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Abstract

Efficient finetuning of pretrained language
transformers is becoming increasingly preva-
lent for solving natural language processing
tasks. While effective, it can still require a large
number of tunable parameters. This can be
a drawback for low-resource applications and
training with differential-privacy constraints,
where excessive noise may be introduced dur-
ing finetuning. To this end, we propose a novel
language transformer finetuning strategy that
introduces task-specific parameters in multiple
transformer layers. These parameters are de-
rived from fixed random projections of a single
trainable vector, enabling finetuning with sig-
nificantly fewer parameters while maintaining
performance. We achieve within 5% of full fine-
tuning performance on GLUE tasks with as few
as 4,100 parameters per task, outperforming
other parameter-efficient finetuning approaches
that use a similar number of per-task parame-
ters. Besides, the random projections can be
precomputed at inference, avoiding additional
computational latency. All these make our
method particularly appealing for low-resource
applications. Finally, our method achieves the
best or comparable utility compared to several
recent finetuning methods when training with
the same privacy constraints, underscoring its
effectiveness and potential real-world impact.

1 Introduction

Transformer-based bidirectional language models
(LMs), pretrained on a sizeable text corpus and
finetuned on task-specific objectives, outperform
models trained from scratch by large margins (De-
vlin et al., 2019; Liu et al., 2019). The straightfor-
ward approach to finetune a language model is to
initialize with pretrained parameters and train the
model on the downstream task. However, it is inef-
ficient to finetune language models for each task as
it requires training and storing a massive number of
parameters per task (roughly the same as the size
of language models) (Radford et al., 2019; Devlin
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Figure 1: Performance vs. Parameters trade-off on
GLUE benchmark with pretrained RoBERTa-large.

et al., 2019). These inefficiencies are exacerbated
in resource-constrained settings, such as personal
devices with limited or federated learning scenar-
ios where the costs of communicating parameter
updates may limit the scope of applications (Xu
et al., 2022; Ro et al., 2022).

The shortcomings of naive finetuning methods
have motivated research into approaches that iden-
tify and train fewer task-specific parameters (Tre-
viso et al., 2022). Those parameter-efficient
finetuning methods work by introducing task-
specific trainable layers while freezing most of
the pretrained language model parameters (e.g.,
Adapter (Houlsby et al., 2019; Pfeiffer et al., 2021),
LoRA (Hu et al., 2022)) or by introducing task-
specific trainable prompts or inputs (e.g., prompt-
tuning based WARP (Hambardzumyan et al., 2021),
prefix-tuning (Li and Liang, 2021)). We summarize
the key properties of prominent efficient finetuning
methods in Table 1. Among these methods, WARP
is particularly interesting. It demonstrated compa-
rable performance to full-finetuning with as few
as 25K trainable parameters on natural language
understanding (NLU) tasks.
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Method Parameter
Sharing

Efficient
Inference Multi-layer

Adapter ✗ ✗ ✓
LoRA ✗ ✓ ✓
BitFit ✗ ✓ ✓
WARP ✗ ✗ ✗
Ours ✓ ✓ ✓

Table 1: Parameter Efficient Finetuning Methods

WARP inserts trainable token embeddings
around input, i.e., task-specific parameters are in-
serted only in the input layer. Due to this, WARP
is limited compared to other methods that in-
sert trainable parameters in different layers (i.e.,
Multi-layer), as the information may not propagate
correctly to the deeper layers (Liu et al., 2022b).
As such, our proposed method inserts task-specific
information in each transformer block. In partic-
ular, we add a bias or shift vector to the output
feed-forward layer’s activation in each transformer
block. All these shifts are derived from a single
trainable vector, keeping the total trainable param-
eter count similar to WARP.

This is in contrast to BitFit (Ben Zaken et al.,
2022), which updates all the bias parameters
independently without sharing. Our proposed
parameter sharing or joint reparametrization of
task parameters drastically reduces the number
of trainable parameters without significant perfor-
mance degradation. On average, our method is
within two points of BitFit on NLU tasks but uses
20x fewer parameters. Specifically, we achieve
within 5% of full finetuning performance with only
4.1K parameters (see Figure 1), outperforming
WARP which uses a similar number of parame-
ters. Lastly, we show that parameter sharing and
multi-layer tuning can also improve WARP.

WARP increases the effective sequence length,
and Adapter inserts task-specific layers, incurring
additional computational overhead. In contrast, our
method is efficient in memory usage and run-time
during training. Further, task-specific parameters
learned by our approach can be fused with LM
during inference, leading to no additional latency
during inference, making it especially appealing for
resource-constrained applications. Besides compu-
tational efficiency, our approach’s parameter effi-
ciency makes it an excellent private learner. Our
approach’s utility is competitive or outperforms the
best differential private finetuning results (Yu et al.,
2022) when training for similar levels of privacy.

2 Method

Model. Figure 2 summarizes our model, high-
lighting task-specific parameters with colored fonts.
Specifically, we consider a trainable vector z ∈ Rd

to incorporate task-specific information in each
transformer block. We do so by projecting z with
random but fixed matrices Wl to obtain shift vec-
tors zl for the lth transformer block (zl ∈ Rd′l ,
Wl ∈ Rd′l×d, and l ∈ {1 . . . L}). zl is added to
the output activations of the respective transformer
block, as shown in Figure 2. zl is of the same
dimensionality as the activations of the output feed-
forward layer in the lth transformer block (d′l), and
z is shared between all the blocks. Hence, we call
our approach Shared Layer Shift or SLaSh.

The random projection matrices, Wl, are not
trainable and are fixed throughout the training. We
initialize Wl and z with zero-centered Gaussian or
Uniform distribution for our experiments (See Ap-
pendix B.2 for ablations on initialization choices).

SLaSh is akin to training only bias parameters of
the output feed-forward layers. However, the pro-
jection step decouples the dimensions of z and acti-
vations, providing the flexibility to change the num-
ber of trainable parameters and control the com-
plexity of the model by varying d irrespective of
the activation dimensions. Our choice of adding zl
to only output activations is inspired by Subramani
and Suresh (2020), who use a similar setup to learn
sentence representations. We also consider adding
the shifts to other activations, such as intermedi-
ate activations or activations after the self-attention
layer in Appendix B.1. In particular, adding shifts
to output activations performs similarly or better
than other choices. Adding shifts to intermediate
layers performs similarly to adding shifts to the
output layer. However, the dimensionality of in-
termediate activations is usually more than that of
output activations which would increase the size of
projection matrices, making it an inferior choice.

