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Abstract

Dual encoders have been used for retrieval
tasks and representation learning with good re-
sults. A standard way to train dual encoders
is using a contrastive loss with in-batch nega-
tives. In this work, we propose an improved
contrastive learning objective by adding queries
or documents from the same encoder towers to
the negatives, for which we name it as "con-
trastive loss with SAMe TOwer NEgatives"
(SamToNe). By evaluating on question answer-
ing retrieval benchmarks from MS MARCO
and MultiReQA, and heterogenous zero-shot
information retrieval benchmarks (BEIR), we
demonstrate that SamToNe can effectively im-
prove the retrieval quality for both symmetric
and asymmetric dual encoders. By directly
probing the embedding spaces of the two en-
coding towers via the t-SNE algorithm (van der
Maaten and Hinton, 2008), we observe that
SamToNe ensures the alignment between the
embedding spaces from the two encoder towers.
Based on the analysis of the embedding dis-
tance distributions of the top-1 retrieved results,
we further explain the efficacy of the method
from the perspective of regularisation.

1 Introduction

The dual encoder architecture applied to informa-
tion retrieval has shown excellent performance in a
wide range of tasks (Gillick et al., 2018; Karpukhin
et al., 2020; Ni et al., 2021, 2022).

Recently, the Information Retrieval commu-
nity has transitioned towards Deep Learning mod-
els that leverage large unsupervised corpus pre-
training (Devlin et al., 2019; Raffel et al., 2020),
which offers more powerful semantic and con-
textual representation for queries and documents.
These models can be successfully applied to scor-
ing tasks, e.g. Dehghani et al. (2017), or retrieval
tasks, e.g. Gillick et al. (2018). In contrast, classic
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Figure 1: Embedding space analyses on MS MARCO and
SearchQA show that sharing a projection layer in Asymmet-
ric Dual Encoders (ADE-SPL) (Dong et al., 2022) may not
guarantee that the embeddings from the two encoder towers
are in coinciding parameter spaces. However SamToNe can
effectively achieve that.

retrieval models, such as BM25 (Robertson and
Zaragoza, 2009), rely on bag-of-words lexical over-
lap, term frequency heuristics, inverse document
frequency and document length. This type of re-
trieval models does not require any training and
can generalize reasonably well, but they fall short
of finding documents that have low term overlap
but high semantic similarity.

A dual encoder (Gillick et al., 2018; Yang
et al., 2020; Karpukhin et al., 2020; Reimers and
Gurevych, 2019) consists of two encoding tow-
ers that map queries and documents, respectively,
into a shared low-dimensional dense representation,
namely, the embedding space. The model is usu-
ally optimized by a contrastive loss (Chopra et al.,
2005), which moves the embeddings of the queries
and documents from the same positive examples
closer to each other, and the embeddings from neg-
ative examples farther away. Training the dual
encoder in batches allows to use, for each question,
the passages that answer all the other questions
within the batch as negatives (Gillick et al., 2018),
namely "in-batch negatives". At indexing time, all
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the documents in a corpus are encoded via bulk
inference and indexed. To run retrieval, a query is
encoded and its most relevant documents can be
retrieved through Nearest Neighbours Search (Van-
derkam et al., 2013; Johnson et al., 2021) over the
embedding space using a measure of similarity, e.g.
the dot-product or cosine distance of the embed-
ding vectors.

Motivation. In this work, we consider two major
types of dual encoder architectures: "Symmetric
Dual Encoder" (SDE)1, with parameters shared be-
tween two encoder towers, and "Asymmetric Dual
Encoder" (ADE), with two distinctly parameterized
encoder towers. Dong et al. (2022) demonstrated
that sharing projection layers can significantly im-
prove the performance of ADEs. They empirically
explained the efficacy of SDE and ADE-SPL by
claiming that the shared projection layers help map-
ping the embeddings of the two encoder towers into
a coinciding parameter space.

