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Abstract

Learning quality document embeddings is a
fundamental problem in natural language pro-
cessing (NLP), information retrieval (IR), rec-
ommendation systems, and search engines. De-
spite recent advances in the development of
transformer-based models that produce sen-
tence embeddings with self-contrastive learn-
ing, the encoding of long documents (Ks of
words) is still challenging with respect to both
efficiency and quality considerations. There-
fore, we train Longfomer-based document en-
coders using a state-of-the-art unsupervised
contrastive learning method (SimCSE). Fur-
ther on, we complement the baseline method -
siamese neural network- with additional convex
neural networks based on functional Bregman
divergence aiming to enhance the quality of the
output document representations. We show that
overall the combination of a self-contrastive
siamese network and our proposed neural Breg-
man network outperforms the baselines in two
linear classification settings on three long doc-
ument topic classification tasks from the legal
and biomedical domains.

1 Introduction

The development of quality document encoders
is of paramount importance for several NLP ap-
plications, such as long document classification
tasks with biomedical (Johnson et al., 2016), or le-
gal (Chalkidis et al., 2022b) documents, as well
as information retrieval tasks (Chalkidis et al.,
2021a; Rabelo et al., 2022; Nentidis et al., 2022).
Despite the recent advances in the development
of transformer-based sentence encoders (Reimers
and Gurevych, 2019; Gao et al., 2021; Liu et al.,
2021; Klein and Nabi, 2022a) via unsupervised
contrastive learning, little do we know about the
potential of neural document-level encoders target-
ing the encoding of long documents (Ks of words).

∗ The authors contributed equally to this work.

Training Corpus Average Text Length

Reimers and Gurevych (2019) inter alia

SNLI 22
MNLI 113
MS Marco 335
Wikipedia 200

Our Work

ECtHR 1,613
MIMIC 1,621
SCOTUS 5,853

Table 1: Text length across corpora that have been used
for self-contrastive pre-training in the NLP literature.

The computational complexity of standard
Transformer-based models (Vaswani et al., 2017;
Devlin et al., 2019) (PLMs) given the quadratic
self-attention operations poses challenges in en-
coding long documents. To address this compu-
tational problem, researchers have introduced ef-
ficient sparse attention networks, such as Long-
former (Beltagy et al., 2020), BigBird (Zaheer et al.,
2020), and Hierarchical Transformers (Chalkidis
et al., 2022a). Nonetheless, fine-tuning such mod-
els in downstream tasks is computationally expen-
sive; hence we need to develop efficient document
encoders that produce quality document representa-
tions that can be used for downstream tasks out-of-
the-box, i.e., without fully (end-to-end) fine-tuning
the pre-trained encoder, if not at all.

Besides computational complexity, building
good representation models for encoding long doc-
uments can be challenging due to document length.
Long documents contain more information than
shorter documents, making it more difficult to cap-
ture all the relevant information in a fixed-size rep-
resentation. In addition, long documents may have
sections with different topics, which increases the
complexity of encoding that usually leads to col-
lapsing representations (Jing et al., 2022). More-
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over, long documents can be semantically inco-
herent, meaning that content may not be logically
related or may contain irrelevant information. For
these reasons, it is challenging to create a qual-
ity representation that captures the most important
information in the document.

To the best of our knowledge, we are the first to
explore the application of self-contrastive learning
for long documents (Table 1). The contributions of
our work are threefold:

(i) We train Longfomer-based document encoders
using a state-of-the-art self-contrastive learning
method, SimCSE by Gao et al. (2021).

(ii) We further enhance the quality of the latent rep-
resentations using convex neural networks based
on functional Bregman divergence. The network
is optimized based on self-contrastive loss with
divergence loss functions (Rezaei et al., 2021).

(iii) We perform extensive experiments to high-
light the empirical benefits of learning representa-
tion using unsupervised contrastive and our pro-
posed enhanced self-contrastive divergence loss.
We compare our method with baselines on three
long document topic classification tasks from the
legal and biomedical domain.