Classification Head. We experiment with token
classification and sequence classification tasks with
BERT-like models. To this end, we remove the de-
coder layer of the pretrained LM and attach a task-
specific linear layer (Classifier) to predict the out-
put from text representations. Verbalizers (Schick
and Schütze, 2021) can also be used.

Number of Parameters. SLaSh only trains the
task-specific vector (z) and the prediction head
(Classifier), usually a classification or regression
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Figure 2: Shared Layer Shift or SLaSh for sequence classification tasks. The shifts are obtained by the projections
Wlz and added to the corresponding transformer block’s output activation. z is shared across all the blocks. Red
font indicates trainable modules, i.e., parameters that are updated during finetuning. Other parameters remain
unchanged during the finetuning. [ti]ni=1 denotes the sequence of tokens.

layer. Suppose the number of class labels is C.
SLaSh will only use d+C× (d′L+1) trainable pa-
rameters per task, where d′L is the activation dimen-
sion of the last transformer block. In our implemen-
tation, we maintain additional

∑L
l=1 d

′
l × d param-

eters for Wl matrices during training. However,
these matrices can also be generated on the fly from
the random seed or state of the random number gen-
erator for both backward and forward pass compu-
tation. More concretely, RoBERTa-large has
L = 24, d′l = 1024 ∀l ∈ {1 . . . L}, and for
GLUE tasks, the number of classes, C, can be
3 maximum. If d is set to 1,024, only 4,099 train-
able parameters are required per task. In contrast,
RoBERTa-large has 355M parameters.

The maximum size of z could be the sum of the
dimensions of all the shift vectors, i.e.,

∑L
l=1 d

′
l.

Increasing the size beyond that is similar to training
respective bias parameters independently without
any sharing or reparametrization.

Inference. Pretrained LM parameters are shared
across all the tasks. The projection weights re-
main unchanged during the training and can be
reproduced from the random seed or random num-
ber generator’s state. Hence, once the model is
trained, only z and classifier parameters need to be
preserved. Our approach maintains computational
efficiency during inference as it does not require
additional computations apart from the language
model inference. Indeed, once the shift vectors zl
are computed, they can be combined with biases of
the output feed-forward layers.

Improving Prompt-Tuning. These joint
reparametrization of task parameters can also
improve prompt-tuning methods such as WARP.
We make two modifications — a) Insert prompts
in different layers, and b) Prompts are derived
from a single vector. We refer to this as JR-WARP

(Jointly Reparametrized WARP. We provide more
details about JR-WARP in Appendix A. Multilayer
or deep-prompts have already been shown improve
performance (Liu et al., 2022b; Li and Liang,
2021). Here we improve parameter efficiency
while maintaining performance.

3 Experiments

We evaluate our approach for sequence classifi-
cation tasks in Section 3.1 with the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019) and token classifica-
tion tasks with named entity recognition (NER)
on CoNLL 2003 dataset (Tjong Kim Sang and
De Meulder, 2003) in Section 3.2. We report mem-
ory and training time requirements to quantify the
computational efficiency in Section 3.3. Finally,
we demonstrate the utility of our approach for dif-
ferential private finetuning of LMs in Section 3.4.1

Baselines. We compare against full-finetuning
and several prominent parameter-efficient finetun-
ing techniques. Specifically, we compare with
Adapter (Houlsby et al., 2019), Low-Rank Adapta-
tion (LoRA, Hu et al. (2022)), BitFit (Ben Zaken
et al., 2022), and Word Adversarial Reprogram-
ming (WARP, Hambardzumyan et al. (2021)).

Adapter introduces task-specific feed-forward
layers in each transformer block. Adapter typically
trains down-project and up-project feed-forward
layers in pairs for each transformer block. The
dimensions of the down-projection (denoted as m)
govern the per-task trainable parameters.

Low-rank adaptation, or LoRA learns the
change in the pretrained weights, i.e., ∆W , for

1Details about training, hyperparameter search,
and best hyperparameters for all the experi-
ments are in Appendix C. The code is avail-
able at https://github.com/umgupta/
jointly-reparametrized-finetuning.
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Method #
Params

MNLI
(392,702)

QQP
(363,846)

QNLI
(104,743)

SST-2
(67,349)

CoLA
(8,551)

STS-B
(5,749)

MRPC
(3,668)

RTE
(2,490) Avg.

Finetuning 355M 90.2 92.2 94.7 96.4 68.0 92.4 90.9 86.6 88.9
Adapter 3M 90.4 88.5 94.7 96.3 67.4 92.5 92.9 83.4 88.3
Linear Classifier 3.1K 70.9 77.1 78.8 89.8 48.9 73.8 83.8 72.2 74.4
LoRA 800K 90.8 88.8 94.9 96.2 68.2 92.6 93.6 87.4 89.0

WARP1 4.1K 83.9 81.6 87.6 93.8 46.1 80.4 84.7 72.6 78.8
WARP8 11K 87.6 83.8 93.0 95.4 57.4 81.0 85.6 72.9 82.1
WARP20 25K 88.2 84.5 93.5 96.0 60.6 88.6 90.8 75.8 84.8
WARPMNLI 25K - - - - - 91.0 91.2 86.3 86.4

LoRA [rank = 1] 101K 90.0 87.1 94.3 95.9 63.3 91.9 92.9 85.6 87.6
Adapter [m = 1] 150K 90.4 88.0 94.7 95.9 68.0 92.1 92.6 85.6 88.4
BitFit 276K 90.4 87.3 94.5 95.4 66.0 92.1 93.3 83.4 87.8

Ours [d = 1,024] 4.1K 85.8±0.23 83.2±0.15 92.2±0.24 94.7±0.57 59.6±2.43 90.4±0.41 91.1±0.56 81.5±2.18 84.8
Ours [d = 2,048] 5.1K 87.4±0.08 84.1±0.09 92.9±0.28 94.9±0.34 60.7±2.11 90.7±0.30 91.3±0.84 83.5±1.67 85.7
Ours [d = 10K] 13.1K 89.0±0.14 85.5±0.10 93.4±0.19 95.2±0.36 62.8±1.43 91.5±0.24 89.5±4.17 84.1±1.10 86.4
JR-WARP1 [d = 10K] 13.1K 86.8±1.26 84.2±0.52 93.2±0.20 95.3±0.37 57.3±2.61 89.1±0.69 89.7±1.41 79.6±1.32 84.4

