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Abstract
We propose a semi-supervised text classifier
based on self-training using one positive and
one negative property of neural networks. One
of the weaknesses of self-training is the seman-
tic drift problem, where noisy pseudo-labels
accumulate over iterations and consequently
the error rate soars. In order to tackle this chal-
lenge, we reshape the role of pseudo-labels
and create a hierarchical order of information.
In addition, a crucial step in self-training is
to use the classifier confidence prediction to
select the best candidate pseudo-labels. This
step cannot be efficiently done by neural net-
works, because it is known that their output
is poorly calibrated. To overcome this chal-
lenge, we propose a hybrid metric to replace
the plain confidence measurement. Our metric
takes into account the prediction uncertainty
via a subsampling technique. We evaluate our
model in a set of five standard benchmarks, and
show that it significantly outperforms a set of
ten diverse baseline models. Furthermore, we
show that the improvement achieved by our
model is additive to language model pretrain-
ing, which is a widely used technique for using
unlabeled documents. Our code is available at
https://github.com/p-karisani/RST.

1 Introduction

Text classification has achieved tremendous suc-
cess in the past decade thanks to the advancement
in deep neural networks. Even though the intro-
duction of contextual word embeddings and lan-
guage model pretraining (Peters et al., 2018; De-
vlin et al., 2019) has greatly reduced the reliance
on large manually annotated datasets, the current
over-parametrized models are still prone to over-
fitting. To further reduce this reliance one can use
unlabeled data (Abney, 2007; Chapelle et al., 2006).
In this article, we use the properties of neural net-
works and develop a self-training model, termed
Robust Self-Training (RST), for low-data regime
text classification. Self-training (also known as

pseudo-labeling) is iterative (Scudder, 1965; Lee,
2013), and in each iteration unlabeled documents
are automatically annotated and augmented with
labeled documents.

Previous studies (Carlson et al., 2010; Chen
et al., 2013) report that self-training suffers from
the semantic drift problem. That is, as the iterations
are carried on, spurious pseudo-labels are gener-
ated and added to the labeled documents. This even-
tually distorts the class boundaries and drifts the
original class centroids. To address this problem,
inspired by the catastrophic forgetting phenomenon
in neural networks (McCloskey and Cohen, 1989),
we propose a novel procedure to reshape the role
of pseudo-labels in the algorithm. We also aim to
overcome a weakness of neural networks in this
algorithm. Self-training relies on prediction confi-
dence to select the best candidate documents. In
this framework, the classifier output is interpreted
as prediction confidence (Ruder and Plank, 2018).
Self-training performance deteriorates in the set-
tings that the used classifier is unable to accurately
estimate the prediction confidence (Rizve et al.,
2021). Neural networks suffer from such a prob-
lem, because their outputs are mis-calibrated (Guo
et al., 2017). To address this problem, we pro-
pose a novel metric to replace the plain confidence
measurement. Our metric takes into account the
prediction uncertainty via a subsampling algorithm.

We use a set of five standard benchmarks to eval-
uate our model. The selected datasets cover a wide
spectrum of documents, ranging from formal news
documents to highly informal social media docu-
ments. We also compare our model with a set of
ten methods, including approaches that use vari-
ants of self-training, use multiple classifiers, use
multi-view learning, and use various uncertainty
metrics. The experiments signify to the superiority
of our model. Additionally, we analyze our model
and demonstrate that the improvement achieved by
our model is additive to the performance of domain
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specific language model pretraining.
The contributions of our work are as follows:

1) We mitigate the semantic drift problem in self-
training by reshaping the role of pseudo-labeled
documents and creating a hierarchical order of in-
formation. 2) We enhance the pseudo-label selec-
tion in self-training by proposing a novel selection
metric to replace the plain confidence measurement.
Our metric is particularly advantageous when neu-
ral networks are used as the underlying classifier,
because these classifiers are overconfident in their
predictions (Guo et al., 2017). 3) Through an ex-
tensive set of experiments with five datasets and
ten baselines we show that our model is highly re-
sistant to noisy pseudo-labels, yields an additive
improvement to domain specific language model
pretraining, and outperforms the state of the art.

2 Related Work

Neural networks in self-training. Self-training
or pseudo-labeling (Scudder, 1965; Lee, 2013) is
a semi-supervised learning algorithm. Previous
studies investigate various aspects of this algorithm
and aim for filling the niches. For instance, Arazo
et al. (2019) integrate MixUp (Zhang et al., 2018a)
with the oversampling of labeled documents, Amiri
(2019) proposes a new document sampling strategy,
Xie et al. (2020b) and He et al. (2020) report that
adding noise to pseudo-labels and the hidden layers
of a network enhances the model performance–the
latter for the sequence generation task, and Zoph
et al. (2020) contrast self-training and pretraining
and conclude that under certain conditions the for-
mer outperforms the latter. Karisani et al. (2020)
propose a multi-view self-training model to incor-
porate domain-knowledge, Pham et al. (2021) pro-
pose a feedback loop across self-training iterations,
Karamanolakis et al. (2021) propose a model to in-
corporate weakly supervised domain specific rules,
Vu et al. (2021) report that pre-training a model
with an auxiliary NLI task enhances self-training,
and Li et al. (2021) reduces the variance of pseudo-
labels within each class using an angular loss.

