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Abstract

Compositionality is a hallmark of human lan-
guage that not only enables linguistic general-
ization, but also potentially facilitates acquisi-
tion. When simulating language emergence
with neural networks, compositionality has
been shown to improve communication perfor-
mance; however, its impact on imitation learn-
ing has yet to be investigated. Our work ex-
plores the link between compositionality and
imitation in a Lewis game played by deep neu-
ral agents. Our contributions are twofold: first,
we show that the learning algorithm used to im-
itate is crucial: supervised learning tends to pro-
duce more average languages, while reinforce-
ment learning introduces a selection pressure
toward more compositional languages. Second,
our study reveals that compositional languages
are easier to imitate, which may induce the
pressure toward compositional languages in RL
imitation settings.

1 Introduction

Compositionality, a key feature of human language,
makes it possible to derive the meaning of a com-
plex expression from the combination of its con-
stituents (Szabo, 2020). It has been suggested
that more compositional languages are easier to
acquire for both humans and artificial agents (Ra-
viv et al., 2021; Li and Bowling, 2019; Ren et al.,
2020; Chaabouni et al., 2020). Therefore, to better
understand the factors underlying language trans-
mission, it is crucial to understand the relationship
between ease-of-acquisition and compositionality.

We study the link between compositionality
and ease-of-acquisition in the context of emer-
gent communication. In this setting, two deep
artificial agents with asymmetric information, a
Sender and a Receiver, must develop communica-
tion from scratch in order to succeed at a cooper-
ative game (Havrylov and Titov, 2017; Lazaridou
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et al., 2017; Lazaridou and Baroni, 2020). We will
refer to this mode of language learning, in which
agents develop language via feedback from mutual
interaction, as communication-based learning.

Several studies have linked compositionality to
ease-of-acquisition in communication-based learn-
ing. Chaabouni et al., 2020 show compositional-
ity predicts efficient linguistic transmission from
Senders to new Receivers. Conversely, Li and
Bowling, 2019 re-pair a Sender periodically with
new Receivers, and show this ease-of-teaching pres-
sure improves compositionality.

Communication-based learning is not the only
possibility for language learning, however. Hu-
mans also crucially acquire language through
imitation-based learning, in which they learn by ob-
serving other humans’ language use (Kymissis and
Poulson, 1990). Ren et al., 2020 and Chaabouni
et al., 2020 employ imitation learning, where in
the first study, agents undergo a supervised imita-
tion stage before communication-based learning,
and where in the second, agents alternate between
communication-based learning and imitating the
best Sender. However, the dynamics of imitation
are not the focus in either study. For such an im-
portant vehicle of language acquisition, imitation-
based learning thus remains under-explored in the
emergent communication literature.

We extend these lines of inquiry to systemat-
ically investigate compositionality in imitation-
based learning.1 Our contributions are as follows:
(1) We show that imitation can automatically select
for compositional languages under a reinforcement
learning objective; and (2) that this is likely due to
ease-of-learning of compositional languages.

2 Setup

We study imitation in the context of referential com-
munication games (Lewis, 1969). In this setting, a

1...for artificial agents. We do not test theories of human
imitation learning.
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Sender agent observes an object x and transmits a
message m to a second Receiver agent. Using this
message, the Receiver performs an action for which
both agents receive a reward. Over the course of
the game, agents converge to a referential system
(x,m), which we refer to as an emergent language.

Measuring Compositionality Evaluating com-
positionality in emergent languages is not straight-
forward given their grammars are a-priori unknown.
Therefore, we quantify compositionality using to-
pographic similarity (topsim) (Kirby and Brighton,
2006), a grammar-agnostic metric widely applied
to emergent languages in the literature. Topsim is
defined as the Spearman correlation ρ between Eu-
clidean distances in the input space and Levenstein
distances in the message space– that is, it captures
the intuition that nearby inputs should be described
with similar messages. While we consider other
compositionality metrics such as positional disen-
tanglement (Chaabouni et al., 2020), we focus on
topsim due to its high correlation with generaliza-
tion accuracy (ρ = 0.83) (Rita et al., 2022b). See
appendix A.3 for extended experiments on compo-
sitionality metrics and generalization.

2.1 Imitation Task

To investigate whether compositional languages
are selected for in imitation, we posit an imitation
task where one new Imitator Sender or Receiver
simultaneously imitates several Expert Senders or
Receivers with varying topsims. Both Sender and
Receiver agents are parameterized by single-layer
GRUs (Cho et al., 2014) that are deterministic af-
ter training (see appendix B for implementation).2

While we explore imitation for both agents, we
focus on Sender imitation in the main text, and
extend to Receiver imitation in appendix E. A min-
imal example of imitation learning with only one
Expert Sender-Receiver pair is shown in fig. 1.

The Sender imitation task is as follows: given
a set of k Expert Senders, we train an identical,
newly initialized Sender on the Experts’ inputs and
outputs (x,m). That is, for each round of training,
all k Experts as well as the Imitator Sender receive
input x and output m(1) · · ·m(k) and mI , respec-
tively. The Imitator is then tasked to minimize
the difference between their output and a uniform
mixture of the k Expert outputs.

