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Abstract

Pretrained multilingual Transformers have
achieved great success in cross-lingual trans-
fer learning. Current methods typically acti-
vate the cross-lingual transferability of multi-
lingual Transformers by fine-tuning them on
end-task data. However, the methods cannot
perform cross-lingual transfer when end-task
data are unavailable. In this work, we explore
whether the cross-lingual transferability can
be activated without end-task data. We pro-
pose a cross-lingual transfer method, named
PLUGIN-X. PLUGIN-X disassembles mono-
lingual and multilingual Transformers into sub-
modules, and reassembles them to be the mul-
tilingual end-task model. After representation
adaptation, PLUGIN-X finally performs cross-
lingual transfer in a plug-and-play style. Exper-
imental results show that PLUGIN-X success-
fully activates the cross-lingual transferability
of multilingual Transformers without accessing
end-task data. Moreover, we analyze how the
cross-model representation alignment affects
the cross-lingual transferability.

1 Introduction

Annotated data is crucial for learning natural lan-
guage processing (NLP) models, but they are
mostly only available in high-resource languages,
typically in English, making NLP applications
hard to access in other languages. This motivates
the studies on cross-lingual transfer, which aims
to transfer knowledge from a source language to
other languages. Cross-lingual transfer has greatly
pushed the state of the art on NLP tasks in a wide
range of languages (Conneau et al., 2020; Chi et al.,
2021; Xue et al., 2021).

Advances in cross-lingual transfer can be sub-
stantially attributed to the cross-lingual transferabil-
ity discovered in pretrained. multilingual Trans-
formers (Devlin et al., 2019; Conneau and Lample,
2019). Pretrained on large-scale multilingual text
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data, the multilingual Transformers perform cross-
lingual transfer surprisingly well on a wide range of
tasks by simply fine-tuning them (Wu and Dredze,
2019; K et al., 2020; Hu et al., 2020). Based on this
finding, follow-up studies further improve the trans-
fer performance in two aspects, by (1) designing
pretraining tasks and pretraining multilingual mod-
els with better cross-lingual transferability (Wei
et al., 2021; Chi et al., 2021), or (2) developing
fine-tuning methods with reduced cross-lingual rep-
resentation discrepancy (Zheng et al., 2021; Yang
et al., 2022).

Current methods typically activate the transfer-
ability of multilingual Transformers by fine-tuning
them on end-task data. However, they cannot per-
form cross-lingual transfer when end-task data are
unavailable. It is common that some publicly avail-
able models are trained with non-public in-house
data. In this situation, one can access an already-
trained end-task model but cannot access the in-
house end-task data due to privacy policies or other
legal issues. As a consequence, current methods
cannot perform cross-lingual transfer for such mod-
els because of the lack of end-task data.

In this work, we study the research question:
whether the cross-lingual transferability of mul-
tilingual Transformers can be activated without
end-task data? We focus on the situation that we
can access an already-trained monolingual end-task
model but cannot access the in-house end-task data,
and we would like to perform cross-lingual trans-
fer for the model. To achieve this, we propose a
cross-lingual transfer method named PLUGIN-X.
PLUGIN-X disassembles the monolingual end-task
model and multilingual models, and reassembles
them into the multilingual end-task model. With
cross-model representation adaptation, PLUGIN-X
finally performs cross-lingual transfer in a plug-
and-play style.

To answer the research question, we conduct ex-
periments on the cross-lingual transfer on the natu-
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ral language inference and the extractive question
answering tasks. In the experiments, the multilin-
gual model only sees unlabeled raw English text,
so the performance of the reassembled model indi-
cates whether the cross-lingual transferability is ac-
tivated. Experimental results show that PLUGIN-X
successfully transfers the already-trained monolin-
gual end-task models to other languages. Moreover,
we analyze how the cross-model representation
alignment affects the cross-lingual transferability
of multilingual Transformers, and discuss the bene-
fits of our work.

Our contributions are summarized as follows:

• We investigate whether the cross-lingual trans-
ferability of multilingual Transformers can be
activated without end-task data.

• We propose PLUGIN-X, which transfers
already-trained monolingual end-task models
to other languages without end-task data.

• Experimental results demonstrate PLUGIN-X
successfully activates the transferability.

