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Abstract

The multilingual neural machine translation
(NMT) model has a promising capability of
zero-shot translation, where it could directly
translate between language pairs unseen dur-
ing training. For good transfer performance
from supervised directions to zero-shot direc-
tions, the multilingual NMT model is expected
to learn universal representations across dif-
ferent languages. This paper introduces a
cross-lingual consistency regularization, Cross-
ConST, to bridge the representation gap among
different languages and boost zero-shot trans-
lation performance. The theoretical analysis
shows that CrossConST implicitly maximizes
the probability distribution for zero-shot trans-
lation, and the experimental results on both
low-resource and high-resource benchmarks
show that CrossConST consistently improves
the translation performance. The experimen-
tal analysis also proves that CrossConST could
close the sentence representation gap and bet-
ter align the representation space. Given the
universality and simplicity of CrossConST, we
believe it can serve as a strong baseline for
future multilingual NMT research.

1 Introduction

The objective of multilingual neural machine trans-
lation (NMT) is to construct a single, comprehen-
sive model capable of translating between any pair
of languages (Firat et al., 2016; Ha et al., 2016;
Gu et al., 2018; Zhang et al., 2020; Fan et al.,
2021). This not only benefits low-resource transla-
tion (Aharoni et al., 2019), but also enables zero-
shot translation (Gu et al., 2019). The success of
zero-shot translation depends on the capability of
the model to learn language-agnostic representa-
tions. The conventional multilingual NMT model
(Johnson et al., 2017), however, often struggles
with learning the universal representations among
different languages (Figure 1 (a)), which leads to
poor zero-shot translation performance, particu-

Figure 1: Bivariate kernel density estimation plots
of sentence representations after using T-SNE dimen-
sionality reduction on the multi-way parallel testset
newstest2012, where the max-pooled outputs of the
multilingual NMT encoder are applied as the sentence
representations. The blue line denotes Germany, the
orange line denotes English, and the green line denotes
French. This figure shows that the sentence representa-
tions are aligned better after utilizing CrossConST.

larly compared to the pivot-based methods (Cheng
et al., 2017).

Several methods have been proposed to improve
the zero-shot translation performance by learning
language-agnostic representations and maximizing
cross-lingual transfer. Some approaches modify
the model architecture to achieve universal repre-
sentations (Lu et al., 2018; Ji et al., 2020; Liu et al.,
2021; Chen et al., 2021), while others utilize aux-
iliary training objectives to encourage similarity
between the representations of different languages
(Arivazhagan et al., 2019; Al-Shedivat and Parikh,
2019; Pham et al., 2019; Pan et al., 2021). Specifi-
cally, Gu and Feng (2022) introduce an agreement-
based training approach to help the multilingual
NMT model make consistent predictions based on
the semantics-equivalent sentences. However, most
existing methods are far from being widely used
due to the degraded supervised translation perfor-
mance, complicated algorithm implementation, and
tedious hyperparameter search.

In this paper, our primary goal is to provide a
simple, easy-to-reproduce, yet effective strategy

12103



for learning multilingual NMT. Inspired by Gao
et al. (2022), which boost the NMT performance
by leveraging intra-lingual consistency regulariza-
tion, we here propose a cross-lingual consistency
regularization method, CrossConST, to learn the
universal representations across different languages
(Figure 1 (b)) for boosting the zero-shot translation
performance, where we introduce the explicit con-
straints to the semantic-equivalent sentence pairs by
leveraging Kullback-Leibler (KL) regularization.
The contributions of this paper can be summarized
as follows:

• We propose CrossConST, a simple but effec-
tive method with only one hyperparameter for
improving the generalization of the multilin-
gual NMT model, and theoretically prove that
it implicitly maximizes the probability distri-
bution for zero-shot translation.

• Our experimental results show that Cross-
ConST achieves significant zero-shot trans-
lation improvements over the Transformer
model on both low-resource and high-
resource multilingual translation benchmarks
and outperforms the state-of-the-art (SOTA)
methods OT & AT (Gu and Feng, 2022) and
mRASP2 (Pan et al., 2021) on average.

2 Cross-lingual Consistency for
Multilingual NMT

In this section, we formally propose CrossConST,
a cross-lingual consistency regularization for learn-
ing multilingual NMT. We first review the multilin-
gual neural machine translation (Section 2.1), then
introduce our method in detail (Section 2.2). We
theoretically analyze the regularization effect of
CrossConST (Section 2.3) and propose a two-stage
training strategy (Section 2.4).

2.1 Multilingual Neural Machine Translation
Define L = {L1, ..., LM}, where L is a collection
of M languages. The multilingual NMT model
refers to a neural network with an encoder-decoder
architecture, which receives a sentence in language
Li as input and returns a corresponding trans-
lated sentence in language Lj as output. Assume
x = x1, ..., xI and y = y1, ..., yJ that correspond
to the source and target sentences with lengths I
and J , respectively. Note that x1 denotes the lan-
guage identification token to indicate the target lan-
guage the multilingual NMT model should trans-
late to, and yJ denotes the special end-of-sentence

symbol ⟨eos⟩. The encoder first maps a source
sentence x into a sequence of word embeddings
e(x) = e(x1), ..., e(xI), where e(x) ∈ Rd×I , and
d is the embedding dimension. The word em-
beddings are then encoded to the corresponding
hidden representations h. Similarly, the decoder
maps a shifted copy of the target sentence y, i.e.,
⟨bos⟩, y1, ..., yJ−1, into a sequence of word embed-
dings e(y) = e(⟨bos⟩), e(y1), ..., e(yJ−1), where
⟨bos⟩ denotes a special beginning-of-sentence sym-
bol, and e(y) ∈ Rd×J . The decoder then acts as
a conditional language model that operates on the
word embeddings e(y) and the hidden representa-
tions h generated by the encoder.