2Experiments are implemented using EGG (Kharitonov
et al., 2021). Code may be found at
https://github.com/chengemily/EGG/tree/imitation.
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Figure 1: Imitation setup for one Expert pair of agents.
A newly initialized Imitator Sender (lower left) and Im-
itator Receiver (lower right) imitate an Expert Sender
(top left) and an Expert Receiver (top right). The Ex-
pert Sender has been trained on a communication game
with the Expert Receiver (bold arrows), so that when
the Sender encodes input x into message m (e.g., “abcd-
cbd"), the Receiver decodes m into x̂E , reconstructing
x. Imitation (dotted arrows) consists of training the Imi-
tator on inputs/outputs of the respective Expert: (x, m)
for the Sender and (m, x̂E) for the Receiver.

Dataset Data in the imitation task consists of in-
puts and outputs of pairs of Expert agents trained
to convergence on a communication game– in our
case, the two-agent reconstruction task of Kottur
et al. (2017). To generate the Experts, we pre-train
N = 30 Sender-Receiver pairs on this reconstruc-
tion task to high validation accuracy (0.99± 0.01)
(task and training details in appendix A).

Expert training produces the following data: 1)
inputs x; 2) messages m corresponding to Expert
Senders’ encodings of x; and 3) outputs x̂, the
Expert Receivers’ reconstructions of x given m.

Each input x denotes an object in an “attribute-
value world", where the object has natt attributes,
and each attribute takes nval possible values. We
represent x by a concatenation of natt one-hot vec-
tors, each of dimension nval. On the other hand,
messages m are discrete sequences of fixed length
L, consisting of symbols taken from a vocabu-
lary V . We set natt = 6, nval = 10, |V | = 10,
and L = 10, corresponding to a relatively large
attribute-value setting in the literature (Table 1
of Galke et al. (2022)).

We split the input data (n = 106) into a training
set and two holdout sets. Similar to Chaabouni
et al. (2020), we define two types of holdouts: a
zero-shot generalization set (n = 354294), where
one value is held-out during training, and an in-
distribution generalization set (n = 531441). The
training set, on which we both train and validate,
represents 1% of in-distribution data (n = 5315).
These data splits are used in Expert training and are
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inherited by the imitation task (see appendix B.2
for details on generating the data split).

Imitation learning algorithms While imitation
is classically implemented as supervised learn-
ing, we test two imitation learning procedures:
1) supervised learning (SV) with respect to the
cross-entropy loss between Imitator and Expert
outputs; and 2) reinforcement learning with the RE-
INFORCE algorithm (RF) (Williams, 1992), using
per-symbol accuracy as a reward. When using RE-
INFORCE, we additionally include an entropy reg-
ularization term weighted by λ to encourage explo-
ration, and subtract a running mean baseline from
the reward to improve training stability (Williams
and Peng, 1991). See appendix D for loss functions
and B.2 for detailed hyperparameter settings.

2.2 Evaluation

To evaluate properties of imitation learning, we
identify three descriptors of interest: validation
accuracy, ease-of-imitation, and selection of com-
positional languages.

Accuracy We evaluate imitation performance be-
tween an Imitator and Expert by the average per-
symbol accuracy between their messages given an
input. When using REINFORCE, training accuracy
is computed using the Imitators’ sampled output
while validation accuracy is computed using the
Imitators’ argmax-ed output.

Ease-of-imitation We evaluate ease-of-imitation
of a language two ways. First, imitation sample
complexity (T ): the number of epochs needed to
reach 99% validation accuracy, and second, im-
itation speed-of-learning (SOLI ): the area under
the validation accuracy curve, cut-off at t epochs
chosen by visual inspection of convergence.

Selection of compositional languages Sender
imitation consists of learning one-to-one input-to-
message mappings from a sea of one-to-many Ex-
pert mappings. Then, the Imitator’s language will
consist of a mixture of Expert languages, where the
mixture weights reveal the extent of selection.

In this mixture, we proxy the Imitator’s learned
weight for an Expert as the proportion of messages
in the training set for which Imitator accuracy on
the Expert message is the highest. Note that the co-
efficients may not add to one: if the highest Expert
accuracy for a message does not exceed chance
(10%), we consider the message unmatched.

To quantify selection, we use the intuition that
selection corresponds jointly to peakedness and
asymmetry in the learned distribution over Expert
languages sorted by topsim. We evaluate peaked-
ness using the Shannon entropy and asymmetry
using Fisher’s moment coefficient of skew of Ex-
pert weights. Formally, let there be k Experts,
where Experts are sorted in ascending order of top-
sim (Expert i=1 is the least and i=k is the most
compositional, respectively). The Imitator learns
a mixture of the Expert languages with weights
W := (wi)1≤i≤k (normalized). Given W , we eval-
uate peakedness with:

H(W ) = −
k∑

i=1

wi log(wi). (1)

To quantify asymmetry of expert weights, we esti-
mate the Fisher’s moment coefficient of skew:

µ̃(W ) =
1

k

k∑

i=1

(
wi − µ

σ

)3

, (2)

where µ is the mean and σ is the standard devia-
tion of W . A skew of 0 implies perfect symmetry,
positive skew corresponds to a right-tailed distribu-
tion, and negative skew corresponds to a left-tailed
distribution. Intuitively, the more negative the skew
of the Expert weights, the more weight lies on
the right side of the distribution, hence the greater
“compositional selection effect".