As opposed to our research, none of these studies
propose a model to maintain a balance between the
set of pseudo-labels and the set of manual labels.
Additionally, they don’t analyze the deterioration
of performance during the self-training iterations,
and consequently have no defense against this fun-
damental weakness.
Uncertainty measurement in NLP. Confidence

in model prediction, is the amount of trust in the
predicted class label compared to the other class
labels (Guo et al., 2017). Uncertainty in model
prediction, is the amount of trust in the entire pre-
diction regardless of the predicted label (Kendall
and Gal, 2017). The research on the efficacy of
uncertainty in semi-supervised learning is scarce.
Mukherjee and Awadallah (2020) propose to fil-
ter out uncertain predictions before the candidate
selection step, Rizve et al. (2021) apply a set of
thresholds to filter out uncertain and unconfident
predictions, and Xu et al. (2021) experiment with
various uncertainty metrics and report that uncov-
ering the Heteroscedastic uncertainty (the intrinsic
data uncertainty) (Kendall and Gal, 2017) is the
best strategy on average.

As opposed to our work, none of these studies
propose an integrated metric for selecting pseudo-
labels. Additionally, after selecting the pseudo-
labels, they don’t propose any strategy to restrain
the noisy labels from polluting the labeled set.
Ensemble and multi-view models. There ex-
ist models that use multiple classifiers, examples
include variants of Tri-training (Søgaard, 2010;
Ruder and Plank, 2018), variants of co-training
(Blum and Mitchell, 1998; Sindhwani et al., 2005;
Wu et al., 2018; Karisani et al., 2020), and other
ad hoc ensemble models (Li and Zhou, 2007; Hady
and Schwenker, 2008; Zhang et al., 2018b).

As opposed to our work, these models rely only
on the confidence of classifiers. No coherent uncer-
tainty interpretation has been proposed for them.
Additionally, they use ensembling in the prediction
stage, whereas, we employ only one classifier for
this purpose, which is more resource efficient.
Semantic drift in self-training. Semantic drift
in self-training (Curran et al., 2007; Carlson et al.,
2010) occurs when spurious pseudo-labels accumu-
late over time and distort the distribution of labeled
documents. In the context of neural networks, the
research in this area is sparse. One approach is to
avoid pseudo-labels altogether, and use unlabeled
documents differently (Gururangan et al., 2019;
Xie et al., 2020a; Chen et al., 2020a; Gururangan
et al., 2020). Nonetheless, these alternative meth-
ods don’t necessarily compete with self-training
and can co-exist with it inside a framework. To
address semantic drift directly, existing approaches
mainly aim for explicitly adjusting pseudo-labels.
Li et al. (2021) use an angular loss function to
project pseudo-labels. Karisani and Karisani (2021)
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assume pseudo-labels evolve in a stochastic pro-
cess and normalize their values. In terms of the role
of pseudo-labels in self-training, our algorithm can
be taken as the generalized form of the algorithm
proposed by Karisani and Karisani (2021).
Connections to consistency regularization.
There are two distinctions between our model and
consistency training methods (Chen et al., 2020b;
Xie et al., 2020a), one in the methodology and
another in the objective. In consistency-based regu-
larization methods, data points are manipulated and
new data points are generated. As opposed to these
methods we don’t manipulate data, instead we re-
vise the training steps. Additionally, in consistency
based regularization methods the goal is to create
a smooth loss surface, so that the class boundaries
are easier to adjust and expand to unlabeled data.
Our objective is different, we aim to address the
model overconfidence, which is why we don’t use
this step during the training of the classifier (con-
sistency regularization is done during the training),
we use it only during the candidate selection. This
means that our method doesn’t compete with con-
sistency training, and can co-exist with it in a single
framework.

3 Proposed Method

In a typical self-training model (Yarowsky, 1995),
there is a set L of labeled data, and a set U of
unlabeled data. A predictive model is trained on L
and is used to probabilistically label U . Then, given
a hyper-parameter θ, as the minimum confidence
threshold, the confidently labeled documents in U
and their associated pseudo-labels are selected and
added to L. This procedure is iterative. In this
framework, there is no constraint on the choice of
the underlying model, except that it is required to
assign a confidence score to each pseudo-label.

There are two challenges to face in this set-
ting: 1) Self-training suffers from the semantic
drift problem (Curran et al., 2007; Carlson et al.,
2010). That is, as we increase the number of it-
erations, the error rate accumulates and the class
boundaries are distorted. 2) Neural networks are
overconfident in their predictions (Guo et al., 2017;
Hendrycks and Gimpel, 2017), and as we discuss
in Section 3.2, this shortcoming deteriorates the
quality of the pseudo-labels in each iteration.

