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Abstract

Generative models have achieved great suc-
cess in aspect sentiment triplet extraction tasks.
However, existing methods ignore the mutual
informative clues between aspect and opinion
terms and may generate false paired triplets.
Furthermore, the inherent limitations of gen-
erative models, i.e., the token-by-token de-
coding and the simple structured prompt, pre-
vent models from handling complex structures
especially multi-word terms and multi-triplet
sentences. To address these issues, we pro-
pose a sequence labeling enhanced generative
model. Firstly, we encode the dependency
between aspect and opinion into two bidirec-
tional templates to avoid false paired triplets.
Secondly, we introduce a marker-oriented se-
quence labeling module to improve generative
models’ ability of tackling complex structures.
Specifically, this module enables the generative
model to capture the boundary information of
aspect/opinion spans and provides hints to de-
code multiple triplets with the shared marker.
Experimental results on four datasets prove
that our model yields a new state-of-art per-
formance. Our code and data are available at
https://github.com/NLPWM-WHU/SLGM.

1 Introduction

Aspect sentiment triplet extraction (ASTE) aims at
extracting all triplets in a sentence, consisting of
the aspect/opinion terms and the sentiment polarity
on them. Given the example “Their twist on pizza
is healthy, but full of flavor.” in Fig. 1 (a), the goal
is to extract two triplets (twist on pizza, healthy,
positive) and (flavor, full, positive).

Conventional approaches to ASTE include
pipeline (Peng et al., 2020), table filling (Chen
et al., 2022), sequence tagging (Xu et al., 2020; Wu
et al., 2020b), and hybrid ones (Xu et al., 2021).
More recently, there is an emerging trend in adopt-
ing generative models for ASTE (Yan et al., 2021;
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Figure 1: (a) shows an example for the ASTE task. (b)
and (c) illustrate the difference between our proposed
generative method and existing ones for this task, where
X is the input sentence, and T denotes the target triplet.
Xa/Xo contains the prompt prefix to define the decoding
order (aspect or opinion first) while Ya/Yo indicates
the generated sequences following the order in Xa/Xo.
MOSL is our marker-oriented sequence labeling module
to improve the generative model’s ability of handling
complex structures.

Zhang et al., 2021b,a; Lu et al., 2022) to alleviate
error propagation and exploit full label semantics.

Current generative ASTE models employ a clas-
sical encoder-decoder architecture and follow a
paradigm that first generates a target sequence Y
and then recovers the triplets T from the sequence
Y . The model needs to pre-define an output tem-
plate ψ(·) to convert ASTE into text generation and
then calculates the loss between the triplet and the
generated sequence for model training, as shown
in Fig. 1 (b). The template ψ(·) constructed by
existing methods is in the form of ψa→o or ψo→a,
reflecting the unidirectional dependency from as-
pect to opinion, or vice versa. However, the aspect
and opinion terms that appear together in one sen-
tence might hold informative clues to each other
(Chen and Qian, 2020b) and there is no intrinsic
order between them (Chen et al., 2021). Hence,
modeling unidirectional dependency may mislead
the model to generate false paired triplets like (twist
on pizza, full, positive).
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Existing generative ASTE models also suffer
from another challenging problem, i.e., lacking
the ability to handle complex structures especially
multi-word terms and multi-triplet sentences. On
one hand, the token-by-token decoding manner
makes the model focus only on the next token
at each time step of decoding without grasping
the whole information of the aspect/opinion term
with multiple words. On the other hand, generative
models often deploy the simple-structured prompt
template to ensure the generation quality. When
handling the sentence with multiple triplets, a gen-
erative model needs to invoke a template several
times, which may lead to an information confusion
for the same marker in the template.

To address the aforementioned issues, we pro-
pose a sequence labeling enhanced generative
model for ASTE.

Firstly, we design two bidirectional templates
with different decoding orders to simultaneously
capture the mutual dependency between the aspect
and opinion terms. In particular, we add two types
of prompt prefix before the input sentence to indi-
cate the decoding order, and we also present two
output templates ψa→o and ψo→a, both consisting
of the markers {aspect, opinion, sentiment} and
the corresponding labels {a, o, s}. In this way,
the decoder can generate two sentences reflecting
dependency from aspect to opinion and that from
opinion to aspect.