We proxy selection, then, by a negative skew
(more weight assigned to high-topsim Experts) and
low entropy (peakedness) in the Expert weight dis-
tribution.

3 Imitation and Selection of
Compositionality

We present results for imitation on mixtures of
k = 2-5 Expert Senders. First, we generate 30
Expert languages from the referential task, initially
considering Expert distributions corresponding to
evenly-spaced percentiles of topsim, including the
minimum and maximum (0.26, 0.43). For exam-
ple, when k = 3, we take the lowest, 50th per-
centile, and highest-topsim languages. All results
are aggregated over 5 random seeds after 2000
training epochs.

We find that (1) whether Imitators prefer com-
positional Experts depends crucially on the learn-
ing algorithm: imitation by reinforcement results
in marked compositional selection compared to
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supervision; and (2) compositional selection also
depends on variance of expert topsims, λ entropy
regularization coefficient, and number of Experts.

Figure 2: Sender Imitator’s learned weights (±1 std.)
on k = 2 (top) and k = 3 (bottom) Expert languages
whose topsims range evenly from 0.26 to 0.43. The left
two columns correspond to imitation by reinforcement
(RF). As the entropy coefficient λ increases (left to
middle), the weights are more uniform, and are most
uniform in the supervised setting (right). Refer to fig. 3
for skews and entropies of the distributions.

Figure 3: Entropy (left) and skew (right) (±1 std.) of
learned Expert weights by a Sender Imitator for k = 2
and 3 Experts. Expert languages’ topsims range evenly
from 0.26 to 0.43. Both entropy and skew increase to
the entropy of a uniform distribution, skew of a symmet-
ric distribution (= 0), respectively as exploration (λ)
increases, attaining maxima in supervision (SV).

The distribution of learned Expert weights in
fig. 2, as well as imitation validation accuracy
curves in fig. C.2, evidence that in imitation by
supervision, the empirical mixture is closer to uni-
form than when imitating by reinforcement. Oth-
erwise, when optimizing using reinforcement, the
Imitator selects more compositional languages.

The shape of the Expert weight distribution is
tempered by the entropy regularization coefficient
λ: smaller λ results in greater compositional selec-

tion (that is, lower entropy and more negative skew)
of the weight distribution (fig. 3). At the limit, imi-
tation by supervision results in the highest entropy
and the skew that is closest to zero.

Figure 4: The skew of learned Expert Sender weights
vs. the standard deviation of the Expert topsim (±1 std.)
for RF (left) and SV (right) for k = 2-5 Experts. Expert
weight skew and Expert topsim standard deviation are
highly and significantly correlated (α = 1e-6), and the
linear effect m is much (6x) higher for RF than for SV.

We then test the effect of Expert topsim distri-
bution asymmetry on the learned weights. To do
so, for each k > 2, we generate 10 Expert top-
sim distributions with varying skew, following the
procedure outlined in appendix D.2 (when k = 2,
skew is mechanically 0). We find that for both
REINFORCE and supervision, holding k equal,
the skew and entropy of the learned Expert weight
distribution are robust (i.e., not correlated) to the
skew of the underlying Expert topsim distribution
(fig. D.2). This is desirable when imitating by re-
inforcement and undesirable when imitating by su-
pervision: for example, consider Expert topsim
distributions [low high high] (skew< 0) and [low
low high] (skew> 0). In both cases, REINFORCE
will select a high-topsim Expert, and supervision
will weight all Experts equally, that is, supervision
is unable to de-select poor topsims.

Using all Expert topsim distributions generated
so far (those where topsim ranks are evenly spaced,
and those exhibiting varying skews), we investigate
the effect of topsim distribution spread, quantified
by standard deviation, on the learned weights. In
fig. 4, we note a significant negative effect of Ex-
pert topsim standard deviation on the degree of
compositional selection. That is, the more disperse
the Expert topsims, the more the Imitator can differ-
entiate between and select compositional Experts
(shown by a more negative skew in learned Ex-
pert weights). Though this correlation is highly
statistically significant for both REINFORCE and
supervision, the effect is ∼ 8x greater for REIN-
FORCE, demonstrating that the spread between
expert compositionalities plays a more important
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role in the degree of selection by reinforcement.
Finally, selection is less salient as the number of

Experts increases, seen by the increasing entropies
and skews of Expert weights (figs. 3 and D.3). Re-
sults for k > 3 may be found in appendix D.