2 Related Work

Cross-lingual transfer aims to transfer knowledge
from a source language to target languages. Early
work on cross-lingual transfer focuses on learning
cross-lingual word embeddings (CLWE; Mikolov
et al. 2013) with shared task modules upon the
embeddings, which has been applied to document
classification (Schwenk and Li, 2018), sequence la-
beling (Xie et al., 2018), dialogue systems (Schus-
ter et al., 2019), etc. Follow-up studies design
algorithms to better align the word embedding
spaces (Xing et al., 2015; Grave et al., 2019) or
relax the bilingual supervision of lexicons and par-
allel sentences (Lample et al., 2018; Artetxe et al.,
2018). Later studies introduce sentence-level align-
ment objectives and obtain better results (Conneau
et al., 2018).

Most recently, fine-tuning pretrained language
models (PLM; Devlin et al. 2019; Conneau and
Lample 2019; Conneau et al. 2020) have become
the mainstream approach to cross-lingual transfer.
Benefiting from large-scale pretraining, pretrained
multilingual language models are shown to be of
cross-lingual transferability without explicit con-
straints (Wu and Dredze, 2019; K et al., 2020).
Based on this finding, much effort has been made
to improve transferability via (1) pretraining new

multilingual language models (Wei et al., 2021;
Chi et al., 2021; Luo et al., 2020; Ouyang et al.,
2020), or (2) introducing extra supervision such as
translated data to the fine-tuning procedure (Fang
et al., 2021; Zheng et al., 2021; Yang et al., 2022).
PLM-based methods have pushed the state of the
art of the cross-lingual transfer on a wide range
of tasks (Goyal et al., 2021; Chi et al., 2022; Xue
et al., 2021).

3 Methods

In this section, we first describe the problem defini-
tion. Then, we present how PLUGIN-X performs
cross-lingual transfer with model reassembling and
representation adaptation.

3.1 Problem Definition
For the common setting of cross-lingual transfer,
the resulting multilingual end-task model is learned
by finetuning pretrained multilingual Transformers:

θx
t = argmin

θ
Lt(Den

t ,θ), (1)

where Den
t and Lt stand for the end-task training

data in the source language and the loss function for
learning the task t, respectively. The initial param-
eters of the end-task model are from a pretrained
multilingual Transformer, i.e., θ0 := θx.

Differently, we present the public-model-in-
house-data setting for cross-lingual transfer, or
PMID. Specifically, given an already-trained
monolingual end-task model, we assume that the
model is obtained by finetuning a publicly avail-
able pretrained monolingual Transformer but the
training data for the end task are non-public in-
house data. Under the PMID setting, we can access
a monolingual end-task model ωen

t and its corre-
sponding pretrained model before finetuning ωen.
The goal of cross-lingual transfer can be written as

ωx
t = argmin

ω
L(ωen

t ,θx,Den
u ,ω), (2)

where using the easily-accessible unlabeled text
data Den

u is allowed. In what follows, we describe
how PLUGIN-X performs cross-lingual transfer un-
der the PMID setting.

3.2 Model Reassembling
Figure 1 illustrates the procedure of model reassem-
bling by PLUGIN-X. PLUGIN-X disassembles
monolingual and multilingual models and reassem-
bles them into a new multilingual end-task model.
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Figure 1: Model reassembling by PLUGIN-X. PLUGIN-X disassembles monolingual and multilingual models and
then reassembles them into a new multilingual end-task model. The resulting model consists of three modules,
namely multilingual encoder, cross-model connector, and end-task module.

The resulting model consists of three modules, mul-
tilingual encoder, cross-model connector, and end-
task module. The multilingual encoder and cross-
model connector are assembled as a pipeline, which
is then plugged into the end-task module.

Multilingual encoder To enable the monolin-
gual end-task model to work with other languages,
we use a pretrained multilingual language model
as a new encoder. Inspired by the ‘universal
layer’ (Chi et al., 2021) phenomenon, we divide the
pretrained model into two sub-modules at a middle
layer and keep the lower module as the encoder, be-
cause it produces the representations that are better
aligned across languages (Jalili Sabet et al., 2020).