Ours [d = 24,576] (max) 27.7K 89.5 86.5 93.4 95.6 64.0 91.5 92.1 87.7 87.5

Table 2: Results of finetuning RoBERTa-large with different methods on GLUE Development set. The bracketed
numbers in the heading are training set sizes. # Params are per-task trainable parameters. Rows with very few
(< 10K) parameters are highlighted in gray to facilitate comparison. Finetuning results are from Liu et al. (2019),
and Adapter (3M) and WARP results are from Hambardzumyan et al. (2021). Linear results are the best of linear
classifier and WARP0 performance from Hambardzumyan et al. (2021).2 WARPMNLI used an additional intermediate
step of supervised training on the MNLI dataset. LoRA (800K) results are adapted from Hu et al. (2022).3 The
standard deviations are computed over 5 training runs with different seeds. Due to computational limitations, we
report error bars for our methods only.

the downstream tasks. ∆W is parameterized as the
product of low-rank matrices, which requires much
fewer parameters than full-finetuning. The rank of
the matrices determines per-task parameters.

WARPn introduces n learnable input tokens by
adding trainable embeddings to the input. It is the
continuous version of prompt-tuning and a special
case of PrefixTuning (Li and Liang, 2021), with
prefixes introduced only in the embedding layer.
The learned tokens do not necessarily correspond
to an existing token from the vocabulary.

Finally, we compare with BitFit, which finetunes
only all the bias parameters. Indeed, BitFit fine-
tunes a superset of parameters considered by our
approach. Further, SLaSh shares trainable parame-
ters across all the blocks, which is more efficient.

3.1 Sequence Classification Tasks

Datasets. We use the GLUE benchmark for
sequence classification. We consider 2 single-
sentence tasks and 6 sentence pair tasks from the

2WARP0 feeds [MASK] representations to the classifier
head, whereas the linear classifier uses [CLS]representations.

3Since they report different metrics, we evaluated LoRA
from the provided checkpoints on MNLI, STS-B, and QQP.

GLUE benchmark. Corpus of Linguistic Accept-
ability (CoLA) and Stanford Sentiment Treebank
(SST-2) are the single sentence tasks, and the task is
to predict grammatical acceptability and sentiment.
Microsoft Research Paraphrase Corpus (MRPC),
Semantic Textual Similarity Benchmark (STS-B),
and Quora Question Pairs (QQP) are the sentence
similarity tasks. Multi-genre Natural Language In-
ference (MNLI), Question-Answering NLI (QNLI),
and Recognizing textual entailments (RTE) are tex-
tual entailment prediction tasks. Similar to Devlin
et al. (2019); Houlsby et al. (2019), we omit results
on Winograd Schema Challenge (WNLI) as LMs
do not outperform random prediction baselines.

All the tasks except STS-B are considered su-
pervised classification tasks. Labels for STS-B are
similarity scores from 1-5, and thus it is considered
a regression task. We report accuracy on matched
validation set for MNLI, Matthew’s correlation and
Pearson correlation on CoLA and STS-B, F1-score
for MRPC and QQP, and accuracy for the rest of
the tasks on the development set. Model selection
is also performed based on these metrics.

[CLS] vs. [MASK] Representations. We con-
sider two sentence-level representations for se-
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Method % params MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Finetuning 100% 86.4 88.0 92.3 94.2 61.1 90.6 92.5 77.4 85.3
BitFit 0.09% 85.8 85.2 91.9 93.7 60.1 90.6 91.9 71.8 83.9
LoRA [rank = 1] 0.04% 86.3 85.6 92.7 94.3 60.1 90.1 91.3 76.2 84.6
Adapter [m = 1] 0.05% 86.7 86.1 92.0 94.3 61.4 91.0 92.3 78.3 85.3

Ours [d = 1,024] 0.003% 80.6±0.26 80.9±0.09 89.1±0.53 92.6±0.27 55.5±1.99 89.4±0.19 90.4±0.76 76.9±1.87 81.9
Ours [d = 5K] 0.007% 83.6±0.16 83.2±0.11 90.6±0.21 93.1±0.45 59.1±1.74 89.9±0.28 90.7±0.88 76.7±1.84 83.4
JR-WARP1 [d = 5K] 0.007% 81.9±0.78 81.6±0.66 88.2±1.24 92.5±0.60 43.4±9.12 86.3±1.75 82.5±3.45 69.5±1.36 78.2

Ours [d = 9,216] (max) 0.011% 84.4 83.9 90.5 93.7 58.8 90.1 90.8 79.4 83.9

Table 3: Results of finetuning RoBERTa-base with different methods on GLUE Development set. Finetuning
results are taken from Ben Zaken et al. (2022). RoBERTa-base has 108 million parameters. The standard
deviations are computed over 5 training runs with different seeds. Due to computational limitations, we report error
bars for our methods only.

quence classification tasks — [CLS] and [MASK]
token representations. Masked language models
(MLMs) such as BERT and RoBERTa are pre-
trained by attaching a [CLS] token to the begin-
ning of the input text. The [CLS] token representa-
tion is trained with the next sentence prediction loss
and thus touted as the sentence-level representation.
To this end, most previous works use [CLS] token
representations. However, Hambardzumyan et al.
(2021) suggested that [MASK] tokens representa-
tions, i.e., inserting the [MASK] token at the end of
input for single-sentence or between the sentences
for tasks involving sentence pairs, produces better
results than using [CLS] token representation.

We also find that the [MASK] representations
are better than [CLS] representations generally
and report results with [MASK] representations in
the paper. We compare the two in Appendix B.3.

Training. We use RoBERTa (Liu et al., 2019)
as the pretrained model to compare with previ-
ous works. For SLaSh, we vary the number of
parameters by varying the size of the z vector. The
output activation and embedding dimensions are
1,024 in RoBERTa-large. So, we train with d
= 1,024 and 2,048 to compare head-to-head with
WARP. We report results with d = 5K and 10K for
RoBERTa-base and RoBERTa-large, which
improves the results further. To demonstrate the
capabilities of tuning only output activation’s bi-
ases, we train with the maximum possible d, i.e.,
the total number of activations, 9,216 and 24,576
for RoBERTa-base and RoBERTa-large. We
also train LoRA and Adapter with minimum pa-
rameter configurations (rank = 1 and m = 1) as
the results reported in their papers use a larger
number of parameters than those concerning this

work. We demonstrate that parameter sharing can
also improve WARP by introducing JR-WARP and
training it with d = 5K and 10K for respective
RoBERTa models.