By repeating this embedding space analysis on
a variety tasks, we find that ADE-SPL may not be
enough to ensure that the embedding spaces from
two encoder towers are coinciding, as shown in Fig-
ure 1. This motivates us to further improve the dual
encoder retrieval quality beyond the architectural
change explored in Dong et al. (2022). Although
the projection layers are shared, our analyses sug-
gest that an extra mechanism, other than using the
standard contrastive loss with in-batch negatives, is
required to ensure the adjacency of the embeddings
of a ground truth pair.

Contributions. In this paper, we propose an im-
proved training objective for dual encoder mod-
els: contrastive loss with Same Tower Negatives
(SamToNe). In Section 3, we demonstrate its use-
fulness on a variety of Information Retrieval tasks,
including both tasks with in-task fine-tuning and
a zero-shot benchmark suite. Across all the tasks
explored, SamToNe performs competitively com-
paring to the traditional training setup, with a signif-
icant improvement on the metrics averaged across
tasks. Finally, through an analysis of the produced
embeddings, in Section 4, we further make evident
the superiority of SamToNe from the perspective
of regularisation.

1This kind of dual encoders have also been called
"Siamese" or "Twin" dual encoders.

Figure 2: The dual encoder architectures, where the blue
components are shared between two encoding paths.

2 Method

Dual Encoder Architecture. We follow the stan-
dard setup of information retrieval: given a query,
q, and a corpus of retrieval candidates, P , the goal
is to retrieve k relevant candidates, pk ∈ P . The
candidate can be a phrase, a sentence, a passage, or
a document.

Recent research (Dong et al., 2022) demon-
strated that sharing projection layers can signifi-
cantly improve the performance of ADEs and we
use this shared projection layer for ADEs (ADE-
SPL) throughout our experiments. Figure 2 illus-
trates the SDE and ADE-SPL architectures we use
in this work. Our dual encoders are initialized from
pre-trained t5.1.1 encoders (Raffel et al., 2020).
Following Ni et al. (2022); Dong et al. (2022), we
encode a query, qi, or a candidate, pi, by averaging
the T5 encoder outputs and projecting them to the
final embedding vector.

Contrastive Loss. A standard way to train a dual
encoder model is optimizing an in-batch sampled
softmax loss for contrastive learning (Henderson
et al., 2017):

Lc =
exp(sim(qi, pi)/τ)∑
j∈B exp(sim(qi, pj)/τ)

, (1)

where sim is cosine similarity, B is a mini-batch
of examples, and τ is the softmax temperature. pi
is the ground-truth relevant passage for the query
qi in a batch of retrieval candidates p∗, where all
the other passages pk (k ̸= i) are treated as the
negative examples for contrastive learning.

Bi-directional in-batch sampled softmax loss is
commonly applied to improve the embedding qual-
ity of both towers, where the contrastive loss is
computed for both query to passage matching and
passage to query matching (Yang et al., 2019). We
use the bi-directional loss throughout this work.
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Same Tower Negatives. The in-batch sampled
softmax loss is a contrastive loss that only consid-
ers the contrastive estimation between the target
example pair {qi, pi}, and the in-batch sampled
negative pairs {qi, pj} (j ̸= i).

One way to improve the quality of the retrieval
is to improve the contrast among the embeddings
of the queries. Therefore, we propose a novel con-
trastive loss using Same Tower Negatives, which
we abbreviate as SamToNe:

LS =
esim(qi,pi)/τ∑

j∈B esim(qi,pj)/τ +
∑

j∈B,j ̸=i
esim(qi,qj)/τ

, (2)

where the second term in the denominator is the
contribution from the same tower negatives.