To address these challenges, we present Ro-
bust Self-Training (RST ). Algorithm 1 provides
an overview of RST , with two classifiers, in Struc-

tured English. Lines 12 to 18 demonstrate one
iteration of the algorithm, which is repeated till the
set of unlabeled documents U is exhausted. The it-
eration begins by initializing the classifiers C1 and
C2. Then, it continues by sampling from the set
of pseudo-labels S and distilling it (Hinton et al.,
2015) into the classifier C1.1 Then, another sample
from the set of labeled documents L is taken to
further train C1 using Equation 1 (see Section 3.1).
These steps are re-taken to train the second classi-
fier C2. Finally, C1 and C2 are used in Equation 2
(see Section 3.2) to label and score the documents
in the set U . The top documents are removed from
U and are added to the set S. Since we have multi-
ple classifiers labeling each document (in this case
two classifiers), we store the average of the outputs
in S. On Line 19, the entire set S is used to pretrain
the final classifier C, and on Line 20, the set L is
used to finetune C using Equation 1. In the follow-
ing two sections we discuss how our algorithm can
address the two aforementioned challenges.

Algorithm 1 Overview of RST
1: procedure RST
2: Given:
3: L : Set of labeled documents
4: U : Set of unlabeled documents
5: Return:
6: Trained classifier on L and U
7: Execute:
8: Set K to 100 // hyper-parameter (step size)
9: Set R to 70 // hyper-parameter (sample ratio)

10: Set S to EMPTY // the set of pseudo-labels
11: while U is not EMPTY do
12: Initialize the classifiers C1 and C2

13: Sample R% of S, order the data as described in
Section 3.1, and use it to train C1

14: Sample R% of L and use in Equation 1 for C1

15: Sample R% of S, order the data as described in
Section 3.1, and use it to train C2

16: Sample R% of L and use in Equation 1 for C2

17: Use C1 and C2 to label U and then score the
documents using Equation 2

18: Remove the top K documents from U and add
them to S

19: Order the set S as described in Section 3.1, and
use it to train the classifier C

20: Use the set L in Equation 1 to further train C
21: Return C

3.1 Overcoming Semantic Drift
An inherent pitfall of the self-training algorithm is
the semantic drift problem (Curran et al., 2007;
Carlson et al., 2010; Chen et al., 2013), where
adding new pseudo-labels ultimately impacts the

1In the first iteration the set S is empty, therefore, no
distillation is done.
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properties of the classes in the set of labeled doc-
uments. To mitigate this problem, one solution
is to order the training data based on the deemed
noise in the labels.2 Thus, we seek to re-design
self-training to undergo such a modification.

Catastrophic forgetting is a problem in neu-
ral networks (McCloskey and Cohen, 1989; Kirk-
patrick et al., 2017). This problem arises in the
continual learning settings, when a series of tasks
are sequentially used to train a neural network. It
stems from the fact that the weights of the neural
network update to serve the objective of the current
task, therefore, the information about the current
task replaces the information about the previous
tasks. We use this property of neural networks to
construct a natural hierarchical order of informa-
tion. Because the pseudo-labels in each iteration
are obtained by the model of the previous iteration,
it is reasonable to assume that they are noisier than
the pseudo-labels in the previous iterations. Based
on this argument, we propose to order the pseudo-
labels according to the reverse iteration number,
and then, use them to train the network of the cur-
rent iteration. Because it is assumed that the labeled
data is noiseless, this set is used at the end of the
training to finetune the network. One can assume
that the pseudo-labels in this algorithm are used to
initialize the network, and the labeled data is used
to finetune the network.

To be able to initialize and train the network in
each iteration, we store the iteration number that
each pseudo-label was added to the pool. We call
the set of pseudo-labels the set S, and the set of
initial labeled documents the set L. At the begin-
ning of each iteration, we order the pseudo-labels
in S and use them to train the network, i.e., Task 1.
We store–and use–the last layer logits of the net-
work in classifying the documents in S to be used
with a high temperature for initialization. Thus,
we essentially distill the knowledge of the previous
iterations into the network (Hinton et al., 2015).
Additionally, because randomness in creating the
batches is an essential ingredient of stochastic gra-
dient descent, while training the network by the
pseudo-labels of each iteration, we randomly select
a percentage of pseudo-labels from other iterations.
Finally, we use the documents in L and minimize
the following objective function to further train the

2One can also reduce the importance of the pseudo-labels,
which we use as a baseline.

network, i.e., Task 2:

L=(1−λ)(−
N∑

i=1

[yilogai+(1−yi)log(1−ai)])+

λ(−
N∑

i=1

[qiloga
′
i+(1−qi)log(1−a′i)]),

(1)

where N is the number of the documents in the
set L, yi is the binary ground truth label of the
document di, ai is the output of the network after
the softmax layer, a′i is the output of the network
after the softmax layer with a high temperature
(Hinton et al., 2015), and qi is the output of the
network with the same temperature as the previous
case right before the current task begins. Note
that a′i and qi are different, the former refers to the
current output of the network, while the weights
are still being updated to meet the objective of the
current task, and the latter refers to the output of the
network after it was trained by the documents in the
set S and before it was trained by the documents
in the set L. λ is a penalty term (0 ≤ λ ≤ 1).