Secondly, we propose a marker-oriented se-
quence labeling (MOSL) module, which can en-
hance the generative model’s ability to handle com-
plex structures. Specifically, the decoding is con-
ducted after the MOSL module at the training stage.
Hence the BIO tags obtained in MOSL help the gen-
erative model capture the boundary information of
multi-word aspect/opinion terms in advance. More-
over, while the generative model needs to invoke
the output templates several times for the multi-
triplet sentence, we adopt different marker vectors
in MOSL for the same marker in the generative
model. By doing this, we can share the markers
without causing confusion. Since the markers en-
code information across multiple triplets in one
sentence, previous markers can contribute to the
decoding of subsequent triplets. The illustration of
our proposed method is shown in Fig. 1 (c).

We conduct extensive experiments on four
datasets with both full supervised and low-resource
settings. The results demonstrate that our model

significantly outperforms the state-of-art baselines
for the ASTE task.

2 Related Work

Aspect-based sentiment analysis traditionally in-
volves three basic tasks, including aspect extraction
(Xu et al., 2018; Dai and Song, 2019; Chen and
Qian, 2020a), aspect-level sentiment classification
(Zhang and Qian, 2020; Zhou et al., 2021; Li et al.,
2021), and opinion extraction (Wu et al., 2020a).

To meet the practical need, some recent studies
propose to extract two or more elements simulta-
neously, including aspect opinion pair extraction
(Zhao et al., 2020; Wu et al., 2021; Gao et al.,
2021), end-to-end aspect-based sentiment analy-
sis (Hu et al., 2019; Chen and Qian, 2020b; Oh
et al., 2021), and aspect sentiment triplet extraction.
Among them, ATSE is regarded as a near complete
task and is of the most challenge.

Earlier work in ATSE can be sorted into four
streams, i.e., pipeline (Peng et al., 2020), table
filling (Chen et al., 2022), sequence tagging (Xu
et al., 2020; Wu et al., 2020b), and hybrid ones (Xu
et al., 2021; Chen et al., 2021; Mao et al., 2021).
These methods do not fully utilize the rich label
semantics and some of them may encounter the
error propagation problem.

Another line of research in ASTE performs this
task in a generative manner (Zhang et al., 2021a,b).
For example, Yan et al. (2021) model the extrac-
tion and classification tasks as the generation of
pointer indexes and class indexes. Lu et al. (2022)
introduce the structured extraction language and
structural schema instructor to unify all information
extraction tasks. While getting better performance,
current generative models are prone to generate
false paired triplets and are not suitable for tack-
ling complex structures. Our generative model
addresses these issues with the proposed bidirec-
tional templates and the marker-oriented sequence
labeling module.

3 Our Method

Given a review sentence X with L words, the goal
of ASTE is to extract all triplets T = {(a, o, s)}Ni=1

in X , where N is the number of triplets, and a,
o, and s denotes aspect term, opinion term, and
sentiment polarity, respectively.

We first introduce the overall architecture of our
proposed sequence labeling enhanced generative
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Figure 2: The overall architecture of our sequence label-
ing enhanced generative model (SLGM).

model (SLGM) in Fig. 2, which has the following
distinguished characteristics.

(1) To capture the mutual information between
the aspect and opinion terms, we construct two
bidirectional templates at both the input and output
ends, shown as Xa/Xo and ψa→o/ψo→a in Fig. 2.

(2) To handle complex structures, we propose a
marker-oriented sequence labeling (MOSL) mod-
ule to capture the boundary information of multi-
word aspect/opinion terms and the shared marker
information of multi-triplets.

3.1 Bidirectional Template
Our bidirectional templates are used to guide the
generation model in an end-to-end way.

For the input review X , we construct two sen-
tences Xa and Xo by adding two types of prompt
prefix, i.e, “aspect first:” and “opinion first:”. Such
prefix can prompt the model to generate target se-
quence with specific decoding order when we fine-
tune the model with these templates.

To get the output triplets T in a generative man-
ner, an essential step is linearizing triplets T into a
target sequence during training and de-linearizing
triplets from the predicted sequence during infer-
ence. In particular, a good output template is ex-
pected to: 1) ensure that the linearized target se-
quence can be easily de-linearized into a collection
of triples, 2) contain specific markers to prompt the
decoding process of labels, 3) free to change the
order of labels. Based on the above considerations,
we propose two marker-based templates ψa→o and
ψo→a with different decoding orders between as-
pect and opinion terms as follows:

ψa→o → aspect : a,opinion : o, sentiment : s

ψo→a → opinion : o,aspect : a, sentiment : s

Our output templates consist of two parts: the
markers {aspect, opinion, sentiment} and the cor-
responding labels {a, o, s}. The markers can guide
the model to generate the specific type of label
at the next step. When the input review contains
several triplets, we need to sort the triplet order to
ensure the uniqueness of the target sequence. For
the template ψa→o, we sort triplets by the end in-
dex of aspect term in an ascending order. If some
triplets share the same aspect term, we further sort
them by the end index of opinion term. After ob-
taining text segments of triplets, we use a special
symbol [SSEP] to concatenate these segments to
form the final target sequence.