2 Related Work

Document Encoders The need for quality doc-
ument representations has always been an active
topic of NLP research. Initial work on statisti-
cal NLP focused on representing documents as
Bag of Words (BoW), in which direction TF-IDF
representations were the standard for a long time.
In the early days of deep learning in NLP, mod-
els developed to represent words with latent rep-
resentations, such as Word2Vec (Mikolov et al.,
2013), and GloVe (Pennington et al., 2014). Within
this research domain, the use of word embed-
ding centroids as document embeddings, and the
development of the Doc2Vec (Le and Mikolov,
2014) model were proposed. Given the advanced
compute needs to encode documents with neu-
ral networks, follow-up work mainly developed
around sentence/paragraph-level representations,
such as Skip Thoughts of Kiros et al. (2015),
which relies on an RNN encoder. In the era
of pre-trained Transformer-based language mod-
els, Reimers and Gurevych (2019) proposed the
Sentence Transformers framework in order to de-
velop quality dense sentence representations. Many

works followed a similar direction relying on a self-
supervised contrastive learning setup, where most
ideas are adopted mainly from Computer Vision
literature (Chen et al., 2020; Bardes et al., 2022).

Self-Supervised Contrastive Learning in NLP
Several self-contrastive methods have been pro-
posed so far for NLP applications. To name a few:
MirrorRoBERTa (Liu et al., 2021), SCD (Klein
and Nabi, 2022b), miCSE (Klein and Nabi, 2022a),
DeCluTR (Giorgi et al., 2021), and SimCSE (Gao
et al., 2021) – described in Section 3.2–, all create
augmented versions (views) of the original sen-
tences using varying dropout and comparing their
similarity. The application of such methods is lim-
ited to short sentences and relevant downstream
tasks, e.g., sentence similarity, while these methods
do not use any additional component to maximize
diversity in latent feature representations.

3 Methods

3.1 Base Model - Longformer

We experiment with Longformer (Beltagy et al.,
2020), a well-known and relatively simple sparse-
attention Transformer. Longformer uses two sets
of attention, namely sliding window attention and
global attention. Instead of using the full attention
mechanism, the sliding-window attention gives lo-
cal context higher importance. Given a fixed win-
dow size w, each token attends to 1

2 w tokens on the
respective side. The required memory for this is
O(n × w). Sliding-window attention is combined
with global attention from/to the [CLS] token.

Domain-Adapted Longformer: As a baseline, we
use LongformerDA models which are Longformer
models warm-started from domain-specific PLMs.
To do so, we clone the original positional embed-
dings 8× to encode sequences up to 4096 tokens.
The rest of the parameters (word embeddings, trans-
formers layers) can be directly transferred, with the
exception of Longformer’s global attention K, Q,
V matrices, which we warm-start from the standard
(local) attention matrices, following Beltagy et al.
(2020). All parameters are updated during training.

For legal applications (Section 4.1), we warm-
start our models from Legal-BERT (Chalkidis et al.,
2020), a BERT model pre-trained on diverse En-
glish legal corpora, while for the biomedical one,
we use BioBERT (Lee et al., 2020), a BERT model
pre-trained on biomedical corpora.
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Figure 1: Illustration of our proposed self-contrastive
method combining SimCSE of Gao et al. (2021) (left
part) with the additional Bregman divergence networks
and objective of Rezaei et al. (2021) (right part).

3.2 Self-supervised Contrastive Learning

To use our LongformerDA for self-supervised con-
trastive learning, we need to use a Siamese network
architecture (left part of Figure 1). Assume we
have mini-batch D = {(xi)}Ni=1 of N documents.
As positive pairs (xi, xi

+), the method uses aug-
mented (noised) versions of the input feature xi.
As negative pairs (xi, xi

−), all remaining N-1 doc-
uments in a mini-batch are used. The augmen-
tations take place in the encoder block fθ of the
model. θ is the parameterization of the encoder. We
use the SimCSE (Gao et al., 2021) framework, in
which case the encoder fθ is a pre-trained language
model, LongformerDA in our case, and augmenta-
tion comes in the form of varying token dropout
(masking) rate (τ). The loss objective used in the
unsupervised version of SimCSE is the multiple
negatives ranking loss (ℓmnr):

ℓmnr = −1
n

n∑

i=1

exp ( f (si, s̃i))
∑

j exp
(

f
(
si, s j
)) (1)

where s̃i is the positive augmented input sequence
in the mini-batch, and s̃ j are the negatives. Mul-
tiple negatives ranking loss takes a pair of repre-
sentations (si, s̃i) and compares these with negative
samples in a mini-batch. In our experiments, we
train such models, dubbed LongformerDA+SimCSE.

3.2.1 Bregman Divergence Loss
We complement this method with an additional
ensemble of subnetworks optimized by functional
Bregman divergence aiming to improve the output
document latent representations further. Specifi-
cally, the embedding of self-contrastive networks

further passes to k-independent subnetworks to pro-
mote diversity in feature representations.
The si and s j vectors from the contrastive frame-
work are mapped to k-independent ensemble of
neural networks that are optimized using functional
Bregman divergence.