Results. Tables 2 and 3 summarize the results of
finetuning with different methods using pretrained
RoBERTa models. Parameter-efficient finetuning
approaches aim to achieve performance at par with
full finetuning while using fewer parameters. To
this end, Figure 1 provides a visual summary of the
parameter vs. performance trade-offs.

SLaSh’s average performance is already within 4
points of full finetuning for both RoBERTa-base
and -large models with d = 1,024. This gap is
further reduced by increasing the dimension of the
z vector. Even though the best models from our
approach do not match the full-finetuning perfor-
mance overall, for smaller datasets such as STS-B,
MRPC, and RTE, SLaSh is competitive with full-
finetuning. In the case of RoBERTa-large, we
have 92.4 vs. 91.5 for STS-B, 90.9 vs. 91.3 for
MRPC, and 86.6 vs. 84.1 for RTE with finetuning
and SLaSh, respectively.4 The parameter sharing
reduces the per-task parameters considerably (4
orders of magnitude less) and is faster and more
efficient to train (Section 3.3). All these make our
approach suitable for low-resource, low-data appli-
cations such as training on edge devices or learning
personalized models.

Most efficient tuning techniques tune a few hun-
dred thousand parameters, except for WARP. It
adds trainable parameters around input embed-
dings, which facilitates training with a few thou-

4Note that we consider the average performance of SLaSh
across different training runs, whereas, for baselines, perfor-
mance from a single training run with fixed seed is reported.
This can slightly exaggerate baseline numbers.
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sand parameters and is most comparable to our ap-
proach in per-task parameters. Our approach with d
= 2,048 (i.e., 5.1K parameters) outperforms WARP
with 25K parameters on all datasets with less than
10K training samples. Further, SLaSh outperforms
the best results of WARP while using less than 60%
of parameters (13K vs. 25K). These observations
do not change even with WARP pretraining on the
MNLI task to improve the performance on smaller
datasets (WARPMNLI). We do not require this su-
pervised pretraining trick. These results validate
the intuition that instead of introducing task pa-
rameters closer to the input layer as in WARP, it
may be more effective to introduce the parameters
throughout the layers as in SLaSh.

Armed with this intuition, we improve WARP’s
performance by introducing prompts in all trans-
former blocks derived from a single vector (JR-
WARP). On average, it underperforms SLaSh, and
the variance among different training runs is higher.
Nevertheless, JR-WARP performs comparably to
WARP20 (84.4 vs. 84.8) while using fewer parame-
ters (13K vs. 25K), suggesting that reusing param-
eters across layers improves parameter efficiency
but does not deteriorate performance.

Next, we compare with LoRA and Adapter, ar-
guably the most prominent language transformer
finetuning approaches. We note that the Adapter
(rank = 1) has a slightly better average performance
than LoRA (m = 1) (Tables 2 and 3). SLaSh per-
forms comparably to these methods for smaller
datasets, using 5x fewer parameters and being
roughly 2x faster to train for RoBERTa-base and
7x fewer parameters and roughly 1.25x faster to
train for RoBERTa-large (Tables 2, 3 and 5).
For example, in the case of RoBERTa-base, we
have 91.0 vs. 89.9 for STS-B, 92.3 vs. 90.7 for
MRPC, and 78.3 vs. 76.7 for RTE with Adapter
and SLaSh, respectively.

Finally, SLaSh performs comparably to BitFit
while tuning much fewer parameters. As with the
other baselines, it is only for the larger datasets that
BitFit considerably outperforms SLaSh. Further,
we observe that tuning only output activation’s bi-
ases, which used fewer than 15% of BitFit’s param-
eters, performs comparably to BitFit on average
(last row of Tables 2 and 3).

Another interesting result is the performance
of BitFit vs. Adapter and LoRA with a similar
number of trainable parameters. We observe that
Adapter and LoRA outperform BitFit on most tasks

Method # params Test Validation

Finetuning 108M 91.35 94.97
Linear Classifier 7K 82.02 85.94
LoRA [rank = 1] 44K 89.50 93.38
Adapter [m = 1] 63K 90.09 93.55
BitFit 109K 89.83 93.62
WARP20 22.3K 86.03 89.89

Ours [d = 1,024] 8K 86.49 89.37
Ours [d = 5K] 12K 88.30 91.38
JR-WARP1 [d = 5K] 12K 87.08 90.93

Table 4: Results of finetuning BERT-base-cased
for NER task on CoNLL-2003 (English) dataset.

with fewer trainable parameters. For instance, Bit-
Fit outperforms LoRA on QNLI, CoLA, STS-B,
MRPC with RoBERTa-large, and only STS-B
and MRPC with RoBERTa-base. Adapter out-
performs BitFit on all the tasks with both pretrained
models except MRPC with RoBERTa-large.
These results contradict Ben Zaken et al. (2022),
suggesting that while tuning bias parameters may
achieve close to finetuning, LoRA or Adapter may
yield better performance with fewer parameters.

3.2 Token Classification Task
Next, we evaluate our method on more complex
token classification tasks such as NER. We con-
sider the CoNLL-2003 (English) dataset. We use
BERT-base-cased as the pretrained-LM and
finetune it to predict the 9 entity classes. We use
the validation set for model selection and report
micro-F1 on the test and validation sets.

Results. Table 4 reports the results of finetun-
ing with BERT-base-cased for the NER task.
We see similar trends in performance as the se-
quence classification task. However, owing to
the complexity of the NER task, all the methods
underperform full-finetuning significantly (91.35
F1 score). SLaSh with 8K parameters underper-
forms full-finetuning by more than 4 points (86.49).
The performance is improved to 88.30 by increas-
ing the number of trainable parameters. However,
LoRA, Adapter, and BitFit outperform the best re-
sults from SLaSh by roughly 1.5 points but use
more than 3.5x parameters compared to SLaSh.
Among the parameter-efficient techniques, Adapter
performed the best while using fewer parameters
than BitFit. Similar to Section 3.1, SLaSh and JR-
WARP outperform WARP. Hyperparameter tun-
ing (e.g., increasing the sequence length) can im-
prove JR-WARP results further. Overall, SLaSh
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Method Time (s) Memory (GB)

Finetuning 3291 15.6
BitFit 2083 8.6
LoRA [rank = 1] 2019 13.0
Adapter [m = 1] 2289 13.1
WARP20 1869 9.0
Ours [d = 10K] 1764 9.3

(a) RoBERTa-large

Method Time (s) Memory (GB)

Finetuning 1227 5.8
BitFit 819 3.3
LoRA [rank = 1] 1026 4.9
Adapter [m = 1] 1385 4.8
WARP20 635 3.5
Ours [d = 5K] 558 3.3

(b) RoBERTa-base

Table 5: Memory and execution time for training 1 epoch on QNLI dataset (104,743 samples) with batch size 8. We
report the maximum memory allocated during the training on a Quadro RTX 8000 GPU.

is suitable for extremely low-parameter applica-
tions, even the token classification tasks, but it may
degrade performance.