3.2 Template-Guided Text Generation
We employ a standard transformer-based encoder-
decoder architecture for the text generation pro-
cess, and we initialize the model’s parameters with
the pre-trained language model T5 (Raffel et al.,
2020). For simplicity, we take the sentence Xa and
the corresponding target sequence Ya based on the
template ψa→o as an example for illustration. We
first feed Xa into the transformer encoder to get
contextual features Henc:

Henc = Encoder(Xa) (1)

We then use a transformer decoder to generate the
target sequence Ya. At the t-th time step, the de-
coder will calculate the decoder hidden states ht

based on the contextual features Henc and the pre-
viously decoded tokens y[1:t−1].

ht = Decoder(y[1:t−1],H
enc) (2)

Next, ht is used to compute the conditional proba-
bility of the token yt:

p(yt|Henc; y[1:t−1]) = softmax(WTht), (3)

where W is the transformation matrix. Finally, we
calculate the cross-entropy loss La→o

g between the
decoder output and the target sequence Ya:

La→o
g = −

L∑

i=1

log p(yt|Henc; y[1:t−1]) (4)

3.3 Marker-Oriented Sequence Labeling
(MOSL)

The marker-based templates can prompt the gen-
erative model with the label types including as-
pect, opinion, and sentiment. However, the classic
encoder-decoder architecture prevents the model
from handling complex structures. On one hand,
the decoding process is performed in a token-by-
token manner, which cannot provide clear bound-
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ary information for multi-word aspect/opinion
terms. On the other hand, the model needs to
invoke the output templates repeatedly when the
sentence contains multiple triplets. The duplicate
template based decoding may cause an information
confusion and sacrifice the quality of the gener-
ated text. Therefore, we propose a marker-oriented
sequence labeling (MOSL) module to solve these
problems. The goal is to allow the model to in-
corporate the prompt information of aspect and
opinion terms during the generation of the specific
marker 1. Fig. 3 illustrates the text generation pro-
cess enhanced by the marker-oriented sequence
labeling (MOSL) module.

In MOSL, we will tag aspect and opinion
terms through sequence labeling. We first use
two linear transformations to extract aspect fea-
tures Ha = {ha

1,h
a
2, · · · ,ha

L} ∈ RL×d (L is
the sentence length) and opinion features Ho =
{ho

1,h
o
2, · · · ,ho

L} ∈ RL×d from the contextual fea-
tures Henc:

Ha = MLPa(H
enc), Ho = MLPo(H

enc) (5)

Then, we take the last hidden state of the
decoder corresponding to the markers as the
marker features, including aspect marker fea-
tures Ma = {ma

1,m
a
2, · · · ,ma

N} (N is the
number of triplets) and opinion marker features
Mo = {mo

1,m
o
2, · · · ,mo

N}. We then calculate
the marker-oriented features for ma

i ∈ Ma or
mo

i ∈ Mo for sequence labeling:

qa
ij = σ(W1(h

a
j ⊕ma

i ) + b1),

qo
ij = σ(W1(h

o
j ⊕mo

i ) + b1),
(6)

where σ(·) is the selu activation function, ha
j ∈ Ha

and ho
j ∈ Ho are the aspect/opinion features2. W

and b are the transformation matrix and bias.
Note that we deploy a tag-then-generate mecha-

nism at the training stage, which means the MOSL
module will predict the BIO tags for tokens in a
sentence, and then the generation model will start
to decode the tokens. Such a mechanism can force
the text generation module to capture the boundary
information of multi-word aspect/opinion terms.

When the input sentence contains multiple
triplets, the aspect/opinion marker features in dif-
ferent positions correspond to different tagged

1Note only aspect and opinion terms are derived from
the input sentence, thus the sentiment marker is not used in
MOSL.

