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Abstract

Task embeddings are task-specific vectors de-
signed to construct a semantic space of tasks,
which can be used to predict the most transfer-
able source task for a given target task via the
similarity between task embeddings. However,
existing methods use optimized parameters and
representations as task embeddings, resulting in
substantial computational complexity and stor-
age requirements. In this work, we draw inspi-
ration from the operating mechanism of deep
neural networks (DNNs) and biological brains,
where neuronal activations are sparse and task-
specific, and we use the connectivity patterns of
neurons as a unique identifier associated with
the task. The proposed method learns to assign
importance masks for sub-structures of DNNs,
and accordingly indicate the task-specific con-
nectivity patterns. In addition to the storage ad-
vantages brought by the binary masking mech-
anism and structured sparsity, the early-bird
nature of the sparse optimization process can
deliver an efficient computation advantage. Ex-
periments show that our method consistently
outperforms other baselines in predicting inter-
task transferability across data regimes and
transfer settings, while keeping high efficiency
in computation and storage.

1 Introduction

With the rapid development and excellent per-
formance of large pre-trained language models
(PLMs), the most prevalent paradigm in natu-
ral language processing (NLP) has become pre-
training then fine-tuning (Peters et al., 2018; De-
vlin et al., 2019a; Brown et al., 2020; Lewis et al.,
2020; Raffel et al., 2020). Extending upon the
two-step training procedure, previous works show
that intermediate-task transfer, i.e., fine-tuning the
model on an intermediate source task before the
target task, can yield further gains (Phang et al.,
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Figure 1: An overview of COPATE, including the pro-
cedures for searching connectivity patterns, generating
task embeddings, and selecting source tasks.

2018; Wang et al., 2019a). Nevertheless, the im-
provement by intermediate-task transfer heavily
relies on the selection of a proper intermediate task
because some source tasks lead to performance
degradation (Yogatama et al., 2019; Pruksachatkun
et al., 2020). One straightforward approach is to
enumerate every possible (source, target) task com-
bination, but it is extremely expensive. Therefore,
recent works explore methods to predict inter-task
transferability accurately with high efficiency.

The current state-of-the-art (SOTA) works are
established on task embeddings, (i.e., leveraging
a single vector to represent a task). They predict
inter-task transferability by computing the similar-
ity between task embeddings. Task2Vec (Achille
et al., 2019; Vu et al., 2020) develops task embed-
dings based on the Fisher information matrix while
requiring fine-tuning the full model and consum-
ing a large amount of storage (Zhou et al., 2022).
Recently, researchers propose that the efficiently
tuned parameters like prompts (Li and Liang, 2021;
Liu et al., 2021) and LoRA (Hu et al., 2022) encode
rich information for a task and thus can serve as
task embeddings (Poth et al., 2021; Vu et al., 2022;
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Zhou et al., 2022). However, these tuned parame-
ters are sensitive to model initialization and stochas-
ticity (Li and Liang, 2021; Lester et al., 2021), and
optimizing these parameters consumes significantly
more computational resources than traditional fine-
tuning (Ding et al., 2022).

Different from them, we draw inspiration from
the shared working mechanisms of DNNs and bi-
ological brains to develop high-quality task em-
beddings. We start by considering which parts of
knowledge within the model are being utilized for
a given task. Typically, recent works in sparse
optimization and model pruning have shown that
sub-structures (e.g., neurons, attention heads, chan-
nels, and layers) from different parts of the model
exhibit specialization in distinct knowledge and
possess varying degrees of importance for a par-
ticular task (Dalvi et al., 2020; Liu et al., 2017;
Voita et al., 2019a; Glorot et al., 2011; Georgiadis,
2019; Li et al., 2022). These are consistent with the
findings in neuroscience that activities of neurons
and connectivities in biological brains are sparse
(Kerr et al., 2005; Poo and Isaacson, 2009; Barth
and Poulet, 2012) and task-specific (Duncan, 2010;
Fox et al., 2005; Crinion et al., 2003; Newton et al.,
2007). The aforementioned remarkable findings
motivate us to use task-specific connectivity pat-
terns in DNNs to represent tasks.