Cross-model connector Although the multilin-
gual encoder provides language-invariant represen-
tations, the representations can not be directly used
by the monolingual end-task model as they are
unseen by the end-task model before. Thus, we
introduce a cross-model connector, which aims to
map the multilingual representations to the repre-
sentation space of the monolingual end-task model.
We simply employ a stack of Transformer (Vaswani
et al., 2017) layers as the connector, because:
(1) pretrained contextualized representations have
more complex spatial structures, so simple linear
mapping is not applicable; (2) using the Trans-
former structure enables us to leverage the knowl-
edge from the remaining pretrained parameters that
are discarded by the multilingual encoder.

End-task module We plug the aforementioned
two modules into a middle layer of the end-task
model. The bottom layers are discarded and the

remaining top layers work as the end-task module.
Under the PMID setting, the end-task model is a
white-box model, which means we can obtain its
inner states and manipulate its compute graph.

We reassemble the above three sub-modules as
a pipeline. Formally, let fx(·;θx), fc(·;ωc) and
ft(·;ωen

t ) denote the forward function of the multi-
lingual encoder, cross-model connector, and end-
task module, respectively. The whole parameter set
of the reassembled model is ωx

t = {θx,ωc,ω
en
t }.

Given an input sentence x, the output ŷ of our
model is computed as

ŷ ∼ p(y|x;ωx
t ) = ft ◦ fc ◦ fx(x;ω

x
t ). (3)

3.3 Representation Adaptation
PLUGIN-X activates the cross-lingual transferabil-
ity by cross-model representation adaptation. It
adapts the representation of the multilingual en-
coder to the representation space of the monolin-
gual end-task module, by tuning the cross-model
connector. We employ masked language model-
ing (MLM; Devlin et al. 2019) as the training ob-
jective, which ensures that the training does not
require the in-house end-task data but only unla-
beled text data. To predict the masked tokens, we
use the original pretrained model of ωen

t as the end-
task module, denoted by ωen.

However, it is infeasible to directly apply MLM
because the reassembled uses two different vocab-
ularies for input and output. Therefore, we pro-
pose heterogeneous masked language modeling
(HMLM) with different input and output vocab-
ularies. As shown in Figure 2, we generate training
examples with the following procedure. First, give
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Raw text: The fat cat sat on the red mat.

The fat cat sat on the red mat .
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Figure 2: Heterogeneous masked language modeling
with different input and output vocabularies for repre-
sentation adaptation.

an input sentence x, we tokenize x into subword to-
kens with the vocabulary of the monolingual model
ωen. Then, we randomly select masked tokens as
the labels. Next, we re-tokenize the text spans
separated by mask tokens using the vocabulary of
the multilingual encoder. Finally, the re-tokenized
spans and the mask tokens are concatenated into
a whole sequence as the input, denoted by x̃. The
final loss function is defined as

LPlugIn-X = −
∑

i∈M
log p(xi|x̃, i;ωc), (4)

where p stands for the predicted distribution over
the multilingual vocabulary, and M is the set of
mask positions. Notice that only the connector
ωc is updated during training, and the other two
modules are frozen.

3.4 Plug-and-Play Transfer
Figure 3 illustrates how the resulting reassembled
model performs cross-lingual transfer in a plug-
and-play manner. After the aforementioned cross-
model representation adaptation procedure, we re-
move the current end-task module ωen on the top,
which is for the HMLM task. Then, we plug the
remaining part of the model into the end-task mod-
ule ωen

t , and now the model can directly perform
the end-task t in target languages.

4 Experiments

4.1 Setup
Data We perform PLUGIN-X representation
adaptation training on the unlabeled English text

End-Task Input
(multilingual)

Multilingual
Modules

Monolingual
End-Task Module

Plugging

Prediction

Reassembled
End-Task Model

Figure 3: Illustration of how the reassembled model per-
forms cross-lingual transfer in a plug-and-play manner.

data from the CCNet (Wenzek et al., 2019) corpus,
which provides massive unlabeled text data for a
variety of languages crawled from webpages.