2The tokenizer may split the word into several tokens.
Here, we obtain the word-level features for MOSL by taking
the maxpooling of the token-level features.
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Figure 3: The process of template-guided text genera-
tion enhanced by the MOSL module.

sequences in the MOSL module, e.g., Y ma
i =

{yma
i1 , yma

i2 , · · · , yma
iL } for ma

i and Y mo
i =

{ymo
i1 , y

mo
i2 , · · · , ymo

iL } for mo
i , where Y ma and

Y mo are the BIO tags in sequence labeling. Hence
the same marker in the generation module can
share information without causing confusion since
it has different pointers referring to multiple as-
pect/opinion terms in MOSL, which consequently
benefits the decoding of the sentence contain-
ing multiple triplets. Then, we feed the marker-
oriented features into a fully connected layer to
predict the tags of aspect/opinion terms and get the
predicted probabilities over the label set:

pma
ij = softmax(W2q

a
ij + b2),

pmo
ij = softmax(W2q

o
ij + b2),

(7)

The training loss for MOSL is defined as the
cross-entropy loss:

La→o
m = −

N∑

i=1

L∑

j=1

∑

c∈C
I(yma

ij = c) · log(pma
i,j|c)

−
N∑

i=1

L∑

j=1

∑

c∈C
I(ymo

ij = c) · log(pmo
i,j|c),

(8)

where I(·) is the indicator function, yma
ij and ymo

ij

are the ground truth labels, and C denotes the {B, I,
O} label set.
Training For a better understanding of bidirec-
tional dependency and also for less space cost, we
jointly optimize two bidirectional templates for the
sentence and label pair (X , T ):

L = λ(La→o
g + La→o

m ) + (1− λ)(Lo→a
g + Lo→a

m ), (9)
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Dataset Lap14 Res14 Res15 Res16

#S #T #MW N=1 N ≥ 2 #S #T #MW N=1 N ≥ 2 #S #T #MW N=1 N ≥ 2 #S #T #MW N=1 N ≥ 2

Train 906 1460 636 545 361 1266 2338 752 605 661 605 1013 335 338 267 857 1394 476 504 353
Dev 219 346 156 133 86 310 577 189 91 219 148 249 84 51 97 210 339 123 63 147
Test 328 543 252 184 144 492 994 337 206 286 322 485 188 210 112 326 514 170 192 134

Table 1: Statistics of the datasets. #S, #T, and N are the number of sentences, triplets, and triplets in a sentence.
#MW denotes the number of triplets where at least one of aspect/opinion terms contains multiple words.

where λ is a hyper parameter to control the contri-
butions of different templates.

3.4 Inference

Constrained Decoding (CD) During inference,
we employ a constrained decoding (CD) strategy to
guarantee the content and format legitimacy, which
is inspired by Bao et al. (2022); Lu et al. (2021).
The content legitimacy means that aspect/opinion
terms should be a single word or multiple contin-
uous words in the input sentence, and the senti-
ment must be either positive, neutral, or negative.
The format legitimacy means that the generated
sequence should meet the formatting requirements
defined in the template.

Both types of legitimacy can be viewed as the
constraint on the candidate vocabulary during the
decoding process. Before decoding, we enumer-
ate the candidate vocabulary for each token in the
input sentence and templates. We then use the con-
strained decoding strategy to adjust the candidate
vocabulary according to the current input token
at each decoding time step. For example, when
we input the start token “</s>” to the decoder, the
candidate token should be “aspect”/“opinion” to
guarantee the format legitimacy. When we input
“:”, the model needs to determine which is the first
word of the aspect/opinion term, and the candidate
tokens should be consistent with those in the input
sentence.
Triplet De-linearization So far, we have gener-
ated two sequences Ya and Yo based on two input
sentences Xa and Xo with the constrained decod-
ing strategy. We then de-linearize them into two
triplet sets Ta and To according to pre-defined tem-
plates ψa→o and ψo→a. We take the intersection of
Ta and To as the final prediction results.

4 Experiments

4.1 Datasets

Our proposed model is evaluated on four ASTE
datasets released by Xu et al. (2020) which correct
the missing triplets that are not explicitly annotated
in the previous version (Peng et al., 2020). All

datasets are based on SemEval Challenges (Pontiki
et al., 2014, 2015, 2016) and consist of reviews in
the laptop and restaurant domains. Table 1 shows
the statistics of four benchmark datasets.