In this work, we propose a novel task embedding,
namely Connectivity Patterns as Task Embedding
(COPATE), and apply it to predict the inter-task
transferability, as illustrated in Figure 1. Our key
insight is that in over-parameterized DNNs, there
exist connectivity patterns (i.e., the structures of
subnetworks) that are functional for one certain
task, and can capture high-density task-specific
information. Concretely, we assign importance
masks to attention heads and intermediate neu-
rons of PLMs, jointly train the masks and the
model, and extract task embeddings according to
the learned masks. Our method has two strengths
in efficiency: 1) it is computation-friendly as we
extract connectivity patterns early in the training;
2) it is storage-friendly because our embedding
granularity is coarse-grained, and COPATE can be
represented by a binary mask. Experiments show
that compared to other approaches, COPATE has
superior inter-task prediction capability across data
regimes and transfer settings. Our codes are avail-
able at Github1.

1https://github.com/WooooDyy/CoPaTE

Our contributions can be summarized as follows:

• Inspired by the working mechanisms of DNNs
and biological brains, we propose COPATE,
a novel task embedding that represents tasks
with sparse connectivity patterns.

• We propose a method to obtain COPATE with
sparse optimizing techniques, and show the
significant positive correlation between em-
bedding similarity and task transferability.

• We conduct thorough experiments on 342
transfer combinations with different settings
to show the effectiveness of our method. We
further explore an intermediate-curriculum
transfer setting to investigate whether there
is a beneficial curriculum for a target task.

2 Identifying Sparse, Task-specific
Connectivity Patterns

In this section, we demonstrate the framework to
identify task-specific connectivity patterns. We rep-
resent the task-specific connectivity patterns via the
structure of essential subnetworks found by sparse
optimizing and pruning techniques (Liu et al., 2017;
Chen et al., 2021a; Zheng et al., 2022), including
the searching stage (Sec 2.1) and the extracting
stage (Sec 2.2).

2.1 Finding Connectivity Patterns
Typically, BERT is constructed by multiple trans-
former encoder layers that have uniform structure
(Vaswani et al., 2017). Each layer has a multi-head
self-attention (MHA) block, a feed-forward net-
work (FFN), and residual connections around each
block. The MHA is formulated as:

MHA(x) =

Nh∑

i=1

AttW i
K ,W i

Q,W i
V ,W i

O
(x), (1)

where x is input, Nh is the number of heads, and the
projections W i

K , W i
Q, W i

V ∈Rdh×d, W i
O ∈ Rd×dh

denote the key, query, value and output matrices
in the i-th attention head. Here d is the hidden
size (e.g., 768), and dh = d/Nh denotes the output
dimension of each head (e.g., 64).

An FFN parameterized by WU ∈ Rd×df and
WD ∈ Rdf×d comes next:

FFN(x) = gelu(XWU ) ·WD, (2)

where df = 4d.
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Figure 2: Correlation between COPATE similarity and inter-task transferability. Each point represents a source
task to a target task. The x-axis is the similarity between the associated source and target , averaged over three
runs, and the y-axis measures the relative transfer gain on the target. We include the Pearson correlation coefficient
(r) and p-value. The plots illustrate a significant positive correlation between COPATE similarity and inter-task
transferability. See Appendix B for results on more datasets.

Learnable Importance Masks We adopt a
coarse-grained structured pruning strategy to shape
connectivity patterns. Specifically, we use the mod-
ified network slimming (Liu et al., 2017; Chen
et al., 2021a) to find which heads and intermediate
neurons are essential for a given task. We first as-
sign learnable importance masks to each head and
intermediate neuron:

MHA(x) =

Nh∑

i=1

mi
H ·AttW i

K ,W i
Q,W i

V ,W i
O
(x),

(3)

FFN(x) = mF · gelu(XWU ) ·WD, (4)

where mH denotes the masks for heads, i is the
index of head, and mF denotes the masks for FFN.
Then, we can jointly train BERT with importance
masks but with a sparsity-inducing regularizer:

R(m) = λH∥mH∥1 + λF∥mF∥1, (5)

where m = {mH,mF}, λH and λF denote regu-
larization strength for the two kinds of masks re-
spectively. Hence, the final optimizing objective
is:

min
θ,m

L(θ,m) +R(m), (6)

where L is the original loss function of fine-tuning.