Model PLUGIN-X utilizes Transformer
(Vaswani et al., 2017) as the backbone architecture
of the models. We build two models, named
PLUGIN-XXLM-R and PLUGIN-XInfoXLM, where
the multilingual encoders and cross-model
connectors are from the pretrained multilingual
Transformers of base-size XLM-R (Conneau et al.,
2020) and InfoXLM (Chi et al., 2021), respectively.
The embedding layer and the bottom six layers
are assigned to the multilingual encoder, while
the other six Transformer layers are assigned
to initialize the cross-model connector. The
multilingual encoders and cross-model connec-
tors are plugged into the monolingual end-task
model at the sixth layer for both representation
adaptation and plug-and-play transfer. We use
the RoBERTa (Liu et al., 2019) model as the
public model for the monolingual model. During
representation adaptation, our model is trained on
512-length token sequences with a batch size of
256. We use the Adam (Kingma and Ba, 2015)
optimizer for 30K update steps. More training
details can be found in Appendix A.

Evaluation We evaluate the reassembled models
on two natural language understanding tasks, i.e.,
natural language inference and extractive question
answering. The experiments are conducted under
the PMID setting, where the models are not allowed
to access end-task data but only an already-trained
monolingual task model. On both tasks, we use the
finetuned RoBERTa (Liu et al., 2019) models as
the monolingual task model to be transferred.

Baselines We implement two cross-lingual trans-
fer baselines that satisfy the PMID setting, and also
include the direct finetuning method as a reference.
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Model fr es de el bg ru tr ar vi th zh hi sw ur avg

The public-model-in-house-data setting (PMID)
EMBMAP 33.3 33.3 33.1 33.3 33.6 33.6 33.2 33.4 34.1 33.3 33.3 33.3 33.7 33.6 33.4
EMBLEARN 36.8 36.5 36.2 33.9 34.8 35.5 35.6 34.1 37.4 35.2 35.3 33.4 34.5 34.7 35.3
PLUGIN-XXLM-R 66.2 63.4 65.8 63.0 65.5 62.4 57.3 58.2 63.7 59.0 60.5 56.5 48.3 52.4 60.2
PLUGIN-XInfoXLM 67.4 67.6 65.6 64.7 66.2 65.0 60.3 61.4 66.6 63.7 64.2 59.2 55.2 53.9 62.9

The cross-lingual transfer setting
FINETUNEXLM-R 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 75.5
FINETUNEInfoXLM 80.3 80.9 79.3 77.8 79.3 77.6 75.6 74.2 77.1 74.6 77.0 72.2 67.5 67.3 75.8

Table 1: Evaluation results on XNLI natural language inference under the PMID setting. We report the average
results with three random seeds for baselines and PLUGIN-X. Results of FINETUNE are from Chi et al. (2021).
Notice that the results are not comparable between the two settings.

(1) EMBMAP learns a linear mapping be-
tween the word embedding spaces of the mono-
lingual RoBERTa model and the multilingual In-
foXLM (Chi et al., 2021) model. Following
Mikolov et al. (2013), the mapping is learned by
minimizing L2 distance. After mapping, we re-
place the word embeddings of the end-task model
with the mapped multilingual embeddings.

(2) EMBLEARN learns multilingual word em-
beddings for the monolingual end-task model. We
replace the vocabulary of RoBERTa with a joint
multilingual vocabulary of 14 languages of XNLI
target languages. Then, we build a new word em-
bedding layer according to the new multilingual
vocabulary. We learn the multilingual word em-
beddings by training the model on 14-language
text from CCNet with 30K training steps and a
batch size of 256. Following Liu et al. (2019), the
training data is masked language modeling with
512-length text sequences. During training, we
freeze all the parameters except the multilingual
word embeddings. Finally, we replace the word
embeddings of the end-task model with the newly-
learned multilingual word embeddings.

(3) FINETUNE directly finetunes the multilingual
Transformers for the end tasks, which does not
satisfy the PMID setting. We include the results as
a reference.

Notice that our goal is to investigate whether
PLUGIN-X can activate the cross-lingual transfer-
ability of multilingual Transformers, rather than
achieving state-of-the-art cross-lingual transfer re-
sults. Therefore, we do not compare our models
with machine translation systems or state-of-the-art
cross-lingual transfer methods.