Understanding why REINFORCE selects for
compositional languages The different results
between the optimization algorithms correspond to
inherent differences in learning objective. Success-
ful imitation minimizes the Kullback-Leibler diver-
gence between the Imitator πI and the Expert poli-
cies πE ; supervision is classically known to min-
imize the forward KL divergence DKL(π

E ||πI),
while reinforcement minimizes the reverse KL di-
vergence DKL(π

I ||πE) with respect to πI . That
is, imitation by supervision is mean-fitting while
imitation by reinforcement is mode-fitting– the for-
mer learns a uniform mixture of Expert languages
(see appendix D.4 for proof), and the latter selects
the best Expert language.

4 Speed-of-Imitation May Explain
Compositional Selection

Thus far, we have seen that imitation by reinforce-
ment selects compositional languages. This is
likely because higher topsim languages are easier
to imitate. We establish a positive and statistically
significant relationship between topsim and ease-of-
imitation, expanding the explorations in Ren et al.
(2020); Li and Bowling (2019); Chaabouni et al.
(2020) (see appendix C for experimental details).

We evaluate ease-of-imitation using k = 1, af-
ter t = 500 (SV) and 2000 epochs (RF), where
t is chosen based on validation accuracy conver-
gence. Correlations between topsims of 30 Expert
languages and Imitator performance (averaged over
three random seeds) are shown in table 1. We find
that for both imitation by supervision and reinforce-
ment, topsim is (1) significantly negatively corre-
lated to imitation sample complexity T ; (2) signif-
icantly positively correlated to speed-of-imitation
SOL.

Moreover, correlations between topsim and ease-
of-imitation are stronger than those between Ex-
pert validation accuracy and ease-of-imitation (ta-
ble C.1). This suggests that the positive rela-
tionship between compositionality and ease-of-
imitation is not due to a confound of high validation
accuracy.

TS TR SOLIS SOLIR
SV ρ -0.65 -0.80 0.65 0.75

R2 -0.66 -0.80 0.65 0.76
RF ρ -0.66 -0.60 0.45 0.59

R2 -0.66 -0.68 0.41* 0.63

Table 1: Spearman ρ and Pearson’s R between Ex-
pert topsim and Imitator learning speed (Sender=S,
Receiver=R). Unless otherwise stated, all correlations
are significant using α = 1e-2. *(α = 0.05)

5 Discussion

Having (1) demonstrated a selection of composi-
tional languages in imitation by reinforcement; (2)
established a significant correlation between topsim
and ease-of-imitation; we offer the following expla-
nation for compositional selection: mode-seeking
behavior in reinforcement learning exploits ease-
of-learning of compositional languages, resulting
in a selection of compositionality.

While both imitation and ease-of-learning of
compositional languages have been instrumental-
ized in population training, they are engineered in
a top-down way: in Chaabouni et al. (2022), agents
imitate the best-accuracy agent, who is algorithmi-
cally designated as the teacher; in Ren et al. (2020),
imitation is stopped early to temporally select com-
positional features.3 Our work, using basic RL
principles, proposes an alternative mechanism that
selects compositional languages while requiring
minimal engineering and assumptions.

Selection by RL imitation, using the same ease-
of-learning argument, applies to not only compo-
sitionality but also potentially to other traits, e.g.,
language entropy or message length. That is, RL
imitation naturally promotes any learnability ad-
vantage among candidate languages without man-
ual intervention, while agnostic to the signaling
system. This may then be leveraged alongside
communication-based learning in population-based
emergent communication, where imitation would
persist easy-to-learn linguistic features.

Limitations

There are several limitations to our work.
First, although we choose the attribute-value

dataset due to its high degree of interpretability
and control, we acknowledge that its simplicity
limits the impact of our findings. Though imitation

3We did not succeed in replicating results in Ren et al.
(2020) (see appendix C).
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by reinforcement is a data-agnostic mechanism, we
have yet to explore how it behaves in more complex
settings, such as using naturalistic image inputs or
embodied communication. We defer to Chaabouni
et al. (2022); Galke et al. (2022) for further discus-
sion on scaling up communication settings.

A second limitation of our results is that we do
not explore how imitation-based learning scales to
k > 5 Experts. In particular, our hyperparameter
regime handles up to around k = 5 Experts– very
preliminary analyses on k ≥ 10 Experts suggest
a need to also scale up hyperparameters such as
agent size and communication channel capacity.
When training agents to imitate, one must therefore
consider feasibility of the learning problem– for
example, as a function of the imitation network
topology, communication channel size, agent size,
etc– in order for training to converge.

Finally, although our work is inspired by im-
itation learning in humans, the extent to which
simulations explain human linguistic phenomena
is not clear. We intend for our work to only serve
as a testbed to understand communication from a
theoretical perspective.
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A Expert Training

A.1 Reconstruction Task
In the reconstruction task, a Sender observes an
object with several attributes, encoding it in a mes-
sage to the Receiver, and the Receiver decodes this
message to reconstruct the object. Formally,
1. The Sender network receives a vector input x

and constructs a message m of fixed length L.
Each symbol is taken from the vocabulary V =
{s1, s2, · · · , s|V |}.