SamToNe can be interpreted as a regularized ver-
sion of the in-batch sampled softmax loss, where
the term

∑
j∈B,j ̸=i e

sim(qi,qj)/τ is a regularizer.
When query embeddings are not well distributed,
max sim(qi, qj) ≫ max sim(qi, pj), and the sec-
ond term in the denominator will dominate the
contribution from the negative examples. Thus, it
will drive the separation of the query embeddings
in contrastive learning. In Section 4, we provide
empirical evidence of the effects of SamToNe as a
regularizer of the embedding space.

Ren et al. (2021) proposed an improved con-
trastive loss, PAIR, which is a hybrid loss
LPAIR = −(1− α) logLc − α logLP , where

LP =
esim(qi,pi)/τ∑

j∈B,j ̸=i
esim(pi,pj)/τ

(3)

penalizes the similarities between passages / doc-
uments. Despite both SamToNe and PAIR are pe-
nalizing the similarities among the same tower in-
puts, there are two significant differences. Firstly,
SamToNe is hyper-parameter free, while PAIR in-
troduces a new hyper-parameter α. This is because
SamToNe introduces the new term from an em-
bedding space regularization prospective (see Sec-
tion 4 for detailed analysis). Therefore SamToNe
can be easily applied to both query and document
encoders (see Section 3.4), but PAIR needs to in-
troduce yet another hyper-parameter to be applied
to both. Secondly, Ren et al. (2021) mentioned
it required a 2-stage training, with the first stage
using the PAIR loss, and the second using regular
in-batch softmax loss. Due to its self-balancing na-
ture, SamToNe doesn’t require multi-stage training.
A thorough comparison against PAIR can be found
in sections 3 and 4. No added hyper-parameters,
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Figure 3: The impact of model sizes on the performance of
different dual encoder architectures, measured by MRR on the
eval set of MS MARCO (left) and SearchQA (right).
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Figure 4: Relative improvement of NDCG@10 (%) on BEIR
tasks, by applying SamToNe to SDE.

single stage training and guaranteed improvement
on embedding space quality, make SamToNe much
easier to use.

3 Experiments

3.1 Question-Answering Retrieval Tasks

We evaluate SamToNe on 5 question-answering
(QA) retrieval tasks including MS MARCO
(Nguyen et al., 2016) and MultiReQA (Guo et al.,
2021). For MS MARCO, the retrieval candidates
are relevant passages, and for the 4 tasks in Mul-
tiReQA, the retrieval candidates are answer sen-
tences.

To make a fair comparison across the results
of our experiments, the same fine-tuning hyper-
parameters are applied to all our model variants.
The models are optimized for 20, 000 steps us-
ing Adafactor optimizer (Shazeer and Stern, 2018),
with softmax temperature τ = 0.01, batch size 512,
and a linearly decaying learning rate starting from
10−3 to 0 at the final step. To compare SamToNe
and PAIR, we use the hyperparameter α = 0.1 for
PAIR as reported in Ren et al. (2021), and keep all
the other experimental setups identical. SamToNe
is applied only on the query side, as it is more ro-
bust across different datasets. For experiments and
analysis on applying SamToNe on both encoder
towers, please refer to Section 3.4. We benchmark
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Model Loss MSMARCO NQ SQuAD TriviaQA SearchQA Average
P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR

ADE Standard 14.1 26.8 53.5 65.2 64.3 74.0 37.9 50.4 41.5 57.2 42.3 54.7
SamToNe 16.0 28.5 52.8 63.9 63.6 73.0 38.4 49.8 49.2 62.3 44.0 55.5

ADE-SPL
Standard 15.7 28.8 55.3 67.0 74.5 82.1 41.7 54.4 42.3 59.1 45.9 58.3
SamToNe 17.6 30.4 55.7 67.2 73.8 81.7 44.0 55.9 48.5 63.4 47.9 59.7

PAIR 16.9 29.6 55.7 67.0 74.4 82.0 45.0 56.8 44.1 60.4 47.2 59.2

SDE
Standard 16.1 29.1 54.4 66.6 74.1 81.9 41.4 54.2 37.6 55.8 44.7 57.5
SamToNe 17.2 30.2 54.2 66.4 74.6 82.0 42.1 54.5 44.0 60.4 46.4 58.7

PAIR 16.1 29.1 53.8 66.2 74.13 81.7 41.3 54.5 38.7 56.6 44.7 57.5

Table 1: Precision at 1 (P@1)(%) and Mean Reciprocal Rank (MRR)(%) on QA retrieval tasks. The best-performing models
for each task and metric are highlighted in bold.