4.2 Implementation Details
As mentioned in Sec. 3.2, T5-Base (Raffel et al.,
2020) is used to initialize the parameters of our
model. We train our model using AdamW opti-
mizer with an initial learning rate 3e-4 and linear
learning rate decay. The number of training epoch
is set to 20 for full supervised settings and 200 for
low-resource and few-shot settings. When encod-
ing the bidirectional dependency jointly, we set the
batch size to 32 and λ to 0.5. The results for super-
vised and low-resource settings are averaged over
five and ten runs with different random initializa-
tion, respectively. All experiments are conducted
on an NVIDIA RTX 3090 GPU.

4.3 Baselines
To validate the effectiveness of our proposed model,
we compare it with 14 state-of-art baselines. We
divide the baselines into three categories. (1)
pipeline methods: CMLA+, RINANTE+, Li-
unified-R, and Peng-two-stage are proposed by
Peng et al. (2020). (2) unified non-generative
methods: JET-BERT (Xu et al., 2020), OTE-MTL
(Zhang et al., 2020), GTS-BERT (Wu et al., 2020b),
SPAN-ASTE (Xu et al., 2021), BMRC (Chen et al.,
2021), EMC-GCN (Chen et al., 2022). (3) genera-
tive methods: BART-GEN (Yan et al., 2021), GAS
(Zhang et al., 2021b), PARAPHRASE (Zhang et al.,
2021b), SSI+SEL (Lu et al., 2022).

4.4 Main Results
Supervised settings Table 2 shows the triplet
extraction performance under supervised settings.
Our proposed SLGM method beats all baselines in
terms of F1 scores. Specifically, our SLGM outper-
forms the best text-generation method SSI+SEL by
2.48, 2.64, 4.72, and 2.54 points on four datasets,
respectively. Moreover, our SLGM can exploit
knowledge for triplet extraction directly from train-
ing data, contradicting to SSI+SEL’s pre-training
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Models Lap14 Res14 Res15 Res16

P R F1 P R F1 P R F1 P R F1

CMLA+‡ 30.09 36.92 33.16 39.18 47.13 42.79 34.56 39.84 37.01 41.34 41.10 41.72
RINANTE+‡ 21.71 18.66 20.07 31.42 39.38 34.95 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R‡ 40.56 44.28 42.34 41.04 67.35 51.00 44.72 51.39 47.82 37.33 54.51 44.31

Peng-two-stage‡ 37.38 50.38 42.87 43.24 63.66 51.46 48.07 57.51 52.32 46.96 64.24 54.21

OTE-MTL‡ 49.62 41.07 44.78 62.70 57.10 59.71 55.63 42.51 47.94 60.95 53.35 56.82
JET-BERT‡ 55.39 47.33 51.04 70.56 55.94 62.40 64.45 51.96 57.53 70.42 58.37 63.83
GTS-BERT‡ 57.82 51.32 54.36 67.76 67.29 67.50 62.59 57.94 60.15 66.08 69.91 67.93

SPAN-ASTE‡ 63.44 55.84 59.38 72.89 70.89 71.85 62.18 64.45 63.27 69.45 71.17 70.26
BMRC‡ 70.55 48.98 57.82 75.61 61.77 67.99 68.51 53.40 60.02 71.20 61.08 65.75

EMC-GCN‡ 61.70 56.26 58.81 71.21 72.39 71.78 61.54 62.47 61.93 65.62 71.30 68.33

BART-GEN‡ 61.41 56.19 58.69 65.52 64.99 65.25 59.14 59.38 59.26 66.60 68.68 67.62
GAS† 61.65 58.19 59.87 71.08 71.67 71.37 60.01 63.67 61.78 67.76 71.67 69.66

PARAPHRASE† 62.99 58.30 60.55 70.87 70.90 70.89 60.80 64.98 62.82 70.35 74.04 72.15
SSI+SEL† 65.95 59.93 62.79 72.47 73.54 73.00 63.13 63.66 63.55 71.05 75.64 73.26

SLGM 70.54 60.74 65.27∗ 78.84 72.70 75.64∗ 69.75 66.85 68.27∗ 75.86 75.76 75.80∗

Table 2: Results for supervised settings. The baseline results with “‡” are retrieved from Yan et al. (2021); Xu
et al. (2021); Chen et al. (2022). We reproduce the generative methods with “†” by using their released code. The
best and the second best F1 scores are in bold and underlined, respectively. The ∗ marker denotes the statistically
significant improvements with p < 0.01 over the second best results by SSI+SEL.