3.3 Time & Memory Requirements

One of the goals of parameter-efficient tuning is
to achieve as much utility as possible while be-
ing efficient with memory and computing. To this
end, we report memory and time for training 1
epoch on the QNLI dataset in Table 5. Full fine-
tuning requires longer execution time and more
memory than any other approach, making a clear
case for parameter-efficient approaches. SLaSh re-
quires considerably less time and memory than
LoRA and Adapter — 40% less time and 33%
less memory for RoBERTa-base and 12% less
time and 30% less memory for RoBERTa-large.
The gains are less pronounced for large models
than base because relatively more resources are
utilized for transformer computations than tuning-
specific computations. Compared to BitFit, SLaSh
trains faster, but the memory requirements are sim-
ilar due to SLaSh maintaining projection matrices
during training.

We maintained projection matrices in memory
instead of generating them on the fly for our ex-
periments, and Table 5 uses this implementation.
However, matrices can be generated on the fly
for both forward and backward passes from the
state of the random number generator, leading to
a further reduction in memory usage. With this
improvement, the memory usage comes down to
8.3 GB and 3.1 GB for the large and base model
without significantly impacting training time. Fi-
nally, WARP’s memory utilization is identical to
SLaSh, but has slightly higher training time due to
increased sequence length. SLaSh is much more
resource-efficient during training than other meth-
ods without too much compromise on performance.

Inference times for all the methods were similar.

The time to perform inference over the QNLI vali-
dation set (5,463 examples) varied between 13.9-
14.5 seconds for RoBERTa-base and 39.7-40.8
seconds for RoBERTa-large.

3.4 Differential Private Finetuning

As machine learning is beginning to be applied
in commercial settings and on user data, ensuring
the privacy of training data is becoming crucial.
Neural networks trained without safeguards can
easily leak information about their private training
data (Carlini et al., 2021, 2022). To mitigate these
issues, neural networks can be trained with a strong
notion of privacy, Differential Privacy (DP), which
limits the influence of a single training example on
the result (Dwork et al., 2014).

Differential privacy is formally characterized by
ϵ and δ and denoted as (ϵ, δ) − DP. Lower ϵ and
δ imply more privacy. The standard procedure to
train neural networks with DP is Differential Pri-
vate SGD (DPSGD, Abadi et al. (2016)). DPSGD
is a private variant of SGD in which per-sample pa-
rameter gradients are clipped, and Gaussian noise
is added before the update step. The noise magni-
tude depends on ϵ, δ, and model size and drastically
impacts utility (Tramer and Boneh, 2021).

Recently, Yu et al. (2022); Li et al. (2022) demon-
strated that the utility of differential private finetun-
ing is at par with non-private training. One of the
key insights is that the parameter-efficient methods
are better private learners than full finetuning. Intu-
itively, the amount of noise scales with parameters
and fewer parameters implies less noise is added
during training. Naturally, this encouraged us to
evaluate SLaSh and JR-WARP for private learn-
ing. To this end, we use the same setup as Yu et al.
(2022). In particular, we consider the tasks with
more than 10K samples in the GLUE benchmark
and train to achieve (ϵ = 6.7, δ = 10−6) − DP.
Different from Section 3.1, we report accuracy for
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MNLI QQP QNLI SST-2

Non-Private Training
Finetuning 90.2 92.2 94.7 96.4
Ours [d = 10K] 89.1 89.1 93.5 95.9
JR-WARP1 [d = 10K] 89.0 88.9 93.5 95.5

Private Training
Ours [d = 10K] 88.0 86.9 91.2 94.5
JR-WARP1 [d = 10K] 87.7 86.3 91.1 94.4
RGP 86.1 86.7 90.0 93.0
Adapter 87.7 86.3 90.7 93.9
Compacter 87.5 86.2 90.2 94.2
LoRA 87.8 87.4 90.8 95.3

(a) Finetuning with RoBERTa-large

MNLI QQP QNLI SST-2

Non-Private Training
Finetuning 87.6 91.9 92.8 94.8
Ours [d = 5K] 83.6 87.4 90.8 93.7
JR-WARP1 [d = 5K] 83.4 87.2 90.7 93.3

Private Training
Ours [d = 5K] 83.0 84.9 87.6 92.4
JR-WARP1 [d = 5K] 81.3 84.7 87.9 92.0
RGP 80.1 85.5 87.2 91.6
Adapter 83.4 85.6 87.5 92.5
Compacter 82.6 84.7 85.1 92.3
LoRA 83.5 85.7 87.3 92.2

(b) Finetuning with RoBERTa-base

Table 6: Results of differential private finetuning on GLUE Development set. Non-private finetuning and Private
training results for RGP, Compacter, Adapter, and LoRA are from Yu et al. (2022). Private models were trained to
achieve ϵ = 6.7 for all datasets and δ = 10−6 for MNLI, QQP, and QNLI and δ = 10−5 for SST-2. For our method,
privacy parameters are ϵ = 6.7 and δ = 10−6 for all datasets (i.e., identical or stricter than the baselines).

all the tasks here. We compare against the meth-
ods reported by Yu et al. (2022), which include
LoRA, Adapter, and Compacter (Karimi Mahabadi
et al., 2021). Compacter is an improved and effi-
cient version of the Adapter. RGP updates all the
parameters, i.e., it is similar to full-finetuning but
uses a different parametrization.

Results. Table 6 reports the results of private
finetuning RoBERTa under a fixed privacy bud-
get (ϵ = 6.7, δ = 10−6). Due to using only a
tiny number of parameters, the gap in the non-
private and private utility of SLaSh and JR-WARP
is small. Further, SLaSh outperforms all the other
methods on MNLI and QNLI tasks and is only
second to the best (LoRA) on QQP and SST-2
with RoBERTa-large. Similarly, JR-WARP and
SLaSh outperform all the other methods on the
QNLI task with RoBERTa-base; however, JR-
WARP’s utility is lower on MNLI. SLaSh’s utility
is generally comparable to other methods for all
the tasks. Our approaches (SLaSh and JR-WARP)
may be more effective for larger models as those
are easier to tune with fewer parameters (Lester
et al., 2021).