Task
Model SDE SamToNe BM25 GTR-XXL

ArguAna 40.2 39.8 31.5 54
BioASQ 40.2 39.7 46.5 32.4

Climate-Fever 31.1 32 21.3 26.7
CQADupStack 40.7 41.4 29.9 39.9
DBpedia-entity 45.7 45.9 31.3 40.8

Fever 68.3 70 75.3 74
FiQA-2018 41.8 42.6 23.6 46.7
HotpotQA 66.9 66.4 60.3 59.9
NFCorpus 37.2 36.5 32.5 34.2

NQ 42.9 47 29.9 56.8
Quora 88.8 88.7 78.9 89.2

Robust04 53.5 55.5 40.8 50.6
SCIDOCS 22.3 22.4 15.8 15.9

SciFact 68 67.7 66.5 66.2
Signal-1M 31.8 31.1 33 27.3
Trec-Covid 53.1 61.2 65.6 50.1
Trec-News 49.2 48.4 39.8 34.6

Touché-2022 22 32.4 36.7 25.6

Average 46.9 48.3 42.3 45.8

Table 2: NDCG@10 for zero-shot evaluation on the
BEIR benchmark after fine-tuning on MSMarco. The best-
performing models for each task are highlighted in bold, while
the best scores between SDE and SDE w/ SamToNe are
underscored.

the fine-tuned models using precision at 1 (P@1)
and mean reciprocal rank (MRR).

As shown in Table 1, SamToNe greatly improves
the retrieval performance of both SDE and ADE-
SPL models. Using SamToNe, ADE-SPL models
can outperform SDE ones, especially for TriviaQA
and SearchQA, by a great margin. Relative to PAIR,
SamToNe provides better performance across dif-
ferent datasets in both types of models.

3.2 Scaling the Model Size

To assess the impact of the model size, we evaluate
the dual encoders initialized from t5.1.1-base
(∼ 250M parameters), t5.1.1-large (∼ 800M
parameters), and t5.1.1-XXL (∼ 11B parameters).
Figure 3 and Appendix Table 4 show that SamToNe
consistently improves the performance of dual en-
coders across different model sizes.

3.3 BEIR Generalization Tasks

We further demonstrate the efficacy of the dual
encoders trained with SamToNe on BEIR (Thakur
et al., 2021), a heterogeneous benchmark for zero-
shot evaluations.

BEIR has 18 information retrieval datasets2

across 9 domains, including Bio-Medical, Finance,
News, Twitter, Wikipedia, StackExchange, Quora,
Scientific, and Misc. The majority of the datasets
have binary query relevance labels. The other
datasets have 3-level or 5-level relevance judge-
ments.

As BEIR is evaluating generalization capabilities
and SDEs are commonly used for general purpose
retrieval (Ni et al., 2021), we focus on evaluating
the impact of SamToNe on BEIR using the SDE
architecture. In this evaluation, we reuse the model
fine-tuned with MS MARCO, as described in Sec-
tion 3.1.

Evaluated with the same setting as GTR (Ni
et al., 2021), SamToNe demonstrates strong per-
formance on BEIR, as shown in Table 2 and Fig-
ure 4. On average, SamToNe improves NDCG@10
by 1.4% for SDE with XXL size. SDE trained
with SamToNe significantly outperform BM-25, a
sparse retrieval method, and GTR, a dense retrieval
method that shares the same architecture and the
same model size as SDE but fine-tuned with differ-
ent corpora.