Dataset Model PLM 1-shot 5-shot 10-shot AVG-S 1% 5% 10% AVG-R

Lap14
SSI+SEL UIE-base 5.27 19.06 27.77 17.37 14.98 37.02 44.51 32.17
SLGM T5-base 11.95 31.30 41.53 28.26∗ 27.14 47.40 53.72 42.75∗

Res14
SSI+SEL UIE-base 11.65 32.54 40.56 28.25 31.44 53.34 61.13 48.64
SLGM T5-base 23.26 44.87 50.99 39.71∗ 43.44 59.68 64.68 55.93∗

Res15
SSI+SEL UIE-base 10.83 28.48 38.08 25.80 17.95 39.73 48.60 35.43
SLGM T5-base 22.43 43.44 51.45 39.11∗ 30.64 51.35 57.93 46.64∗

Res16
SSI+SEL UIE-base 10.36 26.78 39.14 25.43 23.28 49.91 57.36 43.52
SLGM T5-base 22.65 46.08 52.73 40.49∗ 37.44 57.07 63.30 52.60∗

Table 3: Results for low-resource settings, where AVG-S and AVG-R are the average results across 3 few-shot and 3
low-resource settings, respectively. The best F1 scores are in bold. The ∗ marker denotes the statistically significant
improvements with p < 0.01 over SSI+SEL.

method which relies on extra data like Wikipedia
and Wikidata.

The generative methods like GAS which use the
classic encoder-decoder architecture can outper-
form most non-generative methods without compli-
cated architectures through learning label seman-
tics. We also find that the non-generative method
BMRC achieves competitive precision scores on
four datasets because it also considers the bidirec-
tional dependency. By combining the text gener-
ation and sequence labeling in training for tack-
ling the complex extraction scenarios, our SLGM
method improves the precision of GAS by more
than 7 points and the recall of BMRC by more than
10 points.
Low-resource settings To validate the model’s
performance in the low-resource scenarios, we fol-

low the settings in SSI+SEL (Lu et al., 2022) to
conduct experiments on six different partitions of
the original training sets (1/5/10-shot, 1/5/10%-
ratio) and report averaged scores over random 10
runs. SSI+SEL adopts a pre-training process which
can help the model capture general information
from additional data. However, as shown in Ta-
ble 3, our SLGM achieves much better results than
SSI+SEL by a large margin on all partitions with-
out such a pre-training process. The performance
gap between our SLGM and SSI+SEL becomes
more impressive under the low-resource settings
than that under the supervised ones. This clearly
demonstrates that our SLGM model can be quickly
adapted to the low-resource scenarios with very
few samples, which is an extremely good property
of our model.
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Mode Lap14 Res14 Res15 Res16

P R F1 P R F1 P R F1 P R F1

Ta 64.12 64.46 64.28 73.79 75.61 74.69 64.19 70.43 67.16 71.15 77.51 74.19
To 64.20 64.27 64.24 73.29 75.45 74.35 62.70 69.36 65.86 70.43 77.43 73.76

Ta ∩ To 70.54 60.74 65.27 78.84 72.70 75.64 69.75 66.85 68.27 75.86 75.76 75.80

Table 4: Impacts of bidirectional templates. Ta and To denote the predicted results from different decoding order.

Model Lap14 Res14 Res15 Res16

SLGM 65.27 75.64 68.27 75.80

w/o ψo→a 64.39 74.07 66.31 74.67
w/o ψa→o 64.01 73.28 65.60 73.18
w/o MOSL 62.73 74.61 66.72 73.82
w/o CD 65.00 75.25 68.16 75.86

Table 5: Results for ablation study under supervised
settings.

Model 1-shot 5-shot 10-shot 1% 5% 10%

SLGM w/o CD 14.85 38.78 46.30 28.19 54.38 62.28
SLGM 22.65 46.08 52.73 37.44 57.07 63.30

△ +7.80 +7.30 +6.43 +9.25 +2.69 +1.02

Table 6: Results for ablation study under low-resource
settings for constrained decoding (CD) on the Res16
dataset.

5 Analysis

5.1 Ablation Study

To examine the impacts of three key components
in our model, including marker-oriented sequence
labeling (MOSL), bidirectional templates (ψa→o

and ψo→a), and constrained decoding (CD), we
conduct the ablation study on four datasets under
supervised settings, The results are shown in Ta-
ble 5. We make the following notes.