4 Related Work

Prompt tuning and task-specific finetuning are
standard ways to prime LMs for downstream
tasks (Liu et al., 2022a; Treviso et al., 2022).
Prompt tuning inserts task-specific information
or parameters around the input. Various ver-
sions exist, such as manual prompt-tuning, discrete
prompt search (Shin et al., 2020), and continuous

search (Hambardzumyan et al., 2021). Prompt tun-
ing is highly parameter efficient but is generally
only effective for larger LMs (Lester et al., 2021;
Yang et al., 2022). Due to joint reparametrization,
our method uses a similar number of parameters as
prompt-tuning methods but outperforms them.

Several parameter-efficient LM finetuning meth-
ods have been proposed, such as Adapter (Houlsby
et al., 2019), LoRA (Hu et al., 2022), Prefix-
Tuning (Li and Liang, 2021), and Parallel
Adapters (He et al., 2022). Further improvements
try to maintain the utility while reducing the pa-
rameters such as Compacter (Karimi Mahabadi
et al., 2021) that parameterizes weight matrices via
the sum of Kronecker products, pruning adapter
layers (Rücklé et al., 2021; Pfeiffer et al., 2021)
and gating mechanisms to choose the best mod-
ules (Mao et al., 2022). These methods outperform
prompt tuning but use more parameters. In con-
trast, we outperform prompt tuning while using
similar number of parameters and are competitive
with other finetuning approaches.

Our approach could be of independent inter-
est for understanding intriguing properties of pre-
trained language models, the role of different pa-
rameters, and sharing parameters across layers.
Ben Zaken et al. (2022); Cai et al. (2020) have
shown that pretrained models can be finetuned by
only updating the bias parameters, but unlike us,
they do not share parameters. Gheini et al. (2021)
finetune only cross attention layers for machine
translation. Zhou et al. (2022b) share only output
layers across tasks, but parameters across different
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layers are not shared. Zhou et al. (2022a) have
shown that task embeddings can be derived from
task-specific finetuned parameters. The z in our
approach can also be helpful as a task-embedding.

Parameters derived by fixed random transforma-
tions a few parameters have previously been used
to study the task’s intrinsic dimensionality (Li et al.,
2018; Aghajanyan et al., 2021). Those works fo-
cus on weight matrices. While insightful, these are
cumbersome to train for real-world deployment. In-
stead, we focus on bias or embeddings, providing a
tractable operationalization for regular training and
finetuning while using similar order of parameter
count. For example, Aghajanyan et al. (2021) show
that the intrinsic dimension of the QQP dataset
with RoBERTa-large is 774, i.e., at least 774
parameters are required to achieve within 90% of
full finetuning performance. SLaSh achieves an
F1-score of 83.2, more than 90% of full finetun-
ing performance on QQP with 4.1K parameters
(92.2× 0.9 = 83.0).

5 Conclusion

We introduce a multilayer LM finetuning technique
where task-specific parameters are derived from a
single vector. We show two instantiations of this
technique — SLaSh and JR-WARP. SLaSh intro-
duced shifts in the output activation of each trans-
former block, whereas JR-WARP inserted prompts
in each transformer block. These methods require
only a tiny fraction of the original language model
parameters (similar to prompt-tuning) and outper-
form previous methods that use a similar number
of per-task parameters. Despite the drastic reduc-
tion in the number of parameters, we demonstrate
that these perform just as well as full finetuning for
sentence and token classification tasks (only at max
a 5% difference in performance). The high param-
eter efficiency leads to better training speed and
resource utilization and improves private training.

6 Limitations

Experiments. In this work, we propose new
methods for finetuning language models. We ac-
knowledge that similar to previous approaches, our
experiments are limited to English datasets and spe-
cific supervised tasks. However, our method does
not use language- or task-specific tricks and should
apply to other languages and tasks.

Method. As demonstrated in Section 3, SLaSh is
computationally efficient and performs comparably

to the full finetuning for small datasets. Moreover,
its parameter and memory efficiency makes it an
excellent private learner. However, it may underper-
form by a few points compared to full-finetuning
larger datasets with higher intrinsic dimensionality
due to using very few parameters. For example,
SLaSh struggles with generative tasks such as text
summarization, as generative tasks are more com-
plex and involve making predictions over the whole
vocabulary. In contrast, classification tasks have
relatively fewer output labels. In our initial experi-
ments, SLaSh reached a ROUGE-2 score of 12.93
on the XSum summarization task (Narayan et al.,
2018) with pretrained BART, whereas full finetun-
ing achieves a score of 21.94 (He et al., 2022).

The limitations of SLaSh are due to the small
number of parameters it updates. Since shift is
applied to only certain biases, the number of pa-
rameters can not be increased beyond a limit. How-
ever, we show that SLaSh is a more efficient and
performant alternative to the methods that use a
similar number of per-task parameters. Moreover,
we showed that joint reparametrization improves
parameter efficiency of other methods. As such,
this principle can be extended to methods that are
not restricted by a maximum limit on the number
of parameters. For example, JR-WARP’s param-
eters can be naturally increased by increasing the
prompt length, which should improve the results
further (details in Appendix A).

7 Ethics Statement

We propose a parameter-efficient method to tune
transformer-based language models. The ethical
implications are similar to the finetuning methods
proposed before us. Our method improves param-
eter and computational efficiency, which should
have an overall positive impact by reducing costs
and enabling low-resource applications. Further,
the positive private training results should encour-
age its adoption in real-world setups.
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Supplementary: Jointly Reparametrized Multi-Layer Adaptation for
Efficient and Private Tuning

Classifier

Transfomer 
Block

Transfomer 
Block

Figure 3: JR-WARP for sequence classification tasks
with prompt length 1. Similar to Figure 2, trainable mod-
ules are indicated in red. [ti]ni=1 denotes the sequence
of tokens. The prompts are obtained by the projections
Wlz. For the first layer, the prompt is appended to
the token embeddings. We add the prompt to the trans-
formed prompt from the previous block for the rest of
the layers. z is shared across all the blocks.