2.2 Extracting Connectivity Patterns

Early-stopping Strategy Note that the joint
training is still as expensive as traditional fine-
tuning. Fortunately, (You et al., 2020) and (Chen
et al., 2021b) point out that the importance masks
converge early in the searching stage. This inspires
us to stop the joint training early and dig out early-
bird connectivity patterns to generate task embed-
dings. Nevertheless, it is difficult to determine the
exact search termination time as the termination
moments of different tasks are different. Moreover,
masks of MHA and FFN typically have different
convergence rates. Hence, we adopt a termination
metric following (Xi et al., 2022) which terminates
the searching process when the normalized mask
distances between several consecutive miniepochs
are all smaller than a threshold γ2.

Pruning Strategy After the joint training, we can
perform pruning to the original models to extract
important connectivity patterns that encode task-
specific information. Specifically, the self-attention
heads and intermediate neurons with the smallest
importance masks are believed to contribute the
least to the task and the corresponding masks are
set to 0, while the masks of the surviving elements

2see Appendix C for more details of the termination metric.
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Algorithm 1: COPATE Generation
Input: model parameters θ, learnable

importance masks m, learning rate
η, sparsity for self-attention heads
pH, and sparsity for intermediate
neurons pF.

1 Procedure TASK-SPECIFIC

CONNECTIVITY PATTERNS SEARCHING

2 Initialize θ to pre-trained weights;
3 Initialize m = {mH,mF} to 1;
4 repeat
5 θ = θ − η∇θ(L(θ, c) +R(c));
6 m = m− η∇m(L(θ,m) +R(m));
7 until the convergence condition in Sec.2.2 is

satisfied, or the fine-tuning is done;
8 Procedure GENERATING COPATE WITH

LEARNED MASKS

9 Reset mH and mF to binary form with pH

and pF according to mask magnitudes,
respectively;

10 Emb = [mH;mF].

are set to 1. Therefore, we can generate storage-
efficient task embeddings with the resulting model
structure.

3 COPATE: Connectivity Patterns as
Task Embedding

In this section, we first show how we generate
task embeddings with task-specific connectivity
patterns at hand (Sec 3.1). Next we provide em-
pirical evidence for the appropriateness of using
the obtained task embeddings to predict inter-task
transferability in Sec. 3.2.

3.1 Task Embedding Generating
Typically, the structure of a neural network can be
represented as a mask vector:

m = [m1,m2, ...,mN ], mi ∈ {0, 1}, (7)

where N denotes the number of elements (i.e., sub-
structures) that construct the network and the value
of mask mi indicates whether the i-th element is
pruned or not. In our framework, the elements are
self-attention heads and intermediate neurons, so
the structured subnetworks are represented by:

mH = [m0
H,m

1
H, ...,m

NL×Nh
H ], (8)

mF = [m0
F,m

1
F, ...,m

NL×Nf
F ], (9)

where NL denotes the number of transformer lay-
ers, Nh denotes the number of heads in each layer
and Nf is the number of intermediate neurons in
each layer. Hence, the resulting task embedding is:

Emb = [mH;mF]. (10)

We summarize the procedure of generating CO-
PATE in Algorithm 1. COPATE is quite storage-
efficient owing to its binary form. For example,
BERTBASE consumes only 4626 bytes to store3.

3.2 Positive Correlation between COPATE
Similarity and Task Transferability

We first calculate the similarity between COPATEs
of different tasks with Hamming Similarity, which
is defined as the number of positions at which the
corresponding symbols are the same:

Sim(V1, V2) =

∑n
i=1 σ(V1[i], V2[i])

n
, (11)

where σ(v1, v2) = 1 if v1 = v2 else 0. Since the
numbers of self-attention heads and intermediate
neurons differ significantly, we calculate the simi-
larity of the two types of elements separately, and
each contributes equally to the final similarity.

We then explore whether the similarity between
COPATEs is correlated with task transferability.
We calculate related transfer gain to measure the
impact of transfer learning. Specifically, given a
source task s and a target task t, if a baseline PLM
that is directly fine-tuned on the target dataset (with-
out any intermediate transferring) achieves a perfor-
mance of T (t), while a transferred model achieves
a performance of T (s, t), the relative transfer gain

can be expressed as: G(s, t) =
T (s, t)− T (t)

T (t)
.

Figure 2 shows how the relative transfer gain
changes as a function of the similarity between
the source and target task embeddings. Overall,
there is a significant positive correlation between
the similarity of task embeddings and task transfer-
ability on the majority of the target tasks (16 out of
19). It is possible for the correlation coefficient to
attain a high magnitude in many cases, such as on
the DROP task, where the correlation coefficient is
0.78 (p = 0.00013).