The first term in the loss function is the regular
cross entropy between the ground truth labels and
the output class distributions. The second term is
the cross entropy between the current output class
distributions and the class distributions that were
obtained after training the network by the pseudo-
labels. Intuitively, the goal of the second term
is to prevent the first term from fully erasing the
knowledge already stored in the network, i.e., the
knowledge obtained from the pseudo-labels.

One advantage of employing pseudo-labels to
initialize the network, as we described in this sec-
tion, is that if during the self-training iterations due
to the growing size of the set S the newly added
pseudo-labels become highly noisy, the first term
in the objective function yields stronger gradients
and will automatically dampen the effect of these
examples. In fact, we show that given this mech-
anism, there is no need to validate the number of
self-training iterations anymore, and one can label
and use the entire set U . Whereas, doing so in the
regular self-training causes semantic drift.

3.2 Addressing Overconfidence
The performance in each self-training iteration
heavily depends on the quality of the pseudo-labels
added to the training data in the previous iterations.
Neural networks are prone to assigning high pos-
terior probabilities even to the out of distribution
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data points (Hendrycks and Gimpel, 2017). This
means, with a high probability, the mislabeled doc-
uments can be confidently assigned to the opposite
class and can be selected as the best candidate doc-
uments. The effect of these spurious labels can
accumulate over iterations and eventually deterio-
rate the performance.3

To address this issue, in this section we propose
a novel selection criterion to replace the plain con-
fidence metric. Our criterion takes into account
the uncertainty in the classifier output. The core
idea of our algorithm is to determine whether the
output class distributions of a candidate document
under multiple different subsamples of the set L
are consistent.4 A small divergence–while having
distinctly different training sets–indicates that there
are strong similarities between the candidate docu-
ment and the set L. A high confidence that occurs
due to the poor calibration of neural network out-
puts, and not because of the qualities of data, is less
likely to re-occur under multiple sample sets.

To implement this idea, we note that the selec-
tion criterion must be proportional to model con-
fidence and disproportional to output uncertainty.
Below we propose a metric that follows our desired
criteria:

Score(d)=

∏m
i=1(1−Ĥ(Pai))+α

GJS(Pa1,...,Pam)+α
, (2)

where d is the candidate document; Pai is the
output distribution of the classifier Ci trained on
the i-th subsample; Ĥ(ai) is the normalized en-
tropy of the class distribution; GJS is the gener-
alized Jensen-Shannon distance between the class
distributions Pa1 , . . . , Pam ; m is the number of
subsamples—in Algorithm 1 m equals 2—; and α
is a smoothing factor—we set it to 1× 10−4 in all
the experiments. Depending on the value of α, the
equation results in Score(d) ∈ (0,+∞).

The normalized entropy (Hassibi and Shadbakht,
2007) of a random variable is the entropy of the
random variable divided by its maximum entropy:

Ĥ(X)=−
n∑
p(X)

log p(X)

log n
,

3Throttling is used to reduce this effect (Abney, 2007),
which we use in the experiments. Our solution specifically
reduces the noise introduced by an overconfident model.

4In terms of runtime and memory consumption our model
is comparable to existing semi-supervised learning models. In
fact, three of our baselines consist of model ensembling (they
use two or more classifiers), which is a common practice in
semi-supervised learning.

where n is the number of classes. We use the nor-
malized variant instead of the regular Shannon en-
tropy to scale the quantity between 0 and 1. The
generalized Jensen-Shannon distance (Lin, 1991)
measures the diversity between a set of distribu-
tions, and is calculated as follows:

GJS(Pa1,...,Pam)=H(P )− 1

m

m∑

i=1

H(Pai),

where H(•) is the Shannon entropy, and P is the
mean of the distributions. The mean is calculated
as follows:

P=
1

m

m∑

i=1

Pai.

The numerator in Equation 2 represents the con-
fidence of the classifiers. Higher confidence in the
classification yields lower entropy in the class pre-
dictions, and hence, results in a higher score. The
denominator in Equation 2 represents the output
uncertainty. Using Equation 2 we can score the doc-
uments in the set U , and select the top documents
and their associated pseudo-labels to be added to
the set L–we assume all classifiers agree on the
labels of the top candidate documents.5

So far we discussed binary classification prob-
lems. Extending our method to multi-class tasks
is trivial. To do so, we only need to replace the
binomial cross entropy in Equation 1 with a multi-
nomial cross entropy. Note that Equation 2 re-
mains intact, because it is agnostic to the number
of classes.