A JR-WARP: Improved Prompt Tuning

Figure 3 summarizes JR-WARP with prompt
length 1. We introduce prompts or embeddings
in each transformer block, similar to Liu et al.
(2022b). However, in our case, the prompts are
reparametrized as random projections of a single
vector z ∈ Rd.5 The prompt is appended to the
token embeddings for the first layer, i.e., the em-
bedding layer. Previous multi-layer prompt tuning
approaches discard the transformed prompt from
the previous layers and insert a new prompt at each
layer (Lester et al., 2021; Liu et al., 2022b). In-
stead, from the second transformer block onwards,
we do not discard previous representations and add
the prompt to the resulting representation (or the
transformed prompt) from the previous layer. Wl

and z are initialized similarly to SLaSh.
WARP appends prompt only to the token em-

beddings, and in Figure 3, this can be achieved
by keeping only the lower arm emitting from z
block and setting W0 as the identity matrix. Fig-
ure 3 shows prompt length 1, but it can be ex-
tended to prompts longer than length 1. However,

5This reparametrization differs from the generally sug-
gested reparametrization of using an MLP encoder to trans-
form the prompts.

our main aim is to evaluate performance while us-
ing parameters similar to WARP. Therefore, we
keep the prompt length to 1, and d is 10K and 5K
in our experiments. When extending the prompt
length to more than one, there are multiple ways to
reparametrize prompts. For example, reparametrize
prompts within the same layer from a single z or
reparametrize prompts within the same index or
time step from a single z, as we have done in this
work.

B Ablations

Here we evaluate alternative hyperparameter
choices for SLaSh by performing ablation stud-
ies concerning the position of shifts, initialization
of parameters, and using [MASK] vs. [CLS] rep-
resentations. Overall, our results are relatively less
sensitive to these choices.

B.1 Adding shifts to other activations

In the main paper, we showed the results of adding
shifts, i.e., random projections from a trainable
vector to the output layer’s activation. These shifts
can also be added to other activations, such as the
activations after attention layers, intermediate feed-
forward layers, or a combination of these. We
evaluate these choices on tasks from the GLUE
benchmark, and Table 7 summarizes our findings.

We find that the performance of shifting atten-
tion activations is similar to shifting output acti-
vations in most cases except for RTE and CoLA.
Similar observations hold for intermediate acti-
vations. Shifting activations from intermediate
feed-forward layers performed similarly for all
tasks compared to output activations. These ob-
servations do not change when we increase the
trainable parameters. Shifting output activations
performed slightly better in terms of average per-
formance computed across all tasks. Moreover,
the intermediate activations have a higher dimen-
sion than the output activation (3,072 vs. 768 for
RoBERTa-base). Therefore, intermediate activa-
tions required maintaining bigger random projec-
tion matrices (Wl) during training.

In summary, other choices can perform similarly.
We chose output activations due to their smaller
dimension and transformers using layer norm im-
mediately after it, which can take care of sudden
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Position MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

d = 1,024 attention 80.3 81.0 88.7 93.2 57.9 89.5 91.1 73.6 81.93
d = 1,024 intermediate 80.0 81.2 88.9 93.2 59.6 89.7 92.3 76.2 82.64
d = 1,024 output 80.4 80.9 89.3 93.1 59.5 89.3 91.7 77.6 82.72

d = 5K intermediate 83.7 83.7 90.2 93.2 58.4 89.9 92.1 78.0 83.65
d = 5K output 83.4 83.4 90.6 93.2 59.3 90.4 91.9 77.6 83.74

Table 7: Effect of adding shifts at different position on sequence classification tasks (GLUE Development set) with
RoBERTa-base as the pretrained model. All the results are with [CLS] representations.

Initialization SST-2 CoLA STS-B MRPC RTE Avg.

z,Wl ∈ {N ,U} 95.0 63.6 90.8 92.1 84.8 85.27
z = 0, Wl ∈ {N ,U} 95.2 66.0 90.4 91.7 83.8 85.42
z ∈ {N ,U}, Wl = I 95.1 62.7 90.4 92.6 83.8 84.92

Table 8: Effect of different initialization of SLaSh parameters on sequence classification tasks (GLUE Development
set) with RoBERTa-large as the pretrained model. All the results use [MASK] representations and d = 1,024.

drifts in activations, etc.

B.2 Initialization

Regarding the initialization of z and Wl, we have
several choices. z can be initialized randomly or
with all zeros. Like Hambardzumyan et al. (2021),
we report results with random initialization for z
in the main paper. In particular, it is initialized as
N (0, σ = 1√

d
) or U(− 1√

12d
, 1√

12d
). The projec-

tion matrices, Wl, are also initialized randomly
with identical distributions as z. With these ini-
tialization choices, the variance of zl is 1

d in each
dimension. We consider the choice of Gaussian or
Uniform initialization as a hyperparameter.

Table 8 shows the effect of different initializa-
tion on performance for sequence classification
tasks. The results are relatively less sensitive to ini-
tialization. When both z and weight matrices are
randomly initialized, the performance is better on
STS-B, MRPC, and RTE than when z is initialized
as all zeros. However, the average performance
of all zeros is higher due to its performance being
much higher on CoLA.

For the particular case of d = 1024, i.e., the di-
mension of z is the same as the activations, we can
initialize Wl as identity. In this case, all the blocks
are shifted with the same vector. This performed
similarly or worse on all tasks except MRPC. Ran-
dom projections allow the model to select different
parts of z for each transformer block. The above-
mentioned result partly demonstrates the utility of
using random projection matrices.

B.3 [MASK] vs. [CLS] Representations

As discussed in Section 3.1, we can use [CLS]
or [MASK] representation for classification tasks.
Table 9 compares this with RoBERTa-base and
RoBERTa-large models. In terms of average
performance, we find that [MASK] token repre-
sentations are better or similar to [CLS] token
representations.

The choice of representations mattered very little
for bigger datasets (>10K samples), with the perfor-
mance being similar for both choices. For smaller
datasets, however, we do not see any clear pat-
terns. On average, [MASK] token representation
performed slightly better than [CLS] representa-
tion, echoing the observation of Hambardzumyan
et al. (2021). So we use [MASK] representation
for all the results in the main paper.

C Hyperparameters

Our implementation is based on the Hugging Face
Transformers library (Wolf et al., 2020) and Py-
Torch 1.10 and 1.13. We use AdapterHub (Pfeiffer
et al., 2020) for training LoRA and Adapter models.
We use PyTorch-Opacus (Yousefpour et al., 2021)
for private training. We mainly vary the learning
rate and training epochs for all the methods. For
SLaSh and JR-WARP, we consider one additional
hyperparameter — Gaussian or Uniform initializa-
tion and disable all the dropout layers.