The exciting results suggest that COPATE is
promising in accurately predicting inter-task trans-
ferability. Concretely, for a novel target task, we

3BERTBASE has (12 × 12) heads and (3072 × 12) in-
termediate neurons, and requires 37008 bits = 4626 bytes to
store.
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Data Regime Method

CLASSIFICATION / REGRESSION (CR) QUESTION ANSWERING (QA)

in-class all-class in-class all-class

R1 ↓ R3 ↓ NDCG↑ R1 ↓ R3 ↓ NDCG↑ R1 ↓ R3 ↓ NDCG↑ R1 ↓ R3 ↓ NDCG↑

FULL

TEXTEMB 2.7 1.3 82.6 3.2 2.3 78.3 2.1 0.5 81.1 2.1 0.5 81.9

↓

TASKEMB 2.9 1.3 83.3 2.5 1.6 79.7 3.3 0.9 82.3 3.3 0.8 82.3

FULL

PTUNING 2.9 1.4 83.9 3.0 2.3 80.2 2.0 0.4 85.7 2.0 1.4 82.2
LORA 2.5 1.4 83.0 2.5 1.5 79.9 2.8 0.4 85.3 6.7 4.4 82.1

COPATE
+EARLY-EMB 2.5 1.3 83.9 2.5 1.6 80.3 1.1 0.4 84.5 1.3 0.9 82.4
+LTH EP=1 2.5 1.4 84.6 2.2 1.2 80.2 1.2 0.5 83.9 1.3 0.9 82.1
+LTH EP=5 2.3 1.2 84.9 2.3 1.3 81.6 2.0 0.4 84.9 2.2 0.8 83.0

FULL

TEXTEMB 16.4 3.7 60.5 10.7 7.6 52.0 5.8 2.7 68.6 5.5 1.9 73.5

↓

TASKEMB 15.7 2.9 66.1 8.9 6.5 52.9 5.7 2.3 73.5 5.7 2.3 75.6

LIMITED

PTUNING 15.2 5.7 66.5 12.4 9.8 52.1 5.6 1.3 80.9 4.9 1.2 78.2
LORA 14.9 3.5 66.3 9.0 6.6 53.8 4.7 0.7 79.8 4.4 1.1 78.7

COPATE
+EARLY-EMB 15.5 8.0 66.7 14.1 12.2 52.1 7.0 2.7 69.9 10.0 2.7 70.1
+LTH EP=1 14.2 2.1 67.3 12.8 10.6 52.2 5.2 2.4 72.7 6.3 2.2 72.1
+LTH EP=5 15.4 1.1 67.7 13.7 11.1 52.7 4.2 0.7 80.0 4.7 0.7 79.0

LIMITED

TEXTEMB 19.4 4.3 61.5 20.2 11.6 46.1 12.8 1.4 65.4 11.2 2.4 69.2

↓

TASKEMB 15.9 5.5 62.6 20.5 10.7 46.8 11.1 1.4 67.3 10.3 1.6 69.5

LIMITED

PTUNING 20.9 10.9 54.5 21.3 19.5 43.6 8.0 1.2 68.3 7.5 1.2 72.4
LORA 17.7 3.3 64.4 19.7 10.8 49.4 8.2 1.3 67.5 7.1 2.3 70.8

COPATE
+EARLY-EMB 19.3 7.7 63.4 21.6 12.2 46.7 8.3 1.9 69.5 10.1 2.0 69.9
+LTH EP=1 16.0 7.7 63.9 18.5 12.5 47.1 11.0 1.9 72.6 9.9 1.7 72.1
+LTH EP=5 15.9 2.7 66.0 17.8 7.9 52.5 5.6 0.7 77.8 7.1 0.7 77.0

Table 1: Evaluation results of intermediate task selection methods. In-class means that the candidate source tasks
have the same type as the target task, while all-class means the candidate source tasks come from all types of tasks.
EP means epochs to search for connectivity patterns. R1 denotes Regret@1 and R3 denotes Regret@3. For NDCG,
higher is better; for Regret, lower is better. The best performance in each group is highlighted in bold.

rank the candidate source tasks in descending order
by the COPATE similarity and select the top-ranked
task for intermediate fine-tuning.

4 Predicting Task Transferability

In this section, we perform thorough experiments to
empirically demonstrate the capability of COPATE
in predicting inter-task transferability.