3.3 Computational Complexity
During the experiments, we observed that even
with two subsamples our model outperforms exist-
ing baselines. Therefore, we used only two classi-
fiers in all the experiments. In terms of implemen-
tation, our model has two variants: a sequential
variation and a parallel variation. In the sequential
setting, the classifier C1 is trained on the sets S
and L, and then it is used to label the set U . The
pseudo-labels are stored and the classifier is re-
moved from the memory. This process is repeated
for the classifier C2 to obtain the second set of
pseudo-labels. The two sets of pseudo-labels are
processed using Equation 1, and the sets S and U

5We did not observe an example that violates this assump-
tion in the experiments. Nonetheless, such an example can be
taken as noise and can be discarded.
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are updated. In this setting, the memory footprint
is identical to that of the regular self-training and
the run-time is 2× slower; because each iteration
involves training both networks. In the parallel set-
ting, both classifiers C1 and C2 can be trained at
the same time to obtain the sets of pseudo-labels.
In this case, our model has 2× more parameters,
because both networks should be stored in memory.
Since in the parallel case the two networks do not
communicate, the run-time is significantly shorter
than the sequential case–it is easily comparable to
that of the regular self-training.

4 Experimental Setup

In the current and in the next sections we describe
our experimental setup and our results.

4.1 Datasets
We evaluate our model in the sentiment analysis
task, in the news classification task, in detecting
the reports of medical drug side-effects (the ADR
task), and in detecting the reports of product con-
sumption.

In the sentiment analysis task, we use the Ama-
zon dataset (Blitzer et al., 2007) and the Yelp
dataset (Zhang et al., 2015a). In the news classifi-
cation task, we use the AG-News dataset (Zhang
et al., 2015b) which is a multi-class classifica-
tion task with four classes. In the ADR task, we
use the dataset introduced by Weissenbacher and
Gonzalez-Hernandez (2019) prepared for an ACL
2019 Shared Task. In the product consumption
task, we use the dataset introduced by Huang et al.
(2017). We specifically use a diverse set of datasets
in the experiments to comprehensively evaluate
our model. The datasets cover short and long doc-
uments. They also cover balanced, imbalanced,
and extremely imbalanced tasks. They contain
a multi-class task. They also contain social me-
dia classification tasks, which reportedly suffer
from noisy content (Karisani and Karisani, 2020;
Karisani et al., 2022).

The Amazon dataset is accompanied by a
set of unlabeled documents. In Yelp and AG-
News datasets (for each one separately) we take
a set of 10K unused training documents as unla-
beled data. For ADR and Product datasets (for
each one separately) we used the Twitter API and
collected 10K in-domain documents6 to be used by

6We used a set of related keywords to collect the docu-
ments. Depending on the subject, collecting this number of

the models as unlabeled data.

4.2 Baselines
We compare our model with a set of ten diverse
models.
Baseline (2019). We include the pretrained BERT
model (base version) followed by one layer fully
connected network, and a softmax layer (Devlin
et al., 2019; Wolf et al., 2019). We follow the
settings suggested in the reference to set-up the
model. This baseline is finetuned on the training
set and evaluated on the test set.
Self-train (1995, 2018). We include the neural self-
training model (Yarowsky, 1995; Ruder and Plank,
2018). Based on the confidence of the classifier
the top candidate pseudo-labels are selected and
added to the labeled data–see the next section for
the details. We use one instance of Baseline as the
classifier in this model.
Tri-train+ (2010, 2018). We include the model in-
troduced by Søgaard (2010) called tri-training with
disagreement. This model is the enhanced variant
of tri-training model (Zhi-Hua Zhou and Ming Li,
2005), and was shown to be more efficient (Ruder
and Plank, 2018). We use three instantiations of
Baseline with different initializations in this model.
Mutual-learn (2018). We include the model intro-
duced by Zhang et al. (2018b). This model is based
on the idea of raising the entropy of neural pre-
dictions to improve generalization (Pereyra et al.,
2017). We use two instantiations of Baseline with
different initializations in this model.
Spaced-rep (2019). We include the model intro-
duced by Amiri (2019). This model is based on the
Leitner learning system. In each iteration it selects
the easiest and most informative documents.
Co-Decomp (2020). We include the model intro-
duced by Karisani et al. (2020). In this model,
which is a multi-view semi-supervised method, the
task is decomposed into a set of sub-tasks, and then,
their results are aggregated. We use two instantia-
tions of Baseline in this model.
HAU (2021). Xu et al. (2021) experiment with
various uncertainty and confidence measurement
methods in two tasks, and report that on average
Aleatoric Heteroscedastic Uncertainty metric out-
performs other measurement methods. We include
this method in our experiments.

documents may take between a few days to a few weeks. It
took us about 10 days to collect 10K dissimilar related docu-
ments.
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UPS (2021). We include the model proposed by
Rizve et al. (2021). This model uses a gating mech-
anism using thresholds to filter out uncertain and
unconfident pseudo-labels. Then uses the regular
cross entropy for the most confident data points,
and another loss called negative cross entropy for
the least confident data points.
BDD (2021). We include the model introduced by
Li et al. (2021). This model uses an angular loss
function to reduce the variance of label angels by
transforming the values of pseudo-labels. Their
hypothesis is that reducing the variance of model
predictions should enhance model performance.
Sel-Reg (2022). We include the method by Kim
and Lee (2022). They propose a regularizer to
reduce the confirmation bias in successive pseudo-
labeling iterations. Their core idea is to diversify
the selection of pseudo-labels using an entropy-
based loss term.