2. The Receiver network receives m and outputs
x̂, a reconstruction of x.

3. Agents are successful if x̂ = x.

Optimization In the reconstruction task, the
cross-entropy loss is computed between x and x̂,
and backpropagated directly to the Receiver. The
same loss is propagated to the Sender via REIN-
FORCE. When training with REINFORCE, we
also employ an entropy regularization coefficient
λ and subtract a running mean baseline from the
reward to improve training stability.

Let the Sender policy be πS and the Receiver
be πR. Let xi ∈ {0, 1}nval refer to the one-hot
vector in x indexed by i, which corresponds to one
attribute. Then, the Receiver’s supervised loss LR

is as follows:

LR(m,x) =
1

natt

natt∑

i=1

CE(xi, π
R(m)i). (3)

Let the Sender reward at time t be rt =
−LR(πS(x), x), and let µt be a running mean of
rt. Then, the Sender’s REINFORCE policy loss
LS at time t is as follows:

LS(x) = (−rt − µt) log π
S(x)− λH(πS(x)).

(4)

Finally, loss is optimized by Adam’s default pa-
rameters (β = 0.9, 0.999), with a learning rate of
0.005.

A.2 Experimental Details
We train 30 Expert pairs on the reconstruction
task over 1000 epochs. Expert pairs converge to
high validation accuracy and generalize to the in-
distribution set well (statistics in table A.2).
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A.3 Expert Compositionality Distributions
We considered using topsim, positional disentan-
glement (posdis) (Chaabouni et al., 2020), bag-
of-symbols disentanglement (bosdis) (Chaabouni
et al., 2020), and context independence (ci) (Bogin
et al., 2018) for our experiments (see fig. A.1 for
distributions). However, as a fundamental reason
we care about compositionality is due to its link
to linguistic generalization, we focus on topsim,
which we found has the highest correlation with
generalization accuracy on the reconstruction task
(table A.1).

Topographic similarity and generalization
Similar to Rita et al. (2022a); Auersperger and
Pecina (2022) and in contrast to Chaabouni et al.
(2020); Kharitonov and Baroni (2020), we find
that correlations between topsim and both in-
distribution and zero-shot generalization on the re-
construction task are high, and highly significant
(α = 1e-2): Spearman’s ρ = 0.83 and Pearson’s
R2 = 0.81 for in-distribution generalization, and
ρ = 0.81, R2 = 0.78 for zero-shot generalization.
This correlation is stronger than that between gener-
alization and validation accuracy, where ρ = 0.75
for in-distribution generalization and ρ = 0.73 for
zero-shot generalization (α = 1e-2). Furthermore,
the correlation between topsim and validation accu-
racy is only ρ = 0.57 (α = 1e-2) suggesting that
the relationship between generalization and compo-
sitionality is not explained by high validation accu-
racy.4 Our results support the stance in Auersperger
and Pecina (2022) that compositionality, when eval-
uated on a suitably large dataset, indeed predicts
generalization.

topsim bosdis posdis ci
ρ 0.81*** 0.74*** 0.29 0.23
R2 0.83*** 0.78*** 0.34* 0.09

Table A.1: Spearman ρ and Pearson’s R2 correlation
coefficients between compositionality metrics and in-
distribution generalization accuracy on the reconstruc-
tion task.

B Implementation Details

B.1 Model Architecture
Both agents are single-layer recurrent neural net-
works that are deterministic after training.

4We do not report the Pearson R2 for Expert validation
accuracy as the its distribution violates normality assumptions
according to a Shapiro-Wilk non-normality test (α = 1e-3)).

Metric Value
Validation acc. (per-object) 0.96± 0.03

Validation acc. (per-attribute) 0.99± 0.01
Generalization acc. (obj.) 0.57± 0.13
Generalization acc. (att.) 0.91± 0.04
Zero-shot gen. acc. (obj.) 0.28± 0.05
Zero-shot gen. acc. (att.) 0.41± 0.02

Table A.2: Mean and standard deviation of 30 Expert
performances on the reconstruction task, first aggregated
over 5 random seeds and then over the 30 Experts.

The Sender is a single-layer GRU (Cho et al.,
2014) containing a fully-connected (FC) layer that
maps the input x to its first hidden state (dim=128).
A symbol is then generated by applying an FC layer
to its hidden state, and sampling from a categori-
cal distribution parameterized by the output. We
include LayerNorm (Ba et al., 2016) after the hid-
den state to improve training stability. Then, the
next input to the GRU is the previous output, which
is sampled during training and argmax-ed during
evaluation. This input is fed through an embedding
module (dim=128), which then gets fed into the
GRU. The first input is the [SOS] token, and the
Sender is unrolled for L = 10 timesteps to output
symbols comprising a message. Only in imitation
training, when unrolling the Imitator Sender, we
take the Expert Sender’s previous output to be the
Imitator’s next input so that the Imitator learns an
autoregressive model of the Expert language.