4.1 Experimental Setup

Datasets We conduct experiments with 8 tasks of
text classification or regression (CR) and 11 tasks
of question answering (QA) following previous
works (Vu et al., 2020; Zhou et al., 2022). We list
the datasets in Appendix A.

Data Regimes For every (source, target) dataset
pair, we perform transfer experiments in three data
regimes to simulate real-world situations: FULL →
FULL , FULL → LIMITED , and LIMITED → LIMITED.

The FULL regime includes all training data, while
in LIMITED settings, we limit the amount of training
data by randomly selecting 1K training examples.

Baselines We compare our method with follow-
ing strong baselines: (1) TEXTEMB (Vu et al.,
2020) averages sentence representations by BERT
over the whole dataset. (2) TASKEMB (Achille
et al., 2019; Vu et al., 2020) embeds tasks based on
the Fisher information matrix which captures the
curvature of the loss surface. (3) PTUNING (Vu
et al., 2022) interprets the fine-tuned soft prompts
in each transformer layer as task embeddings. (4)
LORA (Zhou et al., 2022) injects trainable rank
decomposition matrics into layers of the model and
takes the fine-tuned matrics as task embeddings.

Evaluation Metrics We use the following met-
rics to evaluate the performance of methods:
(1) Normalized Discounted Cumulative Gain
(NDCG) (Järvelin and Kekäläinen, 2002) is a
broadly used information retrieval metric aiming
to evaluate the quality of a ranking with attached
relevances, and it penalizes top-ranked and bottom-
ranked mismatches with different weight4. (2) Re-
gret@k (Renggli et al., 2022) measures the relative
performance difference between the top k selected

4See Appendix D for more details about NDCG.
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Figure 3: Impact of sparsity on the performance of
COPATE. The results are from FULL → FULL regime.
See more results in Appendix H.

source tasks and the optimal source task5. In our
experiments, we include k = 1 and k = 3.

Implementation Details We perform transfer ex-
periments with all (source, target) combinations
and use BERTBASE (Devlin et al., 2019b) as the
backbone. All the intermediate tuning and target
tuning take 3 epochs. For FULL → FULL regime,
we use the results from (Vu et al., 2020). We imple-
ment all baseline methods according to their open-
source codes and the Transformers library (Wolf
et al., 2020). When searching for connectivity pat-
terns in our method, we jointly train the masks and
the BERT model for 5 epochs. When extracting
early-bird embeddings (i.e., EARLY-EMB), we set
the max searching epoch number to 1. We perform
5 restarts for stable results in LIMITED regimes. See
Appendix F for more details.

4.2 Experimental Results

Table 1 demonstrates the detailed evaluating results.
Overall, the proposed COPATE achieves superior
performance across task types, transfer scenarios
and data regimes, revealing that it is a robust and
accurate predictor of beneficial transfer.

FULL → FULL In this regime, our method attains
impressive performance compared to other base-
lines. For example, in the setting of in-class trans-
fer of Classification tasks, COPATE exceeds the
most competitive baseline by 1.0 in NDCG, and
the Regret@3 score achieves 1.2. It is also ob-
served that excessive training steps for identifying
task-specific connectivity patterns do not neces-
sarily result in large performance improvement in
this regime. The efficient EARLY-EMB performs
slightly worse than LTH EP=5, but still performs
comparably.

5See Appendix E for more results about Regret@k

FULL → LIMITED In this few-shot regime, our
method achieves comparable performance to SOTA
baselines. However, we find that in QA tasks, the
performance of COPATE degrades sharply as the
number of training steps utilized during the search
stage decreases. Compared to LTH EP=5, EARLY-
EMB’s NDCG on in-class and all-class decreased
by 10.1 and 8.9, respectively. This trend is also
observable in LIMITED → LIMITED regime. It is not
surprising as QA tasks are typically more complex
and the connectivity patterns require more training
steps to converge better. This suggests a trade-off
between performance and efficiency when facing
limited examples, and additional training resources
should be allocated to the search stage to extract
high-quality task embeddings.

LIMITED → LIMITED In this regime, COPATE
demonstrates exceptional performance and sur-
passes other existing baselines by a significant mar-
gin. For instance, our method outperforms the
strongest baseline by 9.5 in terms of NDCG on
in-class transfer of QA tasks, and 4.6 on all-class
transfer of QA tasks.

5 Discussion

5.1 Ablation Study

In this section, we perform ablation studies to show
the contribution of each component of our method.