4.3 Experimental Details
In all the models we use pretrained BERT (the base
variant) as the underlying classifier. This setting,
which is realistic, makes any improvement over
the naive baseline very difficult, because BERT
already performs well with small labeled data (De-
vlin et al., 2019). On the other hand, because all
the models have an identical pretrained network
their comparison is completely fair.

All the models employ throttling (Abney, 2007)
with confidence thresholding–minimum of 0.9 as
the cutoff. We also use a model similar to linear
growth sampling (Saito et al., 2017) for augmenting
the labeled data with unlabeled data, i.e., in each
iteration, we sample at most 10% of the current set
of labeled data. We use the optimizer suggested by
Devlin et al. (2019) with the batch size of 32–Adam
with a linear scheduler.

Augmenting the entire set of unlabeled data with
labeled data causes semantic drift in self-training.
Karisani et al. (2020) show that Co-Decomp suf-
fers from the same problem. Thus, we treated the
number of pseudo-labels as the hyper-parameter
in these models and in each experiment used 20%
of the training set as the validation set to find the
best value. We tuned all of the models for the F1
measure. We found that the optimal values depend
on the task and the training sets. Tri-training+ has
an internal stopping criterion, and Mutual-learn
uses the entire set of unlabeled data to regulate the
confidences of the two classifiers. Spaced-rep and

BDD rely on a validation set for candidate selec-
tion. Thus, we allocated 20% of the labeled set for
this purpose. The rest of the settings are identical
to what is suggested by Amiri (2019) and Li et al.
(2021).

There are four hyper-parameters in our model:
the value of softmax temperature in the distillation
processes, the ratio of sampling, the value of λ in
the objective function (Equation 1), and the num-
ber of classifiers. We set the values of the tempera-
ture and the sample size to 2 and 70% respectively
across all the experiments. We tuned the value of
λ in Product training set, and fixed it across all
the experiments–λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The
optimal value of λ is 0.3, which assigns a higher
weight to the first term in our loss function. Unless
otherwise stated, in all the experiments we use two
classifiers in our model.

To evaluate the models in a semi-supervised set-
ting we adopt the standard practice in the literature
(Nigam et al., 2000), thus, we use the stratified
random sampling to sample a small set from the
original training data to be used as the training set
for the models. We repeat all the experiments 3
times with different random seeds, and report the
average of the results.
Evaluation metrics. Amazon and Yelp datasets are
balanced benchmarks, we report accuracy in these
datasets. AG-News dataset is a multi-class task, fol-
lowing Gururangan et al. (2020) we report macro-
F1 in this dataset. ADR and Product datasets are
imbalanced. Following the argument made by Mc-
creadie et al. (2019) about imbalanced datasets, we
report the F1 measure in the minority (the posi-
tive) class to account for both the quality and the
coverage of the models.

5 Results and Analysis

5.1 Main Results
Table 1 reports the results of RST and the baselines
in all the datasets. We observe that RST in all the
cases is either the best or on a par with the best
model. We particularly see that the improvement is
substantial in ADR dataset. This is, in part, due to
the skewed class distributions in this dataset. Our
model efficiently utilizes the entire set of unlabeled
documents resulting in a higher recall, and at the
same time, maintaining a high precision. We also
inspected the documents in ADR task and observed
that they are significantly more diverse than the
ones in the other four tasks. This quality of ADR
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Amaz. Yelp AG-N. ADR Prod.

# Doc Model Acc Acc F1 F1 F1

300

Baseline 0.815 0.891 0.863 0.238 0.728
Self-train 0.833 0.883 0.871 0.303 0.731
Tri-train+ 0.867 0.914 0.873 0.306 0.734
Mut-learn 0.851 0.908 0.877 0.024 0.753
Space-rep 0.860 0.899 0.872 0.258 0.727
Co-Deco. - - - 0.310 0.754

HAU 0.867 0.912 0.873 0.309 0.753
UPS 0.870 0.910 0.877 0.323 0.755
BDD 0.845 0.892 0.876 0.291 0.734

Sel-Reg 0.867 0.912 0.886 0.116 0.750

RST 0.881 0.926 0.888 0.386 0.767

500

Baseline 0.859 0.917 0.883 0.312 0.740
Self-train 0.865 0.916 0.885 0.335 0.741
Tri-train+ 0.880 0.923 0.888 0.365 0.758
Mut-learn 0.880 0.920 0.889 0.108 0.767
Space-rep 0.862 0.917 0.888 0.295 0.737
Co-Deco. - - - 0.345 0.766

HAU 0.879 0.917 0.882 0.349 0.767
UPS 0.878 0.918 0.888 0.334 0.771
BDD 0.859 0.891 0.878 0.312 0.741

Sel-Reg 0.876 0.912 0.892 0.178 0.770

RST 0.891 0.928 0.891 0.421 0.783

Table 1: Performance of RST compared to the baselines in all
the datasets. We follow previous studies and report Accuracy
in Amazon and Yelp datasets; and report F1 in AG-News ,
ADR, and Product datasets. The models were trained on 300
and 500 labeled documents.

makes it specifically susceptible to the number of
training examples. We also note that Mutual-learn
completely fails to learn in this dataset. Our inves-
tigations revealed that the extreme class imbalance
is the underlying reason.7

5.2 Empirical Analysis
In this section, we contrast RST with domain spe-
cific language model pretraining, analyze the re-
sistance of it to semantic drift, report an ablation
study on the efficacy of the individual modules,
examine the pretraining mechanism in RST, ana-
lyze the hyper-parameter sensitivity, and analyze
the convergence performance.