The Receiver has a similar architecture to the
Sender. It consists of an FC symbol-embedding
layer, a GRU with LayerNorm (hidden dim=128),
and an FC output head. The first hidden state is
initialized to all zeros, then the FC-embedded sym-
bols of the Sender message are sequentially fed
into the GRU for L = 10 timesteps. We pass the
GRU’s final output through a final FC layer and
compute the Receiver’s distribution over objects on
the result, which we interpret as a concatenation of
natt probability vectors each of length nval.

B.2 Hyperparameter settings

Hyperparameters tested may be found in table B.1.
These hold for all experiments unless explicitly
stated otherwise.

Dataset splits Of the n = nnval
att = 106 data-

points in the entire dataset, the in-distribution set
has size 106 ∗ (0.9)6 = 531441, and we randomly
sample 1% to be the training set, (n = 5315), and
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Figure A.1: Distribution of 30 Expert compositionalities after 1000 epochs of training on the reconstruction task.
Compositionalities are estimated on the entire validation set. According to both D’Agostino K2 and Shapiro-Wilk
non-normality tests, we cannot reject the null hypothesis that all four compositionality metrics follow a normal
distribution (α = 1e− 3).

delegate the rest to the generalization set (n =
526126). Finally, the zero-shot generalization set
consists of inputs where one attribute assumes the
held-out value, and other attributes take on seen
values (n = 354294).

Hyperparameter Values
Vocab size (|V |) 10

Message length (L) 10
# Attributes (natt) 6

# Values (nval) 10
Learning rate 0.005

Batch size 1024
Entropy coeff. (λ) 0, 0.01, 0.1, 0.5, 1
GRU hidden size 128

GRU embedding size 128
Expert pretraining epochs 1000

Single imitation training epochs (RF) 2000
Single imitation training epochs (SV) 500

# Experts in imitation mixture (k) 2–5
Sender imitation training epochs 2000
Rcvr imitation training epochs 7000

Table B.1: From top to bottom: the communication
channel, optimization, architectural, and experimental
hyperparameters, respectively. All hyperparameters per-
tain to both Sender and Receiver unless otherwise stated.
The number of training epochs (bottom section) is se-
lected based on visual inspection of convergence of
validation accuracy curves.

B.3 Implementation Details

Experiments were implemented using PyTorch and
the EGG toolkit (Kharitonov et al., 2021). They
were carried out on a high-performance cluster
equipped with NVIDIA GPUs. The number of
GPU-hours to run all experiments is estimated to
be between 50 and 100.

C Supplementary Material:
Ease-of-Imitation

In the compositionality vs. ease-of-imitation ex-
periments, we train newly initialized Imitator pairs

Figure C.1: Evolution of topsim of an Imitator Sender
when being trained separately via REINFORCE (RF)
and supervision (SV) on Expert topsims (ρ) of 0.26,
0.36, 0.43, corresponding to low, average, and high
values in the distribution of Expert topsims.

on each Expert pair over 500 epochs for supervi-
sion and 2000 epochs for reinforcement, aggregat-
ing over 3 random seeds. The number of training
epochs is chosen by visual inspection of validation
accuracy convergence. We note that, when imitat-
ing by both reinforcement and supervision, there is
no initial increase in topsim followed by a conver-
gence to Expert topsim (fig. C.1), contrary to what
is observed in (Ren et al., 2020).

For imitation by reinforcement, we use an en-
tropy coefficient of λ = 0.1 for both Sender and
Receiver. Comparing SOL and T for both Sender
and Receiver to other compositionality metrics (ta-
ble C.1), we see that topsim is generally most
correlated with sample complexity and speed-of-
learning. For the opposite reason, we did not move
ahead with, e.g., experiments on positional disen-
tanglement.
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Figure C.2: For k = 2 (top left), k = 3 (top right), k = 4 (bottom left) and k = 5 (bottom right) Experts, validation
accuracy curves of the Imitator Sender on Expert messages over 2000 epochs of imitation training. For each setting
of k, reinforcement is shown on the left and supervision on the right. Note (1) the greater dispersion of validation
accuracy when training by reinforcement compared to be supervision; (2) higher “selection", or validation accuracy,
on the best topsim Expert in reinforcement compared to supervision; (3) lower validation accuracy on the poorest
topsim Expert in RF compared to SV.

Figure D.1: Imitator’s learned weights on k = 4 (top
row) and k = 5 (bottom row) languages, where the top-
sim of Expert languages ranges uniformly from 0.26 to
0.43. From left to middle, as the entropy regularization
coefficient λ increases, the distribution appears more
uniform. At the limit, the weight distribution appears
most uniform when the Imitator is trained by supervi-
sion (right column). Refer to fig. D.3 for the skews and
entropies of the distributions.