We use a similar training setup for
sequence classification tasks as Hambardzumyan
et al. (2021). We tune the learning rate in
{1e−4, 3e−4, 1e−3, 3e−3, 1e−2, 3e−2} and use
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Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

RoBERTa-base
d = 1,024, [MASK] 80.8 80.9 89.8 92.9 57.6 89.5 91.0 78.7 82.65
d = 1,024, [CLS] 80.4 80.9 89.3 93.1 59.5 89.3 91.7 77.6 82.72
d = 5K, [MASK] 83.6 83.2 90.8 93.7 61.3 90.3 91.3 79.4 84.21
d = 5K, [CLS] 83.4 83.4 90.6 93.2 59.3 90.4 91.9 77.6 83.74

RoBERTa-large
d = 1024, [MASK] 86.2 83.3 92.2 95.0 63.6 90.8 92.1 84.8 86.01
d = 1024, [CLS] 86.3 83.1 92.3 95.1 61.6 90.5 92.6 82.3 85.47
d = 10K, [MASK] 89.1 85.6 93.6 95.9 65.5 91.8 91.8 85.6 87.33
d = 10K, [CLS] 89.1 85.7 93.6 95.8 64.0 91.7 91.8 86.6 87.29

Table 9: Comparing SLaSh with [MASK] and [CLS] token representation on sequence classification tasks (GLUE
Development set).

Task d = 1,024 d = 2,048 d = 10K

Initialization LR # Epoch Initialization LR # Epoch Initialization LR # Epoch

RTE N 3e−2 10 U 1e−2 20 U 1e−2 10
MRPC U 1e−2 20 U 1e−2 10 U 1e−2 20
STSB U 3e−3 10 U 1e−2 10 U 3e−3 10
CoLA N 3e−3 20 U 1e−2 10 N 1e−2 10
SST-2 N 3e−3 10 N 1e−3 20 N 3e−3 10
QNLI U 3e−3 20 N 3e−3 20 U 1e−3 10
QQP U 3e−3 20 N 1e−3 20 N 1e−3 20
MNLI N 3e−4 10 N 1e−3 20 U 1e−3 20

Table 10: Hyperparameters of best-performing SLaSh models for sequence classification with RoBERTa-large.
Results shown in Table 2.

Task d = 1,024 d = 5K

Initialization LR # Epoch Initialization LR # Epoch

RTE U 1e−2 20 U 1e−2 10
MRPC N 3e−2 10 N 1e−2 10
STSB N 1e−2 10 N 1e−2 20
CoLA U 3e−3 10 N 1e−2 10
SST-2 N 1e−3 10 U 1e−2 10
QNLI U 3e−3 20 U 3e−3 20
QQP N 1e−3 20 N 3e−3 20
MNLI N 1e−3 10 N 1e−3 20

Table 11: Hyperparameters of best-performing SLaSh models for sequence classification with RoBERTa-base.
Results shown in Table 3.

Task RoBERTa-base (d = 5K) RoBERTa-large (d = 10K)

Initialization LR # Epoch Initialization LR # Epoch

RTE N 1e−2 10 U 1e−2 20
MRPC U 3e−3 10 N 1e−2 10
STSB N 1e−2 20 N 1e−2 20
CoLA N 1e−2 10 N 1e−2 20
SST-2 U 3e−3 10 U 1e−2 20
QNLI U 3e−3 20 N 1e−2 20
QQP U 3e−3 20 N 3e−3 20
MNLI N 3e−3 20 N 1e−3 20

Table 12: Hyperparameters of best-performing JR-WARP models for sequence classification with RoBERTa.
Results shown in Tables 2 and 3.
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Task RoBERTa-base RoBERTa-large

Initialization LR Grad. Clip Threshold Initialization LR Grad. Clip Threshold

SST-2 U 3e−3 0.1 U 1e−3 1.0
QNLI U 1e−2 1.0 N 1e−2 0.1
QQP N 3e−3 1.0 N 3e−3 1.0
MNLI U 3e−3 1.0 U 3e−3 1.0

Table 13: Hyperparameters of best-performing SLaSh models for private training. Results shown in Table 6.

Task RoBERTa-base RoBERTa-large

Initialization LR Grad. Clip Threshold Initialization LR Grad. Clip Threshold

SST-2 N 1e−2 0.1 N 1e−2 1.0
QNLI U 1e−2 1.0 N 1e−2 1.0
QQP N 1e−2 1.0 U 1e−2 1.0
MNLI U 1e−2 1.0 U 1e−2 0.1

Table 14: Hyperparameters of best-performing JR-WARP models for private training. Results shown in Table 6.

a linear learning rate scheduler with a warmup
ratio of 0.06. We train for 10 or 20 epochs with a
batch size of 8, and the gradient magnitudes are
clipped to 1.0. Tables 10 and 11 and Table 12
list the best hyperparameters for each task for
SLaSh and JR-WARP, respectively. We find the
best hyperparameters based on the performance
on the validation set from a single training run.
Then to report the error bars (in the main paper),
we train several models with those best-found
hyperparameters but with different random seeds.

For token classification tasks, we tune the learn-
ing rate in {1e−4, 3e−4, 1e−3, 3e−3, 1e−2, 3e−2}
with a linear learning rate scheduler and use a
warmup ratio of 0.1. We train for 5 epochs with
a batch size of 32. The best result for SLaSh is
obtained with uniform initialization and a learn-
ing rate of 0.01. The best result for JR-WARP
is obtained with normal initialization and a 0.03
learning rate.

For private training, we replicated the setup of
Yu et al. (2022) as much as possible. In particular,
we tune the learning rate in {1e−3, 3e−3, 1e−2}
without any scheduler and train for 20 epochs. We
used a batch size of 2048 and considered two per
sample gradient clipping thresholds — 0.1 and 1.0.
We use the PRV accountant of Gopi et al. (2021)
for privacy accounting, the same as Yu et al. (2022),
to keep the results comparable. Based on this ac-
countant, the Gaussian noise magnitudes for MNLI,
QQP, QNLI, and SST-2 were 0.643, 0.651, 0.831,
and 0.925. Table 13 and Table 14 list the best hy-
perparameters for SLaSh and JR-WARP.
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