Firstly, removing one of two bidirectional tem-
plates will cause a performance drop, and ψa→o

contributes more to the model than ψo→a.
Secondly, the extraction performance decreases

dramatically after removing MOSL. This clearly
proves the effectiveness of MOSL module. We will
make more exploration about the impacts of MOSL
in Sec. 5.3.

Thirdly, “w/o CD” denotes that we directly take
the whole vocabulary instead of taking the for-
mat and content constraints into account. We find
that the performance slightly degrades on Lap14,
Res14, and Res15, but increases on Res16. The
reason might be that limiting the size of candidate
vocabulary leads the model to generate some wrong
but legal triplets. However, the large amount of
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Figure 4: F1 scores under different settings of λ.

training data under the supervised settings allows
the model to adaptively fit to the target text.

To confirm this hypothesis, we further investi-
gate the impacts of CD under the low-resource
settings on the Res16 dataset 3. The results are
shown in Table 6. We can see that as the number of
training samples decreases, the performance gain
from CD becomes more significant. This infers
that the CD strategy plays a more important role in
data scarcity scenario.

5.2 Impacts of Bidirectional Templates

We model the mutual dependency between aspect
and opinion terms using the bidirectional templates.
Our purpose is to avoid generating false paired
aspect-opinion triplets. We investigate the impacts
of bidirectional templates and show the results in
Table 4. Besides, we also plot the performance
under different settings of λ to further validate the
importance of bidirectional dependency as shown
in Fig. 4.

It can be seen that the unidirectional decoding
order Ta/To gets better recall scores but generates
many false triplets, and thus has low precision. By
capturing the mutual dependency and taking the
intersection of Ta and To, our model can effectively
filter false paired triplets and significantly enhance

3We have similar observations on other datasets. We omit
those results for clarity.
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Mode Model Lap14 Res14 Res15 Res16

Single
Word

SLGM w/o MOSL 71.00 80.10 71.70 78.58
SLGM 72.22 80.88 73.35 80.44

△ +1.22 +0.78 +1.65 +1.86

Multi
Word

SLGM w/o MOSL 52.34 62.93 58.69 63.85
SLGM 56.63 64.56 60.22 66.19

△ +4.29 +1.63 +1.53 +2.34

Single
Triplet

SLGM w/o MOSL 66.42 74.25 67.07 70.55
SLGM 68.16 74.72 67.72 72.64

△ +1.74 +0.47 +0.65 +2.09

Multi
Triplet

SLGM w/o MOSL 60.45 74.72 66.41 76.00
SLGM 63.55 75.91 68.75 77.93

△ +3.10 +1.19 +2.34 +1.93

Table 7: Impacts of the MOSL module with different
evaluation modes.

the precision and F1 scores. Moreover, when λ
is biased towards ψa→o or ψo→a, the performance
tends to decrease. Meanwhile, when λ is set to
0.5, the model achieves optimal results on most of
the datasets. This further confirms that the bidirec-
tional dependency is of the same importance.

5.3 Impacts of Marker-Oriented Sequence
Labeling (MOSL)

Table 1 shows that multi-word triplets account for
roughly one-third of all triplets while about half
of the sentences are multi-triplet ones. Our MOSL
module allows the model to learn the prompt infor-
mation of aspects and opinions based on our tag-
then-generate mechanism during training, which
improves the model’s ability of handling complex
structures. We verify the effects of MOSL in this
section 4.

Table 7 shows the performance with two differ-
ent evaluation modes, where “Single-Word” de-
notes both aspect and opinion terms in a triplet
are single-word spans, and “Multi-Word” denotes
that at least one of the aspect or opinion terms in
a triplet is a multi-word span. We find that the
model obtains more significant improvements for
multi-word triplets than that for single-word triplets
after adding the MOSL module. It shows that the
model can learn the boundary information of as-
pect/opinion terms and generate the complete terms
with the guidance of MOSL.

Table 7 also presents the results for “Single-” or
“Multi-” triplets in a sentence, where the MOSL

4Note that the sentences with multi-word triplets and the
multi-triplet sentences overlap in many cases. Hence the im-
pacts of MOSL may not clearly present as expected on some
datasets like Res15 or Res16.