Let Si,j denote the parallel corpus of language
pair (Li, Lj), and S denotes the entire training cor-
pus. The standard training objective is to minimize
the empirical risk:

Lce(θ) = E
(x,y)∈S

[ℓ(f(x,y; θ), ÿ)], (1)

where ℓ denotes the cross-entropy loss, θ is a set
of model parameters, f(x,y; θ) is a sequence of
probability predictions, i.e.,

fj(x,y; θ) = P (y|x,y<j ; θ), (2)

and ÿ is a sequence of one-hot label vectors for y.

2.2 CrossConST: A Cross-lingual Consistency
Regularization for Multilingual NMT

Consider the multilingual NMT model as a function
f(x,y; θ), which could be further decomposed as
follows:

f(x,y; θ) := fdec(fenc(x; θenc),y; θdec), (3)

where fenc(·) and fdec(·) denote the encoder and
decoder, and θenc and θdec are the sets of parame-
ters for the encoder and decoder respectively. An
ideal multilingual NMT model should have the fol-
lowing properties:

• The encoder should output universal rep-
resentations which are language agnostic.
Semantic-equivalent sentences in different lan-
guages should share similar representations in
the encoder output.

• Given the target language to which the mul-
tilingual NMT model should translate to, the
decoder should make consistent predictions
based on the semantic-equivalent representa-
tions in the encoder output.
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Figure 2: Illustration of the CrossConST regularization, where the original Chinese-English sentence pair ("今天天
气很好", "The weather is good today") and the copied English-English sentence pair ("The weather is good today",
"The weather is good today") are both go through the multilingual NMT model and obtain two output distributions
f(x,y; θ) and f(y,y; θ). The same procedure is also applied to the English-Chinese sentence pair ("The weather is
good today", "今天天气很好") during the training of the multilingual NMT model.

The main idea of our method is to close the
representation gap among semantic-equivalent sen-
tences in the encoder output and force the output
distribution of the decoder to be consistent among
different semantic-equivalent representations. Dur-
ing the training of multilingual NMT model, for
each sentence pair (x,y), the training objective of
CrossConST is defined as:

LCrossConST (θ) = Lce(θ) + αLkl(θ), (4)

where

Lkl(θ) = KL(f(x,y; θ)∥f(y,y; θ)), (5)

KL(·∥·) denotes the Kullback-Leibler (KL) diver-
gence of two distributions, and α is a scalar hyper-
parameter that balances Lce(θ) and Lkl(θ). Note
that the gradient could be backpropagated through
both sides of the KL regularization in CrossConST.
Figure 2 illustrates CrossConST regularization for
learning multilingual NMT model.

Note that the constraint introduced by (5) forces
the equivalence between f(x,y; θ) and f(y,y; θ),
which implicitly leads to

fenc(x; θenc) = fenc(y; θenc). (6)

Semantic-equivalent sentences x and y then share
similar representations in the encoder output,
and the decoder makes consistent predictions
based on the semantic-equivalent representations
fenc(x; θenc) and fenc(y; θenc). The properties of
the ideal multilingual NMT model implicitly hold.

2.3 Theoretical Analysis
Consider training a multilingual NMT model on
the English-centric dataset, where x and y denote
the sentences in two non-English languages, and

z denotes the English sentence. Let’s consider the
zero-shot translation direction x→ y. Inspired by
Ren et al. (2018) and Wang et al. (2021), we take
a different approach to modeling the translation
probability P (y|x; θ). We introduce language z as
a bridge to connect x and y. Following Jensen’s
Inequality, we could derive the lower bound of
P (y|x; θ) over the parallel corpus S as follows:

L(θ) =
∑

(x,y)∈S
logP (y|x; θ)

≥
∑

(x,y)∈S

∑

z

Q(z; θ) log
P (y|z; θ)P (z|x; θ)

Q(z; θ)

:=L̄(θ),

and the gap between L(θ) and L̄(θ) could be cal-
culated as follows:

L(θ)− L̄(θ) =
∑

(x,y)∈S

∑

z

Q(z; θ) log
Q(z; θ)

P (z|y; θ)

=
∑

(x,y)∈S
KL(Q(z; θ)∥P (z|y; θ)),

where Q(z; θ) is an arbitrary posterior distribu-
tion of z. Note that we utilize the approximation
that P (y|x, z; θ) ≈ P (y|z; θ) and P (z|x,y; θ) ≈
P (z|y; θ) due to the semantic equivalence of par-
allel sentences x and y.

We then introduce the autoencoding task of z by
replacing Q(z; θ) with P (z|z; θ) such that

L̄(θ) =
∑

(x,y)∈S
E

z∼P (z|z;θ)
logP (y|z; θ)

− KL(P (z|z; θ)∥P (z|x; θ)) (7)
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and

L(θ)− L̄(θ) =
∑

(x,y)∈S
KL(P (z|z; θ)∥P (z|y; θ)).

(8)

To maximize L(θ), we should maximize the lower
bound L̄(θ) and minimize the the gap betweenL(θ)
and L̄(θ). By utilizing the cross-lingual consis-
tency regularization, CrossConST helps minimize
the KL terms in (7) and (8) and implicitly max-
imizes the probability distributions for zero-shot
translation, which results in better translation per-
formance in x→ y direction. The detailed proof
can be found in Appendix A.