4.2 Natural Language Inference

Natural language inference aims to recognize the
textual entailment between the input sentence pairs.
We use the XNLI (Conneau et al., 2018) dataset
that provides sentence pairs in fifteen languages
for validation and test. Given an input sentence
pair, models are required to determine whether
the input should be labeled as ‘entailment’, ‘neu-
ral’, or ‘contradiction’. For both baselines and
PLUGIN-X, we provide the same monolingual NLI
task model, which is a RoBERTa model finetuned
on MNLI (Williams et al., 2018).

We present the XNLI accuracy scores in Ta-
ble 1, which provides the average F1 scores over
three runs. Overall, PLUGIN-X outperforms the
baseline methods on XNLI cross-lingual natural
language inference in terms of average accuracy,
achieving average accuracy of 60.2 and 62.9. The
results demonstrate that PLUGIN-X successfully
activates the cross-lingual transferability of XLM-
R and InfoXLM on XNLI without accessing XNLI
data. In addition to high-resource languages such
as French, our models perform surprisingly well for
low-resource languages such as Urdu. Besides, we
see that the choice of the multilingual Transformer
can affect the cross-lingual transfer results.

4.3 Question Answering

Our method is also evaluated on the extractive ques-
tion answering task to validate cross-lingual trans-
ferability. Given an input passage and a question,
the task aims to find a span in the passage that can
answer the question. We use the XQuAD (Artetxe
et al., 2020) dataset, which provides passages and
question-answer pairs in ten languages.

The evaluation results are shown in Table 2, in
which we report averaged F1 scores of extracted
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Model es de el ru tr ar vi th zh hi avg

The public-model-in-house-data setting (PMID)
EMBMAP 1.1 1.3 1.9 0.4 0.6 0.9 1.4 0.7 1.5 1.6 1.1
EMBLEARN 9.4 4.9 5.6 8.6 8.2 5.7 12.1 4.6 7.6 3.1 7.0
PLUGIN-XXLM-R 45.6 40.2 29.1 29.7 22.4 27.6 31.5 21.2 34.1 25.1 30.6
PLUGIN-XInfoXLM 53.3 52.4 41.2 51.4 42.4 45.1 51.6 37.3 54.7 40.9 47.0

The cross-lingual transfer setting
FINETUNEXLM-R 76.4 74.4 73.0 74.3 68.3 66.8 73.7 66.5 51.3 68.2 69.3

Table 2: Evaluation results on XQuAD extractive question answering under the PMID setting. We report the average
results with three random seeds for baselines and PLUGIN-X. Results of FINETUNE are from Pfeiffer et al. (2020).
Notice that the results are not comparable between the two settings.

Model XNLI XQuAD

PLUGIN-X 53.5 35.7
− Middle-layer plugging 46.7 4.7
− Deeper connector 37.7 16.9
− Multilingual encoder 38.9 9.9

Table 3: Ablation studies on key components of
PLUGIN-X.

spans from runs with three random seeds. Similar
to the results on XNLI, PLUGIN-X obtains the best
average F1 score among the baseline methods. The
results demonstrate the effectiveness of our model
on question answering under the PMID setting,
which also indicates PLUGIN-X successfully acti-
vates the cross-lingual transferability. Nonetheless,
it shows that PLUGIN-X lags behind FINETUNE,
showing that PMID is a challenging setting for
cross-lingual transfer.

4.4 Ablation Studies
In the ablation studies, we train various models
with PLUGIN-X with different architectural or
hyper-parameter configurations. Notice that the
models are plugged into the same English end-task
model for plug-and-play cross-lingual transfer, so
the end-task performance can directly indicate the
cross-lingual transferability.

Key architectural components We conduct ex-
periments to validate the effects of key architectural
components of PLUGIN-X. We train several mod-
els with a batch size of 64 for 30K steps. The mod-
els are described as follows. (1) The ‘− Middle-
layer plugging’ model plugs the connector to the
bottom of the monolingual task model and replaces
the embedding layer with the output of the con-
nector; (2) the ‘− Deeper connector’ model uses a
shallower connector, reducing the number of con-
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55
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X
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cu
ra

cy
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bsz=256

Figure 4: The average XNLI-14 accuracy scores, where
we perform PLUGIN-X representation adaptation vari-
ous batch sizes and training steps.