Model Parameter Inference Time

GAS 222.9M 24.37S†

SLGM 225.2M 24.79S

w/o CD 225.2M 11.39S
w/o CD & MOSL 222.9M 11.02S
w/o CD & MOSL & ψo→a 222.9M 5.50S

Table 8: Complexity analysis on Lap14 dataset. The
results marked with † are reproduced based on the re-
leased code.

module makes the similar contributions. As can be
seen, the model with MOSL gains more improve-
ments when the review contains multiple triplets.
In addition, we attempt to mix the test sets of
datasets Res14, Res15, and Res16 to evaluate the
performance of the model under multi-triplet set-
ting 5. The ratio of the averaged improvement
of the multi-triple to the single-triple setting on
three single dataset is 1.77 while it increases up
to 3.15 on the mixed dataset. This is because all
aspect/opinion features in MOSL point to the same
marker “aspect/opinion”. This allows the marker to
share knowledge across different aspect/opinion
features, thus the text generation module holds
the clue from the shared marker about the sub-
sequent aspect/opinion term when generating the
prior ones.

5.4 Analysis on Computational Cost

To demonstrate that our model does not bring too
much computational cost, we compare it with GAS
in terms of the number of parameters and inference
time as shown in Table 8. We also analyze the costs
of the key components in our model to show their
impact on complexity. Firstly, the MOSL module
adds only about 2.3M parameters compared with
GAS. Secondly, we find that the constrained decod-
ing algorithm increases the inference time as our
implementation of constrained decoding algorithm
requires determining the candidate vocabulary ac-
cording to the current input token at each decoding
time step, which undermines the parallelism of the
generation model during inference. Moreover, bidi-
rectional templates require the model to generate
target sequences based on two different decoding
orders which also increases inference time to some
extent. However, SLGM does not show significant
differences from GAS in terms of model parame-
ters and inference time because GAS needs to take
a prediction normalization strategy to refine the

5Here we still take the training set of Res15 for training.
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Figure 5: Case Study. The aspect and opinion terms are highlighted in green and blue, respectively. The orange line
denotes the aspect term matches the opinion term and the model correctly predicts the sentiment polarity.
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Figure 6: Visualization of the sequence labeling (BIO) probability output by MOSL. Left: the probability for the
first opinion marker in the first review; Right: the probability for the first aspect marker in the second review.

prediction results.

5.5 Case Study

We conduct a case study on two reviews to com-
pare typical generative methods, including PARA-
PHRASE (Zhang et al., 2021a), SSI+SEL (Lu et al.,
2022), and our method. The results are as shown
in Fig. 5.

For the first review (the left one in Fig. 5),
SSI+SEL and PARAPHRASE cannot recognize
the opinion term “cheap”, whereas “not very sen-
sitive” is recognized by all methods. In contrast,
our SLGM can identify both terms. To have a close
look, we further visualize the BIO probabilities out-
put by MOSL in Fig. 6. As we can see in the left
part of Fig. 6, the opinion marker in MOSL focuses
on two opinion terms simultaneously when the gen-
eration module generates the first triplet, which
helps the model know that there are two related
opinion terms for the aspect term “keyboard”.

For the second review (the right one in Fig. 5),
both SSI+SEL and PARAPHRASE find the approx-
imate locations of the aspect and opinion terms,
but neither of them gets correct pairs due to in-
complete decoding. The reason is that these two
methods lack the corresponding prompt informa-
tion for boundary identification. Meanwhile, as
can be seen from the right part of Fig. 6, the aspect
marker in MOSL focuses on the complete aspect
term, which contains the boundary information that
can help our generation module to decode the com-
plete aspect term.

6 Conclusion

In this paper, we exploit the power of text gener-
ation and sequence labeling for ASTE. We pro-
pose two bidirectional templates to reflect the mu-
tual aspect-opinion dependency for filtering false
paired triplets. We also present a marker-oriented
sequence labeling module to help the text genera-
tion module tackle complex structures in the subse-
quent decoding process. Experiment results show
that our framework consistently outperforms all
generative and non-generative baselines under both
the full supervised and low-resource settings.

Limitations

Although our proposed method achieves the state-
of-art performance, it still has a few limitations.
Firstly, we only consider the dependency between
aspect and opinion in the target text yet ignoring the
order influence in the input text, which may bring
more improvements. Secondly, there are three la-
bel types for ASTE, including aspect, opinion, and
sentiment. Currently, we only utilize the aspect and
opinion markers in the marker-oriented sequence
labeling module. We believe that the specific de-
sign for the sentiment marker can further improve
the performance, which can be a future direction.
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