2.4 Training Strategy: Multilingual NMT
Pretraining and CrossConST Finetuning

Inspired by Johnson et al. (2017) and Wu et al.
(2021), we only use one language tag to indicate
the target language the multilingual NMT model
should translate to. For instance, the following En-
glish to German sentence pair “How are you? →
Wie geht es dir?” is transformed to “<de> How are
you? →Wie geht es dir?”. And Wu et al. (2021)
demonstrate that such language tag strategy could
enhance the consistency of semantic representa-
tions and alleviate the off-target issue in zero-shot
translation directions.

To stabilize the multilingual NMT training pro-
cedure and accelerate the convergence of the multi-
lingual NMT model, we adopt a two-stage training
strategy. We first train a conventional multilingual
NMT model as the pretrained model and then fine-
tune the model with CrossConST objective func-
tion (4). It is worth mentioning that Pham et al.
(2019) derive a similar problem formulation and
training strategy. However, they do not demon-
strate the effectiveness of their proposed method
(KL Softmax) in Pham et al. (2019). To the best of
our knowledge, we for the first time show the ef-
fectiveness of the simple cross-lingual consistency
regularization for improving the translation perfor-
mance of the multilingual NMT model. Note that
while Pham et al. (2019) decouple the gradient path
in the decoder from the KL divergence term, our
design allows for backpropagation through both
sides of the KL regularization in CrossConST. We
do not decouple any gradient path in our model.

3 Low Resource Scenario

We here investigate the performance of Cross-
ConST on the low-resource multilingual machine

translation benchmark. For fair comparisons, we
keep our experimental settings consistent with the
previous work (Gu and Feng, 2022).

3.1 Dataset Description

We conduct our experiments on the IWSLT17
benchmark (Cettolo et al., 2017), which releases
a multilingual corpus in five languages: English
(en), German (de), Dutch (nl), Romanian (ro),
and Italian (it). We consider the English-centric
scenario, where we collect the parallel sentences
from/to English. The detailed information of the
training dataset is summarized in Table 5 in Ap-
pendix B. There are eight supervised translation
directions and twelve zero-shot translation direc-
tions, and we use the official validation and test
sets in our experiments. Following the common
practice, we tokenize each language by applying
the Moses toolkit (Koehn et al., 2007) and build
a shared dictionary with 32K byte-pair-encoding
(BPE) (Sennrich et al., 2016) types.

3.2 Model Configuration

We implement our approach on top of the Trans-
former (Vaswani et al., 2017). We apply a stan-
dard base Transformer with 6 encoder and de-
coder layers, 8 attention heads, embedding size
512, and FFN layer dimension 2048. We apply
cross-entropy loss with label smoothing rate 0.1
and set max tokens per batch to be 4096. We use
the Adam optimizer with Beta (0.9, 0.98), 4000
warmup updates, and inverse square root learning
rate scheduler with initial learning rates 7e−4. We
use dropout rate 0.3 and beam search decoding
with beam size 5 and length penalty 0.6. We apply
the same training configurations in both pretraining
and finetuning stages. We fix α to be 0.25 in (4)
for CrossConST. We use case-sensitive sacreBLEU
(Post, 2018) to evaluate the translation quality. We
train all models until convergence on eight NVIDIA
Tesla V100 GPUs. All reported BLEU scores are
from a single model. For all the experiments be-
low, we select the saved model state with the best
validation performance.

3.3 Main Results

We compare our approach with the following meth-
ods on the IWSLT17 benchmark:

• m-Transformer (Johnson et al., 2017): A mul-
tilingual NMT model that directly learns the
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Method de↔ it de↔ nl de↔ ro it↔ ro it↔ nl nl↔ ro Zero-shot Supervised
Average Average

Pivot† 18.10 19.66 16.49 21.37 21.44 18.70 19.29 -
m-Transformer† 15.46 18.30 14.70 19.03 18.48 16.11 17.01 30.62
SR Alignment† 16.45 18.80 15.45 20.02 19.20 17.25 17.85 30.41
KL-Softmax† 16.06 18.27 15.00 20.09 18.89 16.52 17.46 30.50
mRASP2 w/o AA† 16.98 19.60 15.88 20.75 19.40 17.59 18.36 30.39
DisPos† 16.13 19.21 15.52 20.12 19.58 17.32 17.97 30.49
DAE Training† 16.32 18.69 15.72 20.42 19.11 17.22 17.91 30.51
TGP† 17.64 15.85 16.86 19.34 19.53 20.05 18.21 30.66
LM Pretraining† 17.66 15.86 16.16 19.05 19.02 20.07 17.96 30.52
OT & AT† 17.28 19.81 16.09 20.83 20.14 17.85 18.66 30.52
Pivot 18.87 20.09 17.20 21.56 22.22 19.35 19.88 -
OT & AT 18.18 20.22 16.82 21.96 21.15 18.66 19.50 31.14
m-Transformer 17.2 19.61 15.88 20.81 20.21 17.89 18.60 31.34

+ CrossConST 18.70 20.32 16.98 22.17 21.83 19.30 19.88 31.37

Table 1: Performance on the IWSLT17 multilingual translation benchmark. Each entry in the first six columns
denotes the averaged BLEU scores of both directions. † denotes the numbers are reported from Gu and Feng (2022),
others are based on our runs. The highest scores are marked in bold for all models except for the pivot translation in
each column. The detailed evaluation results are summarized in Table 8 in Appendix C.

many-to-many translation on the English-centric
dataset.