D Supplementary: Imitators Select
Compositional Languages to Learn

D.1 Optimization

In the imitation task, we test both direct supervision
and REINFORCE. Importantly, when doing a for-
ward pass for the Sender during training, we feed
it the Expert symbol from the previous timestep
as input so that the Sender learns an autoregres-
sive model of language. Hence, define the Imitator
policy πI

j as in appendix D.4.
In the direct supervision setting, for the Sender

producing a distribution over messages πI given
x and a given Expert i producing message m(i),
where mj is the jth symbol of m(i), the overall
loss for a uniform mixture of k Expert Senders is
the following cross-entropy loss:

LI
SV (x) =

k∑

i=1

L∑

j=1

CE
(
m

(i)
j , πI

j

)
. (5)

In the REINFORCE setting, we use accuracy per-
symbol as a reward for the Sender, with entropy
regularization and mean baseline.5 For Expert i,
this corresponds to a reward r(i) of

5We also tried REINFORCE using negative cross-entropy
loss as a reward, but found training to be unstable.
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TS TR SOLIS SOLIR
ρ R2 ρ R2 ρ R2 ρ R2

SV topsim -0.65*** -0.66*** -0.80*** -0.80*** 0.65 *** 0.65*** 0.75*** 0.76***
bosdis -0.64*** -0.67*** -0.54*** -0.60*** 0.63*** 0.71*** 0.81*** 0.83***
CI -0.24 -0.16 -0.20 -0.01 0.40** 0.34* 0.30* 0.09
posdis -0.15 -0.18 -0.26 -0.26 0.22 0.23 0.17 0.16
acc -0.53*** – -0.72*** – 0.56 *** – 0.53*** –

RF topsim -0.66*** -0.66*** -0.60*** -0.68*** 0.45*** 0.41** 0.59*** 0.63***
bosdis -0.73*** -0.72*** -0.61*** -0.67*** 0.71*** 0.75*** 0.41** 0.40**
CI -0.24 -0.16 -0.41** -0.39** 0.11 -0.06 0.32* 0.29
posdis -0.03 -0.11 -0.43** -0.38** -0.1 -0.15 0.25 0.26
acc -0.51*** – -0.52*** – 0.28 – 0.23 –

Table C.1: Spearman ρ and Pearson R2 correlations between compositionality of Expert communication and
learning speed of Imitators for imitation by supervision (SV) and reinforcement (RF). For comparison, correlations
between validation accuracy of Expert communication (acc) and learning speed are also reported. Correlations are
shown with significance determined by a two-sided Pearson’s R significance test (α = 0.01 (***), 0.05 (**), 0.1
(*)).

(a) (b)

Figure D.2: In Sender imitation, the shape of the learned Expert weights is independent of the shape of the Expert
topsim skew for both reinforcement (RF) and supervision (SV). Shape of the Expert weight distribution is quantified
by [Entropy, Skew], and we plot [Entropy, Skew] x Skew for the learned Expert weights against the Expert topsim
skew for k = 3, 4, 5, and for both RF and SV (omitting k = 2 because skew is artificially 0– the plot would look
like a vertical line). Robustness is seen in the lack of a significant positive or negative trend in the data for all
numbers of Experts tested.

Figure D.3: The entropy (left) and skew (right) (±1 stan-
dard deviation) of learned Expert weights by a Sender
Imitator for k = 4 and 5 Experts. Values attain maxima
in the supervision setting (SV).

r(i) =
1

L

L∑

j=1

Acc
(
m

(i)
j , πI

j

)
(6)

and a policy loss of

LI,(i)
RF (x) = (−r(i) − µt) log π

I(x)− λH(πI(x)),
(7)

per Expert, which is averaged over Experts to
produce the mixture-policy loss. This is optimized
by Adam with a learning rate of 0.005.

D.2 Sampling Sender Expert Distributions
To test the effect of the shape (skew, standard de-
viation) of the Expert topsims on imitation, we
define a set of 10 distributions for each setting of
k > 2 Experts, noting that when k = 2, the skew
is mechanically equal to 0.
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For interpretability, we hold the endpoints of the
distributions equal at the minimum and maximum
possible topsims (0.26, 0.43) for all distributions
and values of k. Then, we sample the median M of
the 10 distributions evenly from 0.26 to 0.43. Then,
we fill the other k − 3 points to create a uniform
distribution with mean M. If the median is less
than the average topsim, then the left endpoint of
this uniform distribution is the minimum topsim.
Otherwise, it is the maximum topsim.

D.3 Effect of population size on learned
Expert Sender weights

We find that the selection effect decreases as the
number of Experts increases, i.e. the Expert weight
distribution looks increasingly uniform (fig. D.2).
We offer two possible explanations: (1) the harder
learnability of this problem given our hyperparame-
ter regime– this is suggested by the lower max-
imum validation accuracy achieved on any one
Expert in RF– or (2) the (mechanically) smaller
variance between values, holding endpoints equal,
as we increase the number of agents. Notably, the
purpose of this work is not to scale up to imita-
tion in large populations of agents; we delegate the
problem of operationalizing RL imitation at scale
to future work.

D.4 Learning a uniform mixture of policies
Claim A Sender that imitates a uniform mixture
of k Expert Senders will output a uniform mixture
of the k Expert languages.

Proof Let π(1) · · ·π(k) be k Expert Senders and
let πI be the Imitator Sender. For each position in a
message, agents produce a probability distribution
over all possible symbols in V . Recall that the
Expert Senders are deterministic at evaluation time.
Given an input x, we write m

(i)
j as the value of

the jth position in the message m(i) produced by
Expert i.