Gϕ(sa, sb) = ϕ(sa) − ϕ(sb)−∫
[sa(x) − sb(x)]δϕ(sb)(x)dµ(x)

(2)

sa and sb are vectors output by the self-contrastive
network, and ϕ is a strictly convex function and
can be described via a linear functional, consisting
of weights wk and biases ϵk. The function ϕ(sa) is
approximate by:

ϕ(sa) = sup
(w,ϵw)∈Q

∫
sa(x)w(x)dx + ϵw (3)

We take the empirical distribution of the projection
representation to compute ŝa and ŝb. Specifically
we define: ŝi=argmaxk[

∫
sa(x)wk(x)dx + ϵk] for i

= (a,b). Using the above specification and ϕ(sa),
we get the following functional divergence term:

G(sa, sb) = (
∫

sa(x)wŝa(x)dx + ϵŝa)−

(
∫

sa(x)wŝb(x)dx + ϵŝb)
(4)

Each sub-network produces a separate output (right
part of Figure 1). The divergence is then computed
using the output at point ŝa and ŝb using the projec-
tions as input. We convert the divergence to simi-
larity using a Gaussian kernel as done by Rezaei
et al. (2021).1

ψ = exp
(
−G/2σ2

)
(5)

The mini-batch has size N. For empirical distribu-
tions saα(zi), sb(z j) where i and j are the respective
index for the two branches and z the projector rep-
resentation, we have:

ℓBregman(sa(zi),sb(z j)) =
− log(exp

(
ψi, j
)

∑N
t=1 exp

(
ψi,k
)
)

(6)

The final objective function is computed on the
combination of as follows:

LTotal = ℓmnr + λ · ℓBregman (7)
1Rezaei et al. (2021) explore various monotone transfor-

mations. The Gaussian kernel performed best compared to
other transformation methods.
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Method ECtHR SCOTUS MIMIC Avg. Training Efficiency
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 Time (h) Params (%)

Document Embedding +MLP

LongformerDA 61.4 47.8 65.7 50.5 63.9 48.3 63.6 4.5h 0.5%
LongformerDA+SimCSE 64.4 55.0 69.2 57.5 66.0 52.9 66.5 » »
LongformerDA+SimCSE+Bregman 64.8 56.3 69.7 58.8 66.7 51.7 67.1 » »

Document Embedding + Linear Layer

LongformerDA 73.7 62.4 69.3 59.0 59.4 21.7 67.5 1h 0.5%
LongformerDA+SimCSE 70.6 56.2 69.6 60.9 59.2 23.0 66.5 » »
LongformerDA+SimCSE+Bregman 73.3 59.5 71.4 62.0 59.6 22.7 68.1 » »

End-to-End Fine-tuning (Ceiling)

LongformerDA 78.8 71.5 75.2 63.2 78.9 56.4 77.6 8h 100%

Table 2: Test Results for all methods across all datasets. Best performance in bold, and second-best score is
underlined. We also report average training time and the percentage of parameters that are trainable.

Where λ is a scalar hyperparameter to weigh the
relative importance of the Bregman divergence and
contrastive loss. In our experiments, we train such
models, dubbed LongformerDA+SimCSE+Bregman.

4 Experimental Set-up

4.1 Datasets and Tasks

ECtHR (Chalkidis et al., 2021b) dataset contains
11k cases from the European Court of Human
Rights (ECtHR). This is a multi-label topic classi-
fication task, where given the facts of an ECtHR
case, the model has to predict the alleged violated
ECtHR article among ten such articles (labels).

SCOTUS (Chalkidis et al., 2022b) dataset con-
tains 4.7k cases from the Supreme Court of US
(SCOTUS). This is a single-label multi-class topic
classification task, where given a SCOTUS opinion,
the model has to predict the relevant area among
14 issue areas (labels).

MIMIC (Johnson et al., 2016) dataset contains
approx. 50k discharge summaries from US hospi-
tals. Each summary is annotated with one or more
codes (labels) from the ICD-9 hierarchy, which
has 8 levels in total. We use the 1st level of ICD-
9, including 19 categories, respectively. This is a
multi-label topic classification task, where given
the discharge summary, the model has to predict
the relevant ICD-9 top-level codes (labels).