3.4 Applying SamToNe to Both Towers

Just as with the query tower, SamToNe can be ap-
plied to the document tower which leads to better
query-document alignment. However, it is com-
mon that the training data contains a large fraction
of duplicated documents for a diverse set of queries.

2MS Marco is excluded from the zero-shot comparison as
many baseline models use it as training data.
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SamToNe MSMARCO TriviaQA
P@1 MRR P@1 MRR

W/O SamToNe 15.7 28.8 41.7 54.4
uni-directional 17.6 30.4 44.0 55.9
bidirectional 18.2 31.0 41.7 53.3

% of unique documents 98% 17%

Table 3: Precision at 1 (P@1)(%) and Mean Reciprocal Rank
(MRR)(%) when comparing ADE-SPL (t5.1.1-large size)
trained without SamToNe and with SamToNe applied to the
query tower (uni-directional) or to both towers (bidirectional).
The best-performing models for each task and metric are high-
lighted in bold.

Figure 5: Distributions of cosine similarities between the
embeddings of the queries and their nearest neighbour docu-
ments, for different models trained with or without SamToNe.

For example, only 17% of the documents in the
train-split are unique for TriviaQA, but 98% for
MSMARCO. For datasets with a low rate of unique
documents, applying SamToNe on the document
side will penalize sim(pi, pj) with pi = pj and
may hinder the performance, as shown in Table 3.

4 Analysis

4.1 Embedding Space Analysis

As shown in the top row of Figure 1, for MS
MARCO and SearchQA, ADE-SPL generates two
connected but topologically separable embedding
spaces. It requires an extra mechanism, beyond the
shared projection layers, to ensure the adjacency of
the embeddings from a ground truth pair.

SamToNe is proposed as the "force" drawing
the embeddings of each ground truth training pair
together. Its efficacy is illustrated in the bottom
half of Figure 1.

4.2 SamToNe: an Embedding Distance
Regularizer

To further understand SamToNe’s role as a regu-
larizer of embedding distances, we evaluate the
distribution of the distances between the embed-
dings of the queries and their top-1 retrieval results
in the test set of MS MARCO and SearchQA. The
embedding distance is measured by cosine simi-
larity, where 1.0 means perfect alignment with a
range of [−1.0, 1.0].

As shown in Figure 5, SamToNe drastically

Figure 6: Distributions of query-query to query-document
similarity ratios for different losses on SearchQA. SamToNe
is applied to both query and document sides, and it pushes the
ratio to be centered around 1.

shifts the distribution of the (query, top-1 retrieval
result) pairs towards 1.0, demonstrating the reg-
ularizing effect of SamToNe over the embedding
distances.

By placing the regularizing query-query sim-
ilarity terms esim(qi,qj)/τ and the standard in-
batch negative query-document similarity terms
esim(qi,pj)/τ together in the denominator with
same weight, SamToNe pushes the similarity ra-
tio between query-query and query-documents,
sim(qi, qj)/sim(qi, pj), to be centered around 1.0.
This is a self-balancing regularization effect. The
query and document spaces are set to closely over-
lap each other and the embeddings of a positive pair
are more likely to be located in the same region of
the embedding space.

To empirically illustrate this effect, we plotted
histograms of the sim(qi,qj)

sim(qi,pj)
ratios for randomly se-

lected i and j in Figure 6. The regularization effect
only shows when SamToNe is used, but not when
PAIR (Ren et al., 2021) is. This is because the
self-balancing effect does not exist in a hybrid loss
such as PAIR.