nector layers from 6 to 2; (3) the ‘− Multilingual
encoder’ model discards the frozen multilingual en-
coder except for the word embeddings, and regards
the whole Transformer body as a connector. The
models are evaluated on the XNLI and XQuAD
under the PMID setting. The evaluation results are
presented in Table 3. It can be observed that the
model performs less well when removing any of
the components. Discarding the frozen multilin-
gual encoder leads to severe performance drops
on both tasks, demonstrating the importance of
the frozen multilingual encoder. Besides, using
a shallower connector produces the worst results
on XNLI and ‘− Middle-layer plugging’ performs
worst on XQuAD.

Effect of training step and batch size Figure 4
illustrates the XNLI-14 accuracy curves, where we
perform PLUGIN-X representation adaptation with
various training steps and batch sizes. Consistently,
it shows an upward trend as the models are trained
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Figure 5: Cross-model representation distance/similarity distribution on XNLI validation sets.

Model en-zh en-ur
L2 ↓ Cosine ↑ L2 ↓ Cosine ↑

InfoXLM 30.50 -0.75 30.69 -0.75
PLUGIN-X 9.86 0.89 10.20 0.88

Table 4: Quantitative analysis on cross-model represen-
tation alignment between the monolingual and multilin-
gual models. We measure the L2 distance and cosine
similarity between the monolingual and multilingual
models.

with more steps, indicating that the representation
adaptation leads to better activation of cross-lingual
transferability. Besides, PLUGIN-X also tends to
activate better cross-lingual transferability when
using larger batch sizes and obtains the best perfor-
mance with a batch size of 256.

4.5 Analysis

We present analyses on the cross-model represen-
tation alignment of the reassembled models, and
investigate their cross-lingual transferability.

Cross-model alignment A key factor for our
method to achieve cross-lingual transfer under the
PMID setting is that PLUGIN-X performs repre-
sentation adaptation. We conduct experiments to
directly provide quantitative analysis on the align-
ment property of the reassembled models. To this
end, we leverage the parallel sentences provided by
XNLI as input, and compute their sentence embed-
dings. Specifically, we first extract the sentence em-
beddings of the English sentences using the mono-
lingual end-task model, where the embeddings are
computed by an average pooling over the hidden
vectors from the sixth layer. Then, the sentence
embeddings of other languages are obtained from
the connector of PLUGIN-X. We also compute the
sentence embeddings of other languages using the

hidden vectors from the sixth layer of InfoXLM
for comparison with our model. Finally, we mea-
sure the alignment of the representation spaces by
measuring the L2 distance and cosine similarity
between the sentence embeddings output. We com-
pare results between the original InfoXLM model
and the reassembled model.

Table 4 and Figure 5 show the quantitative anal-
ysis results of representation alignment and the
distance/similarity distribution on XNLI valida-
tion sets, respectively. Compared with InfoXLM,
our reassembled model achieves a notably lower
L2 distance than the monolingual end-task model.
Consistently, our model also obtains larger cosine
similarity scores with low variance. The results
show that, although the InfoXLM provides well-
aligned representations across languages, there is
a mismatch between its representation space and
the space of the monolingual end-task model. On
the contrary, PLUGIN-X successfully maps the rep-
resentation space without accessing the in-house
end-task data.

Transferability For a better understanding of
how PLUGIN-X activates the cross-lingual trans-
ferability, we analyze the relation between transfer-
ability and cross-model representation alignment.
We use the transfer gap metric (Hu et al., 2020) to
measure the cross-lingual transferability. In spe-
cific, the transfer gap score is computed by sub-
tracting the XNLI accuracy score in the target lan-
guage from the score in the source language, which
means how much performance is lost after trans-
fer. When computing the transfer gap scores, we
use the monolingual end-task model results for the
source language, and our reassembled model re-
sults for target languages. To measure the repre-
sentation alignment, we follow the procedure men-
tioned above, using the metrics of L2 distance and
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Figure 6: Relation between cross-lingual transferability and cross-model representation alignment.

cosine similarity. We compute transfer gap, L2

distance, and cosine similarity scores with the re-
assembled models from various steps on the vali-
dation sets of XNLI in fourteen target languages.