• Pivot Translation (Cheng et al., 2017): m-
Transformer first translates the source language
into English before generating the target lan-
guage.

• Sentence Representation Alignment (SR
Alignment) (Arivazhagan et al., 2019): An addi-
tional regularization loss is utilized to minimize
the discrepancy of the source and target sentence
representations.

• Softmax Forcing (KL-Softmax) (Pham et al.,
2019): This method forces the decoder to gener-
ate the target sentence from itself by introducing
a KL divergence loss.

• Contrastive Learning (mRASP2 w/o AA) (Pan
et al., 2021): This method introduces a con-
trastive loss to minimize the representation gap
between the similar sentences and maximize that
between the irrelevant sentences. Note that the
aligned augmentation (AA) method is not uti-
lized.

• Disentangling Positional Information (DisPos)
(Liu et al., 2021): This method drops the residual
connections in a middle layer of the encoder to
achieve the language-agnostic representations.

• Denosing Training (DAE Training) (Wang
et al., 2021): This approach introduces a denois-
ing autoencoding task during the multilingual
NMT model training.

• Target Gradient Projection (TGP) (Yang et al.,
2021b): This method guides the training with
constructed oracle data, where the gradient is
projected not to conflict with the oracle gradient.

• Language Model Pretraining (LM Pretrain-
ing) (Gu et al., 2019): This approach strengthens
the decoder language model (LM) prior to NMT
model training.

• Optimal Transport & Agreement-based Train-
ing (OT & AT) (Gu and Feng, 2022): This
method proposes an optimal transport loss to
bridge the gap between the semantic-equivalent
representations and an agreement-based loss to
force the decoder to make consistent predictions
based on semantic-equivalent sentences. We set
γ1 and γ2 in OT & AT to be 0.4 and 0.001 re-
spectively in the experiments.

We report test BLEU scores of all comparison
methods and our approach on the IWSLT17 dataset
in Table 1. We can see that our multilingual NMT
model achieves strong or SOTA BLEU scores in
both supervised and zero-shot translation direc-
tions. Note that our approach outperforms OT &
AT even though its implementation is much more
complicated than ours. It is worth mentioning that
CrossConST is the only method that can achieve
a similar zero-shot translation performance com-
pared with the pivot translation. Note that the
BLEU scores of our m-Transformer, especially in
the zero-shot translation directions, are higher than
that reported in Gu and Feng (2022). Such gap
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might be due to the different language tag strategies
used in Gu and Feng (2022) and our experiments,
which is in line with Wu et al. (2021).

3.4 Does CrossConST Still Work Beyond
English-centric Scenario?

We here extend our experiments on the IWSLT17
benchmark beyond the English-centric scenario.
Specifically, we gather the English-centric dataset
used in Section 3.3 and supplement it with an ad-
ditional 20K de ↔ it sentence pairs, which are
subsampled from the IWSLT17 dataset. This ex-
perimental setup is highly practical because the
size of the non-English datasets is usually an order
less than that of the English-centric dataset.

Method Training Zero-shot Supervised
Dataset Average Average

m-Transformer 1 18.60 31.34
+ CrossConST 1 19.88 31.37

m-Transformer 2 19.76 31.59
+ CrossConST 2 20.35 31.67

Table 2: Performance on the IWSLT17 multilingual
translation benchmark. 1 denotes the English-centric
dataset. 2 denotes the English-centric dataset + extra
de ↔ it dataset. The detailed evaluation results are
summarized in Table 9 in Appendix C.

We report test BLEU scores of the baseline and
our approach on the IWSLT17 dataset in Table 2.
By checking model performance under different
combinations of dataset and training strategy, we
have the following observations: 1) Adding beyond
the English-centric dataset (de↔ it) could greatly
improve the overall zero-shot translation perfor-
mance. 2) The CrossConST is complementary to
the data-based method and could further improve
the performance of the zero-shot translation.

4 High Resource Scenario

We here investigate the performance of the Cross-
ConST on the high-resource multilingual machine
translation benchmark. For fair comparisons, we
keep our experimental settings consistent with the
previous works (Lin et al., 2020; Pan et al., 2021).

4.1 Dataset Description
We conduct our experiments on PC32, a multilin-
gual parallel corpus of 32 English-centric language
pairs. We collect the pre-processed PC32 dataset
from Lin et al. (2020)’s release1. We also collect

1https://github.com/linzehui/mRASP

the pre-processed PC32 dataset after applying ran-
dom aligned substitution (RAS) technique from
Lin et al. (2020)’s release. The detailed statistics
of all training datasets are summarized in Tables 6
and 7 in Appendix B.

For supervised directions, we collect testsets
from WMT benchmarks, where four languages,
Spanish (es), Finnish (fi), French (fr), and Turk-
ish (tr), are selected, resulting in 8 translation di-
rections. We use multi-bleu.pl2 for tokenized
BLEU (Papineni et al., 2002) evaluation, where
both reference and hypothesis are tokenized by
Sacremoses3. For zero-shot directions, we col-
lect OPUS-100 zero-shot testsets from Zhang et al.
(2020)’s release4, where six languages, Arabic (ar),
German (de), French (fr), Dutch (nl), Russian
(ru), and Chinese (zh), are selected, resulting in
25 translation directions. Note that Dutch is not
covered in our training dataset such that we only
evaluate the zero-shot directions when Dutch is at
the source side. We evaluate the multilingual NMT
models by case-sensitive sacreBLEU (Post, 2018).