5 Conclusions

Evaluating on QA retrieval tasks and zero-shot gen-
eralization benchmarks, we demonstrate that train-
ing with SamToNe can significantly improve the
dual encoder retrieval quality. With t-SNE maps of
query and document embeddings, we show that the
embedding spaces from the two encoding towers
of models trained with SamToNe are better aligned.
Through the distributions of similarity distances
between the embeddings of queries and their near-
est neighbours, we empirically explain the efficacy
of SamToNe from a regularisation prospective. In
general, we recommend using SamToNe to train
dual encoders for information retrieval tasks.
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6 Limitations

Same tower negatives can be applied to other con-
trastive losses, e.g. triplet loss (Chechik et al.,
2010). As we are focusing on improving the most
popular method to train dual encoder models, i.e.
the in-batch sampled softmax loss, we leave the
application of same tower negatives to other types
of contrastive loss as future work.

While SamToNe has proven to be effective to
improve the training of dual encoders, its efficacy
may depend on the diversity of the queries used
as inputs. In dataset with a large portion of simi-
lar queries in the training set, one might need to
use masking or other techniques to remove them
from the negative computation. Such techniques
can also improve the efficacy of SamToNe when
applied to both the query and document towers,
where SamToNe is currently known to hinder the
performance on datasets with a low rate of unique
documents, as discussed in Section 3.4.

We leave the in-depth exploration of aforemen-
tioned considerations for future works.
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Model size Architecture SamToNe MSMARCO NQ SQuAD TriviaQA SearchQA Average
P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR

base

ADE No 13.8 25.8 48.7 60.1 60.9 70.7 35 46.3 41.7 57.1 40 52
Yes 15.1 27.1 46.1 57. 59 68.9 32.5 43.1 45.3 58.5 39.6 50.9

ADE-SPL No 15.4 28. 50.5 62.1 69.8 78.1 38.8 50.7 41.6 58. 43.2 55.4
Yes 16 28.7 50.9 62.3 69.9 78.1 40.4 51.7 45.8 60.9 44.6 56.3

SDE No 15.7 28.1 49.3 61.4 70.2 78.5 37.7 50.4 36.9 54.8 42 54.6
Yes 15.9 28.4 49.7 61.6 70.4 0.784 39.4 51.5 41.1 57.8 43.3 55.5

large

ADE No 14.1 26.8 53.5 65.2 64.3 74 37.9 50.4 41.5 57.2 42.3 54.7
Yes 16 28.5 52.8 63.9 63.6 73 38.4 49.8 49.2 62.3 44 55.5

ADE-SPL No 15.7 28.8 55.3 67 74.5 82.1 41.7 54.4 42.3 59.1 45.9 58.3
Yes 17.6 30.4 55.7 67.2 0.738 0.817 44 55.9 48.5 63.4 47.9 59.7

SDE No 16.1 29.1 54.4 66.6 74.1 81.9 41.4 54.2 37.6 55.8 44.7 57.5
Yes 17.2 30.2 54.2 66.4 74.6 82 42.1 54.5 44 60.4 46.4 58.7

XXL

ADE No 14.9 27.9 57.2 69.2 68.7 77.8 46.1 58.7 47.4 62.7 46.9 59.3
Yes 17 30 57.5 69 67.7 76.9 47 58.8 52.7 65.9 48.4 60.1

ADE-SPL No 16.2 29.6 58.7 70.6 78.3 85.3 50.9 63 45.7 62.3 50 62.2
Yes 17.7 31.2 59.8 71.4 77.9 84.8 50.1 61.6 51.9 66.5 51.5 63.1

SDE No 15.8 29.4 58.2 70.6 79.2 86 46.9 60.3 40.6 59 48.1 61.1
Yes 17.1 30.6 58.7 70.8 78.2 85.1 48.3 60.6 46.5 62.8 49.8 62

Dataset Size (train / test queries / test documents) 400776 / 6980 / 8841823 106521 / 4131 / 22118 87133 / 10485 / 10642 335659 / 7776 / 238339 629160 / 16476 / 454836

Table 4: Precision at 1(P@1)(%) and Mean Reciprocal Rank (MRR)(%) on QA retrieval tasks.
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