4.2 Experimental Settings

To get insights into the quality of the learned repre-
sentations out-of-the-box, we train classifiers using

document embeddings as fixed (frozen) feature rep-
resentations. We consider two linear classification
settings: (i) Linear evaluation plugging a MLP clas-
sification head on top of the document embeddings;
(ii) Linear evaluation plugging a linear classifier on
top of the document embeddings.

5 Results and Discussion

In Table 2, we present the results for all exam-
ined Longformer variants across the three exam-
ined datasets and two settings using macro-F1 (m-
F1) and micro-F1 (µ-F1) scores.

Classification performance: In the last line of
Table 2, we present the results for the baseline
LongformerDA model fine-tuned end-to-end, which
is a ‘ceiling’ for the expected performance, com-
paring to the two examined linear settings, where
the document encoders are not updated. We ob-
serve that in the SCOTUS dataset training mod-
els with an MLP head are really close to the ceil-
ing performance (approx. 1-4p.p. less in µ-F1).
The gap is smaller for both models trained with
the self-contrastive objective (+SimCSE, +Sim-
CSE+Bregman), especially the one with the addi-
tional Bregman divergence loss, where the perfor-
mance decrease in µ-F1 is only 1 p.p.

In the other two datasets (ECtHR and MIMIC),
the performance of the linear models is still approx.
10-15 p.p. behind the ceilings in µ-F1. In ECtHR,
we find that self-contrastive learning improves per-
formance in the first settings by 3 p.p. in µ-F1,
while the additional divergence Bregman loss does
not really improve performance. This is not the
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Model µ-F1 m-F1

LongformerDA 54.9 48.1
» + SimCSE 51.8 43.6
» + SimCSE + Bregman 56.9 48.5

Table 3: Test Results for all Longformer variants for
SCOTUS. Best performance in bold, and second-best
score is underlined.

case, in the second linear setting (second group
in Table 2), where the baseline outperforms both
models. Similarly in MIMIC, we observe that self-
contrastive learning improves performance in the
first settings by 3 p.p. in µ-F1, but the performance
is comparable given linear classifiers. Overall, our
enhanced self-contrastive method leads to the best
results compared to its counterparts.

In Table 3, we also present results on SCOTUS
in a few-shot setting using the SetFit (Tunstall et al.,
2022) framework, where Bregman divergence loss
improves performance compared to the baselines.

Given the overall results, we conclude that build-
ing subnetwork ensembles on top of the document
embeddings can be a useful technique for encoding
long documents and can help avoid the problem
of collapsing representations, where the model is
unable to capture all the relevant information in
the input. Our approach has several advantages for
long-document processing:

Efficiency considerations: In Table 2, we observe
that in both linear settings where fixed document
representations are used, the training time is 2-
8× decreased compared to end-to-end fine-tuning,
while approx. 0.5% of the parameters are trainable
across cases, which directly affects the compute
budget. We provide further information on the size
of the models in Appendix B.

Avoidance of collapsing representations: When
processing long documents, there is a risk that
the representation will collapse (Jing et al., 2022),
meaning that the model will not be able to cap-
ture all the relevant information in the input. By
mapping the document embedding from the base
encoder into smaller sub-networks, the risk of col-
lapsing representations is reduced, as the diver-
gence loss attempts to reduce redundancy in the
feature representation by minimizing the correla-
tion. The results shown in Table 3 in a low-resource
setting further highlight the advantage of training a
Longformer with contrastive divergence learning.

6 Conclusions and Future Work
We proposed and examined self-supervised con-
trastive divergence learning for learning represen-
tation of long documents. Our proposed method is
composed of a self-contrastive learning framework
followed by an ensemble of neural networks that
are optimized by functional Bregman divergence.
Our method showed improvement compared to the
baselines on three long document topic classifica-
tions in the legal and biomedical domains, while the
improvement is more vibrant in a few-shot learning
setting. In future work, we would like to further
investigate the impact of the Bregman divergence
loss in more classification datasets and other NLP
tasks, e.g., document retrieval.

Limitations

In this work, we focus on small and medium size
models (up to 134M parameters), while recent work
in Large Language Models (LLMs) targets mod-
els with billions of parameters(Brown et al., 2020;
Chowdhery et al., 2022). It is unclear how well the
performance improvement from the examined net-
work architecture would translate to other model
sizes or baseline architectures, e.g., GPT models.