4.2 Model Configuration

We apply a Transformer with 12 encoder and de-
coder layers, 16 attention heads, embedding size
1024, and FFN layer dimension 4096. We use
dropout rate 0.1, learning rate 3e−4 with polyno-
mial decay scheduling and 10000 warmup updates.
We use Adam optimizer with Beta (0.9, 0.98) and
ϵ = 1e−6. We set the threshold of gradient norm
to be 5.0. We apply cross-entropy loss with la-
bel smoothing rate 0.1 and set max tokens per
batch to be 1536 with update frequency 50. We
use beam search decoding with beam size 5 and
length penalty 1.0. We apply the same training
configurations in both pretraining and finetuning
stages. We fix α to be 0.1 in (4) for CrossConST.
We train all models until convergence on 8 × 4
NVIDIA Tesla V100 GPUs. All reported BLEU
scores are from a single model. We select the saved
model state with the best validation performance
for all the experiments below.

4.3 Main Results

We compare our approach with the following meth-
ods on the PC32 benchmark:

2https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/multi-bleu.perl

3https://github.com/alvations/sacremoses
4https://opus.nlpl.eu/opus-100.php
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Method Training en - fr en - tr en - es en - fi Average
Dataset WMT14 WMT17 WMT13 WMT17

→ ← → ← → ← → ←
m-Transformer† 1 42.0 38.1 18.8 23.1 32.8 33.7 20.0 28.2 29.66
mRASP2 w/o AA† 1 42.1 38.7 18.2 24.8 33.1 33.2 20.0 27.8 29.74
mRASP† 2 43.1 39.2 20.0 25.2 34.0 34.3 22.0 29.2 30.88
mRASP2 w/o MC24† 2 43.3 39.3 20.4 25.7 34.1 34.3 22.0 29.4 31.06
mRASP2† 3 43.5 39.3 21.4 25.8 34.5 35.0 23.4 30.1 31.63
m-Transformer 1 43.5 40.3 20.8 23.8 33.4 32.7 22.0 28.8 30.66

+ CrossConST 1 44.1 40.7 21.2 24.5 33.8 33.0 22.2 29.5 31.13
mRASP 2 44.5 39.7 22.1 23.6 33.9 33.1 23.3 29.0 31.15

+ CrossConST 2 44.6 40.7 22.4 24.4 34.3 33.7 23.5 29.7 31.66

Table 3: Performance (tokenized BLEU) on WMT supervised translation directions. † denotes the numbers are
reported from Pan et al. (2021), others are based on our runs. The highest scores are marked in bold for all models
except for mRASP2 in each column. 1 denotes PC32. 2 denotes PC32 + RAS. 3 denotes PC32 + RAS +
MC24.

Method x - ar x - zh x - nl∗ x - fr x - de x - ru Avg.
→ ← → ← ← → ← → ← → ←

Pivot† 5.5 21.1 28.5 20.3 6.0 26.1 23.9 14.4 16.6 16.6 24.6 18.22
m-Transformer† 3.7 6.7 6.7 5.0 6.3 7.7 5.0 4.2 4.9 5.7 5.6 5.60
mRASP2 w/o AA† 4.8 17.1 26.1 15.8 6.4 22.9 21.2 11.8 15.3 13.3 21.4 15.79
mRASP† 4.1 4.4 8.2 4.0 5.1 2.4 7.6 6.2 4.1 4.1 4.6 4.97
mRASP2 w/o MC24† 5.9 18.3 27.5 16.5 9.6 25.2 21.6 11.2 16.7 15.6 21.7 17.07
mRASP2† 5.3 20.8 29.0 17.7 6.1 23.6 23.0 12.3 16.4 16.4 22.8 17.32
Pivot (m-Transformer) 6.6 22.2 29.5 21.4 8.7 27.5 24.7 15.7 17.1 18.0 25.3 19.46
Pivot (mRASP) 6.9 21.9 29.4 21.8 8.1 27.2 25.3 15.5 17.2 18.3 25.6 19.49
m-Transformer 5.3 11.2 17.4 16.5 7.5 16.8 21.3 9.8 13.1 14.5 8.2 12.75

+ CrossConST 5.4 17.7 27.2 18.4 9.3 24.0 23.9 14.0 16.0 15.9 20.5 17.30
mRASP 5.6 13.7 24.1 18.3 7.2 17.7 23.0 11.1 13.1 15.5 15.5 14.80

+ CrossConST 5.9 16.7 27.2 19.6 9.2 23.5 24.6 14.3 16.0 16.4 20.9 17.48

Table 4: Performance (de-tokenized BLEU using SacreBLEU) on OPUS-100 zero-shot translation directions. †
denotes the numbers are reported from Pan et al. (2021), others are based on our runs. ∗ indicates that Dutch (nl) is
not included in PC32. The highest scores are marked in bold for all models except for the pivot translation and
mRASP2 in each column.

• mRASP (Lin et al., 2020): This method pro-
poses a random aligned substitution (RAS) tech-
nique that builds code-switched sentence pairs
for multilingual pretraining. Note that the results
of mRASP reported in this paper are obtained
without finetuning.

• mRASP2 (Pan et al., 2021): This method utilizes
the RAS technique on both the bilingual dataset
(PC32) and an additional monolingual dataset
(MC24). It introduces a contrastive loss to mini-
mize the representation gap between the similar
sentences and maximize that between the irrel-
evant sentences. mRASP2 w/o AA only adopts
the contrastive loss based on m-Transformer,
and mRASP2 w/o MC24 excludes MC24 from
mRASP2.