Head v.s. FFN Previous experiments utilize both
masks of attention heads and intermediate neurons
to compute similarity. Here, the contribution of
each component is evaluated individually by sep-
arately using them to calculate similarity and sub-
sequently assessing the NDCG. Table 2 shows that
both components play essential roles in ranking
source tasks. We observe that on CR tasks, heads
outperform FFN by a large margin, revealing that
heads are more important in such tasks.

Impact of Sparsity Figure 3 illustrates the re-
lationship between the level of sparsity and the
performance of the obtained embeddings. The per-
formance of the model is significantly impacted
by variations in the pruning ratio of heads or FFN
when the target tasks are CR, while such varia-
tions have a limited effect when the target tasks are
QA, revealing that CR tasks are more sensitive to
embedding sparsity. After comprehensive consid-
eration, we believe that 1/3 and 0.4 are reasonable
sparsity for heads and FFN, respectively.
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Method CR QA

in-cls all-cls in-cls all-cls

EARLY-EMB 83.9 80.3 84.5 82.4
w/o Head 78.8 75.2 82.5 83.8
w/o FFN 83.3 80.0 85.0 81.1

Table 2: Ablation results when heads or intermediate
neurons are removed from similarity computing. The
results are from FULL → FULL and others are in Ap-
pendix G. In-cls and all-cls are short forms of in-class
and all-class, respectively; w/o means "without". Both
heads and FFN are important for ranking source tasks.

Method #Time #Storage

TEXTEMB 0.43× 3.1K
TASKEMB 4.22× 437.9M
PTUNING 14.43× 122.9K
LORA 16.83× 98.3K

COPATE
+EARLY-EMB 0.38× 4.6K
+LTH EP=1 1.03× 4.6K
+LTH EP=5 5.12× 4.6K

Table 3: Evaluation of time and storage consumptions.
We average the results on all datasets. The #Time is
quantified as a multiple of the duration of the traditional
fine-tuning for a single epoch. We get results from one
NVIDIA 3090 GPU for a fair comparison. The #Storage
is in bytes and each float number requires 4 bytes.

We include more ablation studies of prun-
ing strategies, early-stopping thresholds, and the
sparsity-inducing regularizer in Appendix I.

5.2 Computation and Storage Consumption

Table 3 lists the computational and storage cost of
each method. COPATE demonstrates efficiency in
both aspects thanks to proper designs ( i.e., early-
stopping, structured pruning and binary form of
embeddings), particularly EARLY-EMB, which ex-
hibits the fastest generation speed and only re-
quires 4.6K bytes to store. TASKEMB is also
computation-efficient, but it requires much more
storage than COPATE. While TEXTEMB is the only
method that is comparable to our approach in terms
of efficiency, it falls behind EARLY-EMB with an
average difference of 1.6 in NDCG.

Further Storage-efficiency with Task-specific
Layers Previous studies have established that in
BERT, layers are redundant (Dalvi et al., 2020),
and that shallower transformer layers contain more
general information while deeper layers contain
more task-specific information (Voita et al., 2019a;
Kim et al., 2020; Sajjad et al., 2020). These in-

Curriculum Type Similar-first Different-first Recursive-similar

Performance Gain +2.35 +2.43 +2.56

Table 4: Performance gain yielded by each curriculum.
The results are an average on all 19 tasks.

sights shed light on further reducing the storage
of COPATE by representing tasks using a select
number of layers, or even a single layer. Figure
4 illustrates the evaluated performance. We ob-
serve that: (1) Using a select number of layers does
not result in a significant decrease in performance,
and sometimes delivers better performance. (2)
Top-down strategy outperforms bottom-up strategy,
and consistently exceeds the full model in few-shot
settings, showing that deep layers can effectively
encode task-specific information, which is in line
with previous studies. As a result, if we adopt the
last six layers for embedding generation, 50% of
the storage can be saved, while little decrease in
performance is incurred. We also explore the poten-
tial of generating embeddings using a single layer,
while sacrificing little performance in Appendix J.