Further on, it is unclear how these findings may
translate to other application domains and datasets,
or impact other NLP tasks, such as document re-
trieval/ranking. We will investigate these directions
in future work.
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A Hyper-parameter Optimization

Continued Pre-training: We define the search
space based on previous studies such as Rezaei
et al. (2021) and Gao et al. (2021). For the con-
trastive Bregman divergence, we benchmark the
performance for the first-stage hyper-parameters
on the downstream task to tune the respective
hyper-parameters. We use mean pooling for all
settings. The learning rate, the total optimization
steps, the use of a batch-norm layer, the σ param-
eter, the number of sub-networks g, and the batch
size are grid-searched. Temperature (.1) and the
input length to 4096 are fixed beforehand. The
learning rate for these models was 3e-5. We run
50.000 optimization steps for each model.

Training for classification tasks: We used
AdamW as an optimizer. Bayesian optimization
is used to tune the hype-rparameters learning rate,
number of epochs and batch size. We use mean
pooling for all settings. Early stopping is set to a pa-
tience score of 3.3 These parameters were fixed af-
ter some early experiments. We use a learning rate
of 1e-4 and run ECTHR and SCOTUS for 20 and

3We also experimented with other patience scores but ex-
periments suggest that 3 epochs results in the best perfor-
mance.

12187

https://doi.org/10.18653/v1/2022.acl-short.44
https://doi.org/10.18653/v1/2022.acl-short.44
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://link.springer.com/chapter/10.1007/978-3-031-13643-6_22
https://link.springer.com/chapter/10.1007/978-3-031-13643-6_22
https://link.springer.com/chapter/10.1007/978-3-031-13643-6_22
https://doi.org/10.1007/s12626-022-00105-z
https://doi.org/10.1007/s12626-022-00105-z
https://doi.org/10.1007/s12626-022-00105-z


Hyper-parameters µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

g ∈ [2,5,8,10,20] 74.1 64.3 74.3 62.2 72.1 61.0 75.2 67.7 73.9 63.1
σ ∈ [1,1.5,2,2.5,3] 73.3 63.0 73.6 61.2 75.2 67.7 73.0 62.0 73.9 64.1
Steps ∈ [10-50k] 74.21 62.79 74.14 63.44 75.6 63.5 73.5 63.36 75.2 67.7
Batch size ∈ [2,4,8,12] 75.2 67.7 74.36 64.2 73.9 62.6 74.21 62.9 - -
λ ∈ [.1,2,4,5,10] 75.1 65.3 75.2 67.7 74.79 63.4 74.1 63.7 75.2 64.0

Table 4: m-F1 & µ-F1 performance benchmark for end-to-end training with SCOTUS

30 epochs respectively for the MLP head setting.
For MIMIC we used 10 epochs for the MLP head
and had to truncate the maximum sequence length
to 2048 due to computational constraints. For each
task we compared multiple different training check-
points of our encoder. The reported results are the
best performing checkpoints.

B Number of parameters

Table 5 shows the number of parameters for the
different models. Modding the transformer to a
Longformer adds 6M parameters for LegalBERT
small and 24M parameters for BioBERT medium.
By working with LegalBERT-small and BioBERT-
base we cover both small and medium sized models.

Model #Params

BioBertBase 109M
LongformerBase 148M
LegalBERTsmall 35M
LongformerLegal-DA + SimCSE + Bregman 41M
LongformerBio-DA 134M
LongformerMLP .27M

Table 5: Number of Parameters for the Longformer
variants.

C Pooling methods

We evaluate Mean, Max and [CLS] pooling. Re-
sults for end-to-end fine-tuning can be found in the
table 6. Our results show that using mean pool-
ing during continued pre-training in combination
with max-pooling for classification could further
enhance the performance instead of using the same
pooling method for both stages.

D Neural network Architecture

Our model contains two linear layers with one ac-
tivation layer and two batch normalization layers.

Pooling operator m-F1 µ-F1

Mean +Max Pooling 78.3 70.6
Mean Poolig 76.9 68.1
Max Pooling 77.6 69.5
[CLS] Pooling 77.1 69.5

Table 6: Test results for various pooling operators with
end-to-end tuning on SCOTUS for LongformerDA.

We also compare the model without batch normal-
ization layers. The comparison is made on the SCO-
TUS dataset using end-to-end fine-tuning. One can
see that removing batch normalization worsens per-
formance.

Normalization m-F1 µ-F1

Batch Norm 75.6 63.5
w/o Batch Norm 72.5 63.1

Table 7: F1 performance for ablation model without
batch norm layers for end-to-end fine-tuning on SCO-
TUS.
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