever, as the performance increases as a single to-
ken are matched to multiple token embeddings till
k = 5, it is also important to have slightly different
meanings depending on the surrounding context.
When checking which corpus bundles are bound to
the same cluster, all three tend to depend on which
position of text the token is placed on and the mean-
ing of surrounding tokens. For example, when we
cluster a token “Bee" into five clusters, it tends to
group in: (1) word related to a person’s name where
“Bee" appears in the middle of the name (Edmund
Beecher Wilson), (2) word related to food where
“Bee" appears at the front of the word (Beef Jerkey),
(3) “Bee" with Spelling Bee (The 25th Annual Put-
nam County Spelling Bee) or the insect bee (Honey
to the Bee) that appears at the end of a word, (4)
word related to music where “Bee" appears at the
front of the word (Honey to the Bee), (5) word re-
lated to film or TV series where “Bee" appears near
the end (Queen Bees (TV series)). Such tendencies
are shown in all three models.

Clustering over total embeddings To under-
stand the spatial properties of the contextualized
embeddings, we conducted a qualitative analysis
on the embeddings, by performing k-means cluster-
ing over the total contextualized token embeddings
of BASE (CE Encoder is the encoder of T5-large).
Specifically, we clustered 36 million token embed-
dings, obtained from CE Encoder, into 117,508
clusters'” using the FAISS k-means library (John-
son et al., 2021).

First, we randomly sampled 100 tokens, and for
each token, we calculated the portion of the con-
textualized embeddings that belong to the top 10%
of the clusters which contain the most embeddings
of the token. As a result, on average 67.6% of the
embeddings of a token are contained in the 10% of
the clusters which contain the token, with a stan-
dard deviation of 22.7. This indicates that most of
the tokens are concentrated in a few spatial regions,
while the others are spread over many different
areas.

To get a deeper insight into the spatial properties
of the embeddings, we picked two tokens, “Lin-
coln" and “Squad" and visualized some of the clus-
ters that contain the tokens(Table 12). For each

"The number of the clusters is same as the number of the
tokens in contextualized embedding matrix, hence same as the
number of the clusters we used in 3.5.

cluster, the tokens belonging to the cluster and
their corresponding document names are shown.
In (Table 12), at most 20 documents are shown for
each token and only 4 tokens are shown in cluster
3 and 4 for simplicity. The first and second exam-
ples show the case that a cluster is composed of
only a single token, as mentioned above. Interest-
ingly, all of the corresponding documents of the
first cluster are related to Lincolnshire, a county of
England. Similarly, the tokens in the second cluster
are related to the documents about sports (usually
football) squads. On the other hand, the third and
fourth examples show the other case that a cluster
contains only a few tokens that we are interested
in. The members of the third cluster are related to
the middle names, and a few embeddings of the
token “Lincoln" is contained in this cluster since
there are some Wikipedia documents of the peo-
ple whose middle name is Lincoln. Likewise, the
fourth cluster consists of the embeddings which are
related to the name of music albums(usually hip-
hop and rock), where some of them are produced
by the group named “Blazin’ squad", for example.
These examples show how expressive can the con-
textualized embeddings be compared to the vanilla
token embeddings; in this case, it is hard to expect
that this various context-dependent information of
a token can be sufficiently encoded into a single
token embedding.

In summary, the results show that the contextual-
ized embeddings corresponding to the same token
are mapped to many different regions of the embed-
ding space, depending on its context. This implies
that the contextualized embeddings successfully
acquired the contextual information of the corre-
sponding documents, highlighting the effectiveness
of utilizing contextualized embeddings for genera-
tive retrieval.
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Table 12: Examples of clusters when clustering over total contextualized token embeddings when CE Encoder is the encoder of
T5-large.

Cluster Token Documents

Moulton, Lincolnshire / Belton, North Lincolnshire / Walcott, Lincolnshire / Wrangle, Lincolnshire /
Swineshead, Lincolnshire / Leverton, Lincolnshire / Kirton, Lincolnshire / Benington, Lincolnshire /

1 _Lincoln Bicker, Lincolnshire / Dyke, Lincolnshire / Hilldyke, Lincolnshire / Waltham, Lincolnshire / Reepham,
Lincolnshire / Bradley, Lincolnshire / Allington, Lincolnshire / Donington, Lincolnshire ettleton, Lin-
colnshire / Panton, Lincolnshire / Beckingham, Lincolnshire / Bigby, Lincolnshire / ...

Field hockey at the 2000 Summer Olympics — Men’s team squads / Field hockey at the 2004 Summer
Olympics — Men’s team squads / Field hockey at the 1996 Summer Olympics — Men’s team squads /
Football at the 2000 Summer Olympics — Men'’s team squads / Football at the 1996 Summer Olympics
— Men’s team squads / List of Queensland rugby league team squads / Football at the 2006 Lusophony
Games — Men’s team squads / List of current AFL team squads / Football at the 1912 Summer Olympics —
Men’s team squads / List of New South Wales rugby league team squads / Football at the 1996 Summer
Olympics — Women’s team squads / Football at the 1988 Summer Olympics — Men’s team squads / Football
at the 1984 Summer Olympics — Men’s team squads / Football at the 1976 Summer Olympics — Men’s
team squads / Football at the 1900 Summer Olympics — Men’s team squads / Football at the 1904 Summer
Olympics — Men’s team squads / Football at the 1908 Summer Olympics — Men’s team squads / Football
at the 1992 Summer Olympics — Men’s team squads / Football at the 1980 Summer Olympics — Men’s
team squads / Football at the 1972 Summer Olympics — Men’s team squads / ...

2 _Squad

William Lincoln Garver / Albert Lincoln Washburn / Charles Lincoln Edwards / Thomas Lincoln Casey
Sr. / James Lincoln Collier / Abraham Lincoln Lewis / Earl Lincoln Poole / George Lincoln Goodale /
_Lincoln George Lincoln Burr / Abraham Lincoln Keister / Elmer Lincoln Irey / Walter Lincoln Hawkins / Abram
Lincoln Harris / Abraham Lincoln DeMond / Thomas Lincoln Tally / Abraham Lincoln Filene / Mary
Lincoln Beckwith / Frederick Lincoln Emory / Howard Lincoln Hodgkins / Oliver Lincoln Lundquist / ...

John Levi Marti / John Levi Sheppard / Moses Levi Ehrenreich / Nathaniel Levi Gaines / Harry Levi

3 Levi
—-ev Hollingworth / Thomas Levi Whittle / Austin Levi Fraser / George Levi Crane / Olin Levi Warner

Milledge Luke Bonham / Henry Luke Orombi / Henry Luke White / Vincent Luke Palmisano / George
_Luke Luke Smith / Henry Luke Bolley / Mary Luke Tobin / James Luke Prendergast / John Luke Lowther / Jerry
Luke LeBlanc / Thomas Luke Msusa / Robert Luke Deakin / Joseph Luke Cecchini

_Lane Carroll Lane Fenton

_Squad True Story (Terror Squad album) / The Album (Terror Squad album)

Covenant (Morbid Angel album) / Domination (Morbid Angel album) / The Art of Dying (Death Angel

Angel
-Ange album) / Act III (Death Angel album) / Heretic (Morbid Angel album)

_Butterfly Heavy (Iron Butterfly album) / Metamorphosis (Iron Butterfly album) / Ball (Iron Butterfly album)

Flip-flop (electronics) / Flipper (anatomy) / Respect Me (Lil’ Flip album) / The Leprechaun (Lil’ Flip

Fli
—p album)
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