In Figure 6 we plot the results. We see a clear
trend that the transfer gap decreases as PLUGIN-X
achieves lower cross-model L2 distance. The trend
is also confirmed when we switch the representa-
tion alignment metric to the cosine similarity. This
highlights the importance of cross-model represen-
tation alignment between the monolingual model
and the multilingual model for the activation of
cross-lingual transferability. More interestingly,
the data points have the same trend no matter what
language they belong to. Besides, we also ob-
serve that the data points of blue colors are high-
resource languages, which typically have lower
transfer gaps. Our findings indicate that the cross-
lingual transfer can be improved by encouraging
cross-model alignment.

5 Discussion

Transferability activation To answer our re-
search question, we have conducted experiments
on cross-lingual transfer under the public-model-
in-house-data (PMID) setting. Our experimental
results in Section 4.2 and Section 4.3 show that
PLUGIN-X successfully activates the cross-lingual
transferability of multilingual Transformers with-
out using the in-house end-task data. Notice that
our goal is to answer the research question, rather
than develop a state-of-the-art algorithm for the
common cross-lingual transfer setting.

Transferability quantification It is difficult to
quantify cross-lingual transferability because the

results are non-comparable and the compared mod-
els typically have different performances in the
source language. We propose to transfer an already-
trained end-task model to other languages. As the
end-task model is stationary, the transfer gap is only
dependent on cross-lingual transferability. There-
fore, we recommend that the models to be evalu-
ated should transfer the same end-task model to
obtain comparable transferability scores.

Model fusion We show that two models with
two different capabilities, i.e., end-task ability and
multilingual understanding ability, can be fused
into a single end-to-end model with a new ability,
performing the end task in multiple languages. We
hope this finding can inspire research on the fusion
of models with different languages, modalities, and
capabilities.

6 Conclusion

In this paper, we have investigated whether the
cross-lingual transferability of multilingual Trans-
formers can be activated without end-task data.
We present a new problem setting of cross-lingual
transfer, the public-model-in-house-data (PMID)
setting. To achieve cross-lingual transfer under
PMID, we propose PLUGIN-X, which reassem-
bles the monolingual end-task model and multi-
lingual models as a multilingual end-task model.
Our results show that PLUGIN-X successfully ac-
tivates the cross-lingual transferability of multilin-
gual Transformers without accessing the in-house
end-task data. For future work, we would like to
study the research question on more types of mod-
els such as large language models (Huang et al.,
2023).
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Limitations

Our study has limitations in two aspects. First,
multilingual Transformers support a wide range
of task types, and it is challenging to study our
research question on all types of end tasks. We
conduct experiments on two common types of end
tasks, i.e., text classification and question answer-
ing. We leave the study on other types of end tasks
in further work. Second, under PMID, we only
consider the situation that the end-task models are
obtained by finetuning public pretrained models.
The cross-lingual transfer of black-box end-task
models is also an interesting research topic to study.
Besides, PLUGIN-X reassembles the modules from
publicly-available models rather than training from
scratch, so it can naturally inherit the risks from
those models.
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A Additional Experiment Details

We implement PLUGIN-X with the PyTorch1 li-
brary and using pretrained Transformers from the
Hugging Face2 repositories. The data of XNLI
and XQuAD are from the XTREME3 (Hu et al.,
2020) repository. The above repositories provide
the data, models, and licenses. The representation
adaptation is accomplished by learning heteroge-
neous masked language modeling (HMLM). The
whole training process takes about 30 hours on four
Nvidia V100 GPU cards. The detailed training hy-
perparameters are shown in Table 5.

Hyperparameters Value

Multilingual encoder layers 6
Connector layers 6
End-task module layers 6
Hidden size 768
FFN inner hidden size 3,072
Attention heads 12

Training steps 30K
Batch size 256
Adam ϵ 1e-6
Adam β (0.9, 0.98)
Learning rate 2e-4
Learning rate schedule Linear
Warmup steps 3K
Gradient clipping 2.0
Weight decay 0.01

HMLM Input length 512
HMLM Mask ratio 0.15

Table 5: Hyperparameters for training with PLUGIN-X.

1pytorch.org
2huggingface.co
3github.com/google-research/xtreme
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