For the Imitator Sender, we write

πI
j := πI

(
m

(i)
j−1 ; x

)
∈ [0, 1]|V |

as the probability distribution over possible sym-
bols in position j of a message produced by the
Imitator agent, given the previous output symbol
m

(i)
j−1 of Expert i. The kth index of πI

j , or πI
j [k],

gives the Imitator agent’s probability of symbol k
at position j in the message.

The ideal Imitator πI∗ minimizes the cross-
entropy objective between its messages and that

of a uniform mixture of k Expert Senders. For-
mally,

πI∗ = min
πI

k∑

i=1

L∑

j=1

CE
(
m

(i)
j , πI

j

)

= min
πI

k∑

i=1

L∑

j=1

− log πI
j [m

(i)
j ]

= max
πI

k∑

i=1

L∑

j=1

log πI
j [m

(i)
j ]

= max
πI

k∏

i=1

L∏

j=1

πI
j [m

(i)
j ]

subj. to
∑

k∈V
πI
j [k] = 1.

whose unique solution is πI
j [m

(i)
j ] = πI

j [m
(l)
j ] ∀j ∈

NL, ∀i ̸= l ∈ Nk, i.e. a uniform distribution over
Expert languages. 2

E Receiver imitation

E.1 Setup
The Receiver imitation task is as follows: given a
set of k Expert Receivers and their corresponding
Senders, we train an identical, newly initialized
Receiver on the Experts’ inputs and outputs (m, x̂).
That is, for each round of training, all k Experts
as well as the Imitator Receiver receive input m,
or the output of Expert Sender given x, and out-
put x̂(1) · · · x̂(k) and x̂I , respectively. Imitators are
then tasked to minimize the difference between
their output and a uniform mixture of the k Expert
outputs.

The architecture for the Receiver agent may be
found in B.1.

Optimization Similar to in Sender imitation, we
test a supervised learning and a reinforcement im-
itation learning setting. For supervised learning,
the Receiver imitation loss is equal to the cross-
entropy loss between its output and the Expert
Receiver’s output given the same corresponding
Expert Sender’s message m. Then, the loss over
the entire mixture is the average cross-entropy loss
per Receiver, aggregated across Expert Receivers.

For REINFORCE, the Receiver reward is similar
to the Sender reward– analogous to the per-symbol
accuracy, it is the per-attribute accuracy. We com-
pute the corresponding policy loss (using a mean
baseline per Expert and λ defined in table B.1), and
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average over all Experts to get the overall policy
loss for the Receiver.

E.2 Imitation and Selection of
Compositionality

With the large communication channel size typical
of emergent communication games, we can expect
little Expert message collision. Then, in this setting,
Receiver imitation consists of learning a many-to-
one mapping of messages to outputs, obviating a
real need for selection if the goal is to maximize
eventual communication accuracy. Indeed, we find
that Imitator Receivers learn to be multilingual,
achieving high validation accuracy on all Experts,
and especially in the supervised setting.

Figure E.1: For the Receiver imitation, the entropy (left)
and skew (right) (±1 standard deviation) of learned
Expert weights for k = 2–5 Experts. We plot one row
per Expert for legibility as the entropy ranges are quite
different for different values of k. Values generally
increase as exploration (λ) increases, attaining maxima
in the supervision setting (SV).

Figure E.2: Receiver Imitator’s validation accuracies
per-Expert on k = 2-5 (top to bottom) languages, where
the topsim of Expert languages ranges evenly from 0.26
to 0.43. Imitation by supervision results in the highest
and most uniform validation accuracies, and increasing
the entropy coefficient λ in imitation by reinforcement
increases the uniformity of validation accuracies. The
y-axis is cut below at 0.4 for legibility.

We do note, however, greater differentiation in
validation accuracy, as well as speed-of-learning,
between Experts of varying compositionality when
using reinforcement compared to supervision, and
again influenced by the entropy coefficient λ
(figs. E.1 to E.3).

How one operationalizes Receiver imitation then
depends on one’s goal: for example, if the goal is
to maximize communication accuracy in a popu-
lation of communicating agents, then we want to
have “tolerant" Receivers, and imitation by super-
vision allows the Receiver to achieve the highest
validation accuracy on all languages. However, if
we want to bottleneck the compositionality of the
language in the population, we want to have more
“selective" Receivers, and imitation by reinforce-
ment may be more appropriate.

E.3 Speed-of-Imitation May Explain
Compositional Selection

Results for the Sender also hold for the Receiver;
see section 4 for the analogous comments.
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Figure E.3: For k = 2 (top left), k = 3 (top right), k = 4 (bottom left) and k = 5 (bottom right) Experts, validation
accuracy curves of the Imitator Receiver on Expert messages over 7000 epochs of imitation training. For each
setting of k, reinforcement is shown on the left and supervision on the right. Note (1) the greater dispersion of
validation accuracy when training by reinforcement compared to be supervision; (2) lower validation accuracy on
the poorest topsim Expert in RF compared to SV.
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