5.3 COPATE Captures Task Relationships

The heatmap in Figure 5 illustrates the hierarchical
clustering of the similarities between COPATEs.
The results indicate that the obtained embeddings
effectively capture various intuitive task relation-
ships. We observe that tasks with similar character-
istics congregate in clusters, such as QA tasks (Wik-
iHop, SQuAD-1, SQuAD-2, DuoRC-s, DuoRC-
p, NewsQA, and HotpotQA), similarity and para-
phrasing tasks (STS-B and MRPC), NLI tasks
(QNLI and MNLI), and single sentence classifica-
tion tasks (SST-2 and CoLA). In particular, a closer
examination of the clustering reveals that SQuAD-
1 and SQuAD-2 are closely grouped together, with
the latter being an extension of the former (Ra-
jpurkar et al., 2016, 2018). Furthermore, the tight
clustering of DuoRC-p and DuoRC-s is also note-
worthy, as they are variations of the same movie
plots with different lengths (Saha et al., 2018).

5.4 Intermediate-curriculum Transfer

Here, we extend the boundary of intermediate-task
transfer and examine the potential benefits of a spe-
cific intermediate task curriculum (i.e., a particular
order to arrange several tasks) to a target task us-
ing COPATE. Three distinct curriculum strategies
are considered: (1) Similar-first strategy which
selects the three tasks that are most similar to the
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Figure 4: The impact of using different transformer layers for embedding generation. The number of used layers is
shown on the x-axis; that number is either selected "bottom-up" or "top-down". More precisely, a bottom-up setting
selecting 4 layers means we use the transformer layers {0, 1, 2, 3}; a top-down setting selecting 4 layers means we
mask the transformer layers {8, 9, 10, 11}. The NDCG is an average of different transfer settings.
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Figure 5: A clustered heatmap of similarities between
the task embeddings of 19 NLP tasks. Our COPATE
capture task relationships: similar tasks cluster together.

target task and arranges the intermediate tasks in a
sequential order of similarity. (2) Different-first
strategy which also selects the three tasks that are
most similar to the target task, but arranges the in-
termediate tasks in an order of dissimilarity. (3)
Recursive-similar strategy which starts from the
target task, recursively finds the task that is most
similar to the current task three times, stacks them,
and then sequentially pops these found tasks for
intermediate fine-tuning. The results in Table 4
show that: (1) Each curriculum can boost the tar-
get task, validating the value of intermediate-task
transfer. (2) The recursive-similar strategy yields
the most performance gain, suggesting that making
each intermediate task learned better can deliver
more benefits to target tasks. (3) The different-first
strategy performs better than the similar-first, im-
plying that intermediate tasks that are similar to the

target task should be assigned later.

6 Related Work

Predicting Beneficial Intermediate Tasks It has
been shown that intermediate-task transfer can
deliver performance gains for many target tasks
(Phang et al., 2018; Wang et al., 2019a; Talmor
and Berant, 2019; Liu et al., 2019), but improper
intermediate tasks can result in negative transfer
results (Yogatama et al., 2019; Pruksachatkun et al.,
2020). Hence, researchers try to accurately identify
the most beneficial source task based on metadata
or extracted representations of tasks (Alonso and
Plank, 2017; Vu et al., 2020; Poth et al., 2021). Re-
cent works represent tasks with embeddings that
are generated from data representations (Vu et al.,
2020), model weight information (Achille et al.,
2019; Vu et al., 2020), and efficiently tuned pa-
rameters (Poth et al., 2021; Vu et al., 2022; Zhou
et al., 2022). Different from them, we start from a
model architecture perspective and use connectivity
patterns to represent tasks.

Techniques to Obtain Sparse Subnetworks Re-
searchers have explored a variety of techniques to
obtain sparse networks by removing sub-structures
like weights (Louizos et al., 2018; Frankle and
Carbin, 2019; Sanh et al., 2020; Xu et al., 2021),
channels (He et al., 2017; Luo et al., 2017; Liu
et al., 2017; Molchanov et al., 2019), attention
heads (Voita et al., 2019b; Michel et al., 2019; Li
et al., 2021) and layers (Fan et al., 2020; Sajjad
et al., 2020). These approaches first identify unim-
portant sub-structures and subsequently remove
them. With the increasing size of PLMs, sparse
subnetworks have become increasingly important
for efficient deployment and inference in NLP, lead-
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ing to a proliferation of related research (Prasanna
et al., 2020; Hou et al., 2020; Lagunas et al., 2021;
Xia et al., 2022). Our proposed method, which
uses connectivity patterns as task embeddings, is
orthogonal to these existing techniques.

7 Conclusion

In this work, we propose COPATE, a novel task em-
bedding that represents tasks with sparse connectiv-
ity patterns, and develop a method to get such em-
beddings. Comprehensive experiments show that
the proposed method outperforms other competi-
tive approaches in predicting inter-task transferabil-
ity while achieving efficiency in both computation
and storage. We hope that our work may motivate
future work in introducing connectivity patterns
as task embeddings to fields like meta learning,
multi-task learning, and model interpretability.

Limitations

While the proposed method has demonstrated su-
perior performance and high efficiency, there are
several limitations that warrant further investiga-
tion: (1) In few-shot settings where the number of
training examples is limited, the performance of
our method and other baselines drops significantly.
Future work should focus on uncovering essential
features of the task in few-shot scenarios and gener-
ating embeddings of higher quality. (2) The storage
consumption has been reduced to a small amount,
however, the number of neurons is still relatively
large compared to that of heads and therefore be-
comes a bottleneck for further decreasing storage
requirements. As discussed in Sec 5.2, one possi-
ble solution is reducing the number of layers used
to generate the embedding. Future work could also
include assigning intermediate neurons into groups
to make the embedding coarser in granularity, thus
reducing storage requirements.
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Appendices

A List of Datasets

See Table 5 for details of datasets.

Task |Train|
Text classification / Regression (CR)

MNLI (Williams et al., 2018) 393K
QQP (Iyer et al., 2017) 364K
QNLI (Wang et al., 2019b) 105K
SST-2 (Socher et al., 2013) 67K
CoLA (Warstadt et al., 2019) 8.5K
STS-B (Cer et al., 2017) 7K
MRPC (Dolan and Brockett, 2005) 3.7K
RTE (Dagan et al., 2005) 2.5K

Question Answering (QA)

SQuAD-2 (Rajpurkar et al., 2018) 162K
NewsQA (Trischler et al., 2017) 120K
HotpotQA (Yang et al., 2018) 113K
SQuAD-1 (Rajpurkar et al., 2016) 108K
DuoRC-p (Saha et al., 2018) 100K
DuoRC-s (Saha et al., 2018) 86K
DROP (Dua et al., 2019) 77K
WikiHop (Welbl et al., 2018) 51K
BoolQ (Clark et al., 2019) 16K
ComQA (Abujabal et al., 2019) 11K
CQ (Bao et al., 2016) 2K

Table 5: The datasets used in our experiments, grouped
by task class and sorted by training dataset size.

B More Results of Correlation between
COPATE Similarity and Inter-task
Transferability

See Figure 6 for more results of correlation be-
tween COPATE similarity and inter-task transfer-
ability. There is a significant positive correlation
between the similarity of task embeddings and task
transferability on most target tasks.

C More Details of Early-stopping
Strategy

We use Hamming distance to calculate the normal-
ized normalized mask distance. We stop the search-
ing stage when the normalized mask distances be-
tween consecutive 5 miniepochs are all smaller
than γ. Each miniepoch consists of 0.05 epochs.
We set γ to 0.05 in all settings. This is not the best
choice for all transfer scenarios, but we unify the

value of hyper-parameters for the sake of general-
ity.

D More Details of NDCG

The NDCG is defined using the Discounted Cumu-
lative Gain (DCG), which is a measure of the rele-
vance score for a list of items, each discounted by
its position in the ranking. The DCG of a ranking
R at a particular rank position p can be calculated
as:

DCGp(R) =

p∑

i=1

2reli − 1

log2(i+ 1)

In our experiments, R refers to a ranking of
source tasks where the relevance reli of the source
task with rank i is set to the averaged target perfor-
mance, i.e. reli ∈ [0, 100]. We set p = |S|, which
is the number of intermediate tasks.

The NDCG finally normalizes the DCG of the
ranking predicted by the task selection approach
(Rpred) by the golden ranking produced by the em-
pirical transfer results (Rtrue). An NDCG of 100%
indicates the best ranking.

NDCGp(R) =
DCGp(Rpred)

DCGp(Rtrue)

E More Details of Regret@k

Regret@k is defined as:

Regretk =

O(S,t)
︷ ︸︸ ︷
max
s∈S

E[T (s, t)]−
Mk(S,t)︷ ︸︸ ︷

max
ŝ∈Sk

E[T (ŝ, t)]

O(S, t) × 100%

where T (s, t) means the performance on target task
t when transferring from source task s. O(S, t) is
the expected target task performance of the opti-
mal selection. Mk(