We begin by validating our claim that our model
can be complementary to language model pretrain-
ing (see Section 1). We compare RST to domain
specific language model pretraining (Gururangan
et al., 2020). Thus, we use the unlabeled data de-
scribed in Section 4 to pretrain Baseline model
using the masked language model and the next sen-
tence prediction tasks (Devlin et al., 2019). Table 2
reports the results of this experiment. We observe
that the combination of RST and pretraining yields

7We subsampled from the positive set in Product dataset
and constructed a highly imbalanced dataset, this model
yielded the same results in this case too.

Model F1 Precision Recall
DS-pretraining 0.352 0.330 0.421

RST 0.421 0.344 0.548
Combined 0.443 0.397 0.507

Table 2: Results of domain specific language model pretrain-
ing (DS-pretraining), RST, and their combination.
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(a) RST vs self-training
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Figure 1: 1a) F1 of RST and Self-pretraining at varying unla-
beled set sizes. 1b) The sensitivity of RST to the sample ratio.

an additional improvement. This experiment and
the next ones require running models for multiple
times. We carried them out in the ADR dataset
with 500 initial labeled documents.

To demonstrate the robustness of RST against
semantic drift we report the performance of RST at
varying number of added unlabeled documents dur-
ing the bootstrapping iterations. The results are
shown in Figure 1a. We observe that in this regard
our model is more robust compared to Self-training
baseline. We also see that our model reaches a
plateau at about 3,500 unlabeled documents. Given
that 10K unlabeled documents, used in our experi-
ments, is a relatively large set for unsupervised text
classification experiments (Ruder and Plank, 2018),
this demonstrates that RST is also data efficient.8

Next, we report an ablation study on the efficacy
of subsampling and pretraining steps. To do so, we
replace subsampling with the regular confidence
thresholding, and in another experiment, replace
pretraining with the regular data augmentation. Ta-
ble 3 reports the results. We see that both strategies
are effective, although pretraining makes a greater
contribution. A fundamental question to answer is
whether the effect of pretraining can be achieved
by assigning a lower weight to pseudo-labels and
augmenting them with labeled data. Table 4 reports
the results of this experiment when we replace pre-
training with weighted augmentation in RST –we
assigned the weight of 0.5 to the pseudo-labels.9

We see that the performance substantially deterio-
rates, signifying the efficacy of pretraining strategy.

8The run-time of our model with 10,000 unlabeled docu-
ments was less than 3 hours using NVIDIA Titan RTX GPUs.
We implemented the sequential variation of our model.

9Lower or higher weights does not yield an improvement.
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Model F1 Precision Recall
RST 0.421 0.344 0.548

RST w/o subsampling 0.394 0.289 0.624
RST w/o pretraining 0.357 0.292 0.498

Table 3: Ablation study on the efficacy of subsampling and
pretraining techniques.

Model F1 Precision Recall
RST 0.421 0.344 0.548

Weighted augmentation 0.365 0.320 0.470

Table 4: F1, Precision, and Recall of RST when pretraining is
replaced with weighted data augmentation.

We now focus on hyper-parameter sensitivity.
Figure 1b reports the sensitivity of our model to
the sampling ratio in the subsampling stage. We
see that after a certain threshold the performance
reaches a plateau and the increase in performance
is negligible. Figure 3a reports the performance
of RST at varying values of λ in the objective
function–Equation 1. This coefficient governs the
impact of pseudo-labels. We see that as the value of
λ decreases, and a higher weight is assigned to the
first term, the performance improves and ultimately
drops again. This signifies the efficacy of our loss
function, and verifies our argument in Section 3.1.

As we stated earlier, in all the experiments we
used two classifiers in our model. To demonstrate
the sensitivity of our model to the number of clas-
sifiers, we report the performance of RST with
varying number of classifiers. Figure 2 illustrates
the results. We see that by adding one more clas-
sifier our model can achieve slightly better results,
however, after this cut-off the performance doesn’t
further improve.

Our loss function (Equation 1) has two terms.
The second term in the loss function ties the current
training stage (using labeled data) to the training
in the previous stage (using pseudo-labels). This
raises the question whether this dependency makes
the convergence speed slower. To answer this ques-
tion, we replaced the entire objective with the regu-
lar cross entropy on labeled data. Figure 3b reports
the results. We see that in terms of convergence,
RST is faster and more stable. This is perhaps due
to catastrophic forgetting. Training on labeled data
interferes with the already stored knowledge in the
network and results in the fluctuations that we see
in the new learning curve.