We report test BLEU scores of all compari-
son methods and our approach on WMT super-

vised translation directions in Table 3. With
CrossConST regularization, our multilingual NMT
model achieves strong or SOTA BLEU scores on
the supervised translation directions. Note that
all comparison methods and our approach share
the same model architecture, and the only differ-
ences are the training dataset and the objective loss
function. We report test BLEU scores of all com-
parison methods and our approach on OPUS-100
zero-shot translation directions in Table 4, which
includes six languages and 25 translation directions
in total. The detailed evaluation results are summa-
rized in Table 10 in Appendix D. We also report
the evaluation results of the pivot translation based
on m-Transformer and mRASP. We can see that
CrossConST greatly boosts the performance in the
zero-shot translation directions and substantially
narrows the performance gap with the pivot transla-
tion. It is worth mentioning that our approach could
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improve zero-shot translation by a large margin and
also benefit the supervised translation.

By checking model performance under different
scenarios, we have the following observations: 1)
Our language tag strategy works better than that in
Pan et al. (2021) for learning the multilingual NMT
model on the English-centric dataset, especially
for the zero-shot translation, which is in line with
Wu et al. (2021). 2) CrossConST is crucial for the
performance improvement in the zero-shot transla-
tion directions and performs slightly better when
combined with the code-switched training dataset.
3) Our approach could outperform mRASP2 on
average in the absence of the MC24 dataset, which
implies the effectiveness of CrossConST compared
with the contrastive loss utilized in mRASP2.

4.4 Does CrossConST Really Learn A Better
Latent Representation?

We conduct the experiments on the multi-way paral-
lel testset newstest20125 from the WMT13 (Bojar
et al., 2013) translation task, where 3003 sentences
have translations in six languages: Czech (cs), Ger-
many (de), English (en), Spanish (es), French (fr),
and Russian (ru). We calculate the sentence repre-
sentations by max-pooling the multilingual NMT
encoder outputs.

Sentence Representation Visualization To ver-
ify whether CrossConst can better align different
languages’ semantic space, we visualize the sen-
tence representations of Germany (de), English
(en), and French (fr). We apply dimension reduc-
tion on the 1024-dimensional sentence representa-
tions with T-SNE (Hinton and Roweis, 2002) and
then depict the bivariate kernel density estimation
based on the 2-dimensional representations in Fig-
ure 1. Figure 1 shows that m-Transformer cannot
align these three languages well in the representa-
tion space, while CrossConST draws the sentence
representations across different languages much
closer. Please check Figures 4 and 5 in Appendix E
for the visualization of the sentence representations
in other languages.

Multilingual Similarity Search We conduct the
multilingual similarity search experiment to verify
that CrossConST indeed closes the latent represen-
tation gap among different languages. For each
sentence in the source language, we find the closest
sentence in the target language according to the

5https://www.statmt.org/wmt13/dev.tgz

Figure 3: Similarity search accuracy of m-Transformer
with/without CrossConST for different language pairs.

cosine similarity of the corresponding sentence rep-
resentations. The evaluation results are reported
in Figure 3. By checking model performance on
different language pairs, we have the following
observations: 1) m-Transformer could achieve de-
cent performance (94.71% on average) among non-
English directions. However, the similarity search
accuracy degrades dramatically (81.03% on aver-
age) in the English-centric directions, which im-
plies that English does not align well with non-
English languages in m-Transformer. We think
such bad representation alignment between English
and non-English languages is one of the critical
reasons that m-Transformer underperforms in the
zero-shot translation directions compared with the
pivot-based method. 2) CrossConST significantly
improves the similarity search performance in the
English-centric direction (14.74% improvement on
average) and further boosts the performance among
non-English directions (1% improvement on aver-
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age). We believe the improvement of similarity
search accuracy could be regarded as an indica-
tor of better cross-lingual representation alignment
and confirm that CrossConST can learn effective
universal representation across different languages.

5 Related Work

Early works on multilingual NMT demonstrate its
zero-shot translation capability (Ha et al., 2016;
Johnson et al., 2017). To further improve the
zero-shot translation performance, one direction
is to force the multilingual NMT encoder output to
be language-agnostic via additional regularization
constraints or training tasks (Pham et al., 2019; Ari-
vazhagan et al., 2019; Wei et al., 2020; Liu et al.,
2021; Wang et al., 2021; Yang et al., 2021b; Gu
and Feng, 2022). For example, Gu and Feng (2022)
introduce an agreement-based training approach to
help the multilingual NMT model make consis-
tent predictions based on the semantics-equivalent
sentences. Our method follows this line but out-
performs these methods by introducing a simple
yet effective cross-lingual regularization constraint,
which effectively reduces discrepancies in repre-
sentations across languages.

Another direction is to utilize extra data such
as generated pseudo sentence pairs, monolingual
datasets, and pretrained models (Gu et al., 2019;
Al-Shedivat and Parikh, 2019; Zhang et al., 2020;
Chen et al., 2021; Yang et al., 2021a). For exam-
ple, Al-Shedivat and Parikh (2019) encourages the
multilingual NMT model to produce equivalent
translations of parallel training sentence pairs into
an auxiliary language. Zhang et al. (2020) proposes
random online back-translation to enforce the trans-
lation of unseen training language pairs. Unlike
these methods, CrossConST does not require ad-
ditional data and is orthogonal to these methods.
We could further boost the zero-shot translation
performance by combining our method with these
data-driven approaches.

6 Conclusion

In this paper, we propose CrossConST: a simple
but effective cross-lingual consistency regulariza-
tion method for learning multilingual NMT mod-
els. We theoretically analyze the regularization
effect of CrossConST and verify its effectiveness
for zero-shot translation. For the stable training of
multilingual NMT, we propose a two-state train-
ing strategy that consists of multilingual NMT pre-

training and CrossConST finetuning. Experiments
on low and high resource multilingual translation
benchmarks demonstrate CrossConST’s capabil-
ities to improve translation performance in both
supervised and zero-shot directions. Further exper-
imental analysis confirms that our method indeed
leads to better cross-lingual representation align-
ment. Given its universality and simplicity, we
anticipate that researchers could leverage the sim-
plicity of CrossConST as a foundation to achieve
new SOTA results in their own work. For future
work, we will explore the effectiveness of Cross-
ConST on more multilingual tasks, such as mul-
tilingual sentence embedding, multilingual word
alignment, etc.

Limitations

In this paper, we mainly focus on evaluating our ap-
proach on two English-centric corpora, IWSLT17
and PC32. Future research could consider more
multilingual machine translation benchmarks with
different number of languages and training samples
and conduct experiments on more challenging train-
ing scenarios such as chain configurations where
we have multiple bridge languages and different
zero-shot distances.
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in the following proofs for the simplicity of the
expression.

L(θ)
=

∑

(x,y)∈S
logP (y|x)

=
∑

(x,y)∈S
log

∑

z

P (y|x, z)P (z|x)

≈
∑

(x,y)∈S
log

∑

z

P (y|z)P (z|x)

=
∑

(x,y)∈S
log

∑

z

P (z|z)P (y|z)P (z|x)
P (z|z)

≥
∑

(x,y)∈S

∑

z

P (z|z) log P (y|z)P (z|x)
P (z|z)

=
∑

(x,y)∈S
E

z∼P (z|z)
logP (y|z)

− KL(P (z|z)∥P (z|x))
:= L̄(θ)

We then discuss how to derive the gap between
L(θ) and L̄(θ) as follows.

L(θ)− L̄(θ)

=
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)P (y|x)
P (y|z)P (z|x)

=
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)P (y|x)P (z|y)
P (y|z)P (z|x)P (z|y)

≈
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)P (y|x)P (z|y)
P (y|x, z)P (z|x)P (z|y)

=
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)P (y|x)P (z|y)
P (y, z|x)P (z|y)

=
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)P (y|x)P (z|y)
P (z|x,y)P (y|x)P (z|y)

≈
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)P (y|x)P (z|y)
P (z|y)P (y|x)P (z|y)

=
∑

(x,y)∈S

∑

z

P (z|z) log P (z|z)
P (z|y)

=
∑

(x,y)∈S
KL(P (z|z)∥P (z|y)),

where we utilize two approximations as follows:

P (y|x, z) ≈ P (y|z) (9)

and
P (z|x,y) ≈ P (z|y). (10)

B Statistics of all training datasets

en↔ #sentences en↔ #sentences
de 446324 nl 510580
it 501278 ro 477316

Table 5: Statistics of IWSLT17 dataset. Each entry
shows the total number of parallel sentence pairs for
both directions. Note that en→ and en← directions
have the equal number of sentence pairs.

en↔ #sentences en↔ #sentences
af 80616 ja 4146998
ar 2424336 ka 400868
be 51008 kk 246622
bg 6305372 ko 2945682
cs 1639292 lt 4721996
de 9420278 lv 6261224
el 2678292 mn 61200
eo 134972 ms 3273034
es 4228938 mt 354488
et 4579720 my 57076
fi 4113282 ro 1550552
fr 74445068 ru 3686958
gu 22792 sr 269302
he 664818 tr 771426
hi 2699732 vi 6450690
it 4144732 zh 44771930

Table 6: Statistics of PC32 dataset. Each entry shows
the total number of parallel sentence pairs for both di-
rections. Note that en→ and en← directions have the
equal number of sentence pairs.

C Details of Evaluation Results on
IWSLT17

D Details of Evaluation Results on
OPUS-100

E Sentence Representation Visualization
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en→ #sentences en← #sentences en→ #sentences en← #sentences
af 58723 af 42429 ja 2989787 ja 2072284
ar 1786139 ar 1212160 ka 281346 ka 200434
be 41052 be 25504 kk 132937 kk 123309
bg 5360004 bg 3152631 ko 2130540 ko 1472841
cs 1455275 cs 819418 lt 3545300 lt 2359916
de 8251292 de 4707481 lv 5179183 lv 3130536
el 2402732 el 1333533 mn 49882 mn 30600
eo 93519 eo 67486 ms 2268324 ms 1636517
es 3787101 es 2111065 mt 306122 mt 177244
et 3289592 et 2289755 my 48497 my 28538
fi 3571662 fi 2054925 ro 1359006 ro 775197
fr 63591612 fr 37222318 ru 2859034 ru 1843417
gu 11868 gu 11395 sr 229641 sr 134651
he 532895 he 332357 tr 660576 tr 385713
hi 1990436 hi 1349767 vi 4542508 vi 3225345
it 3733382 it 2068077 zh 37297105 zh 22385733

Table 7: Statistics of PC32 with RAS dataset. Each entry shows the total number of parallel sentence pairs for each
direction.

Figure 4: Bivariate kernel density estimation plots of
sentence representations based on m-Transformer with-
out CrossConST.

Figure 5: Bivariate kernel density estimation plots of
sentence representations based on m-Transformer with
CrossConST.
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Method de - it de - nl de - ro it - ro it - nl
→ ← → ← → ← → ← → ←

Pivot 18.81 18.92 19.87 20.3 16.26 18.13 20.19 22.93 22.2 22.23
OT & AT 18.17 18.18 20.17 20.27 16.12 17.52 20.14 23.77 21.07 21.22
m-Transformer 17.18 17.22 19.21 20.01 15.21 16.54 19.27 22.35 20.31 20.1

+ CrossConST 18.6 18.79 20.41 20.22 15.9 18.06 21.02 23.31 21.88 21.77

Method nl - ro en - de en - it en - nl en - ro
→ ← → ← → ← → ← → ←

Pivot 18.06 20.64 - - - - - - - -
OT & AT 17.81 19.51 24.87 28.67 35.29 37.61 31.04 33.03 26.17 32.45
m-Transformer 16.65 19.12 24.73 28.49 35.34 38.12 31.64 33.47 26.36 32.56

+ CrossConST 18.21 20.38 24.7 28.87 35.02 38.18 31.75 33.16 26.65 32.66

Table 8: Performance on IWSLT17 supervised and zero-shot translation directions with the English-centric training
dataset.

Method de - it de - nl de - ro it - ro it - nl
→ ← → ← → ← → ← → ←

m-Transformer 18.55 18.88 20.5 20.56 16.06 17.93 20.47 23.42 22.06 21.66
+ CrossConST 19.35 19.63 20.69 20.7 16.48 18.33 21.23 23.74 22.75 22.31

Method nl - ro en - de en - it en - nl en - ro
→ ← → ← → ← → ← → ←

m-Transformer 17.79 19.28 25.24 29.1 35.42 38.32 31.09 33.32 26.95 33.3
+ CrossConST 18.45 20.57 24.88 29.35 35.46 38.39 31.41 33.38 26.87 33.65

Table 9: Performance on IWSLT17 supervised and zero-shot translation directions with the English-centric and
extra de↔ it training dataset.
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m-Transformer m-Transformer + CrossConST
ar zh fr de ru Avg ar zh fr de ru Avg

ar→ - 15.8 9.4 6.6 13.0 11.2 ar→ - 27.6 19.1 11.0 13.1 17.7
zh→ 6.4 - 33.1 6.6 19.9 16.5 zh→ 6.2 - 36.4 9.6 21.3 18.4
fr→ 6.8 40.0 - 16.3 22.2 21.3 fr→ 7.0 43.6 - 21.1 24.0 23.9
de→ 4.2 16.5 18.6 - 13.2 13.1 de→ 4.9 19.6 24.4 - 15.2 16.0
ru→ 6.6 7.7 9.8 8.5 - 8.2 ru→ 5.7 37.7 24.1 14.3 - 20.5
nl→ 2.3 6.8 12.9 11.1 4.4 7.5 nl→ 3.1 7.6 16.2 13.8 5.9 9.3
Avg 5.3 17.4 16.8 9.8 14.5 12.75 Avg 5.4 27.2 24.0 14.0 15.9 17.30

mRASP mRASP + CrossConST
ar zh fr de ru Avg ar zh fr de ru Avg

ar→ - 22.6 10.6 7.7 13.7 13.7 ar→ - 26.2 16.0 11.0 13.4 16.7
zh→ 7.1 - 35.2 9.4 21.6 18.3 zh→ 6.7 - 37.3 11.6 22.9 19.6
fr→ 7.4 41.9 - 18.7 24.1 23.0 fr→ 7.8 43.9 - 21.6 24.9 24.6
de→ 4.0 16.6 17.2 - 14.4 13.1 de→ 4.9 19.6 24.3 - 15.3 16.0
ru→ 7.2 33.6 11.8 9.3 - 15.5 ru→ 6.9 38.8 24.0 13.9 - 20.9
nl→ 2.4 5.9 13.6 10.4 3.7 7.2 nl→ 3.3 7.5 15.9 13.6 5.7 9.2
Avg 5.6 24.1 17.7 11.1 15.5 14.80 Avg 5.9 27.2 23.5 14.3 16.4 17.48

Pivot (m-Transformer) Pivot (mRASP)
ar zh fr de ru Avg ar zh fr de ru Avg

ar→ - 33.0 24.1 14.0 17.7 22.2 ar→ - 32.2 23.1 14.3 17.8 21.9
zh→ 8.8 - 38.1 13.2 25.5 21.4 zh→ 9.5 - 38.3 13.0 26.3 21.8
fr→ 7.9 44.3 - 21.9 24.7 24.7 fr→ 8.4 44.5 - 22.5 25.6 25.3
de→ 5.2 21.4 25.7 - 16.2 17.1 de→ 5.0 21.7 25.6 - 16.6 17.2
ru→ 8.1 41.4 34.8 16.8 - 25.3 ru→ 8.9 41.8 35.0 16.7 - 25.6
nl→ 2.9 7.6 14.8 12.6 5.7 8.7 nl→ 2.9 7.0 14.1 11.2 5.2 8.1
Avg 6.6 29.5 27.5 15.7 18.0 19.46 Avg 6.9 29.4 27.2 15.5 18.3 19.49

Table 10: Performance (de-tokenized BLEU using SacreBLEU) on OPUS100 zero-shot translation directions.
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