Table 1 compares our model with multiple base-
lines including several ensemble models, e.g., Tri-
train+, Mut-learn, Co-Deco., and HAU. As a refer-

Model F1 Precision Recall
RST 0.421 0.344 0.548

Tri-training with entropy 0.351 0.324 0.383

Table 5: F1, Precision, and Recall of RST compared to Tri-
training. The Tri-training selection criterion is to select the
pseudo-labels that have the least entropy.
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F1

Classifiers (m)

Figure 2: The sensitivity of RST to the number of classifiers.
We see that our model reaches the highest performance when
three classifiers are used.

ence point, one may still like to see how our model
compares with an ensemble model armed with an
entropy selection metric. Table 5 reports the results
of this experiment. We see that RST outperforms
such a model, verifying our claims.

In summary, we evaluated our model in five stan-
dard datasets under two settings and compared with
ten strong baselines. We showed that in all the
cases our model is either the best or on a par with
the best model. We plan to investigate the applica-
bility of our model in cross-lingual settings.

6 Conclusions

In this paper we proposed a semi-supervised text
classifier. Our model is based on the self-training
paradigm and employs neural network properties
to enhance the bootstrapping procedure. Specifi-
cally, we use a subsampling technique to overcome
the poor calibration of neural networks and to im-
prove the candidate selection. Then, we exploit
the catastrophic forgetting phenomenon in neural
networks to alleviate the semantic drift problem.
We evaluated our model in five public datasets and
showed that it outperforms ten baselines.

0.35

0.4

0.45

0 0.1 0.3 0.5 0.7

F1

λ

(a) F1 vs λ
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RST RST (CE)

(b) RST vs RST (CE)

Figure 3: 3a) The sensitivity of RST to the penalty term
λ. 3b) The convergence rate of RST when we use the regu-
lar cross entropy instead of our loss function. The modified
method is denoted by RST (CE).
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Limitations

Our model is evaluated in standard English datasets
for classification. As we stated earlier we plan to
investigate the cross lingual setting in the next step.

The iterative nature of self-training imposes a
high cost on the experiments. This has led to a
few common practices. Most existing studies (in-
cluding all the studies that we used as baselines)
employ one underlying classifier to carry out the
experiments–i.e., BERT or RNNs. This practice
albeit limiting, is justified by the argument that if
an algorithm does not make any assumption about
the underlying structure of the classifier, then one
can safely select the best available classifier and
use it in the experiments. We used BERT in our
experiments.

Another limitation is that, which is again
stemmed from the high cost of self-training, one
is typically forced to select a few sample sizes as
labeled sets to carry out the experiments–e.g., 100
or 300. This is in contrast to similar research ar-
eas, such as Active Learning, when one can usually
afford to report a learning curve to illustrate the
performance with a few training examples all the
way to using the full labeled dataset. Given that
we have 10 baselines, we reported the performance
with 300 and 500 labeled examples.

References
Steven Abney. 2007. Semisupervised Learning for

Computational Linguistics, 1st edition. Chapman
& Hall/CRC.

Hadi Amiri. 2019. Neural self-training through spaced
repetition. In Proceedings of the 2019 Conference of
NAACL, pages 21–31, Minneapolis, Minnesota.

Eric Arazo, Diego Ortego, Paul Albert, Noel E.
O’Connor, and Kevin McGuinness. 2019. Pseudo-
labeling and confirmation bias in deep semi-
supervised learning. CoRR, abs/1908.02983.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
ACL 2007, Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics,
June 23-30, 2007, Prague, Czech Republic. The As-
sociation for Computational Linguistics.

Avrim Blum and Tom M. Mitchell. 1998. Combining
labeled and unlabeled data with co-training. In Pro-
ceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, COLT 1998, Madison,
Wisconsin, USA, July 24-26, 1998., pages 92–100.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka, and Tom M. Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In Proceedings of the Twenty-Fourth
AAAI, page 1306–1313.

Olivier Chapelle, Bernhard Schölkopf, and Alexander
Zien, editors. 2006. Semi-Supervised Learning. The
MIT Press.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020a. Mix-
text: Linguistically-informed interpolation of hidden
space for semi-supervised text classification. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 2147–2157. Association
for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020b. A simple framework
for contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1597–1607. PMLR.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta.
2013. Neil: Extracting visual knowledge from web
data. In The IEEE International Conference on Com-
puter Vision (ICCV).

James R Curran, Tara Murphy, and Bernhard Scholz.
2007. Minimising semantic drift with mutual ex-
clusion bootstrapping. In Proceedings of the 10th
Conference of the Pacific Association for Computa-
tional Linguistics, volume 6, pages 172–180. Bali.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc of the 2019 NAACL, pages 4171–
4186.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70, ICML’17,
page 1321–1330. JMLR.org.

Suchin Gururangan, Tam Dang, Dallas Card, and
Noah A. Smith. 2019. Variational pretraining for
semi-supervised text classification. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5880–5894, Florence,
Italy. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
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to understand experimental results. For example, small differences in accuracy on large test sets may
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�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
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Appendix D

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
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� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
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� D5. Did you report the basic demographic and geographic characteristics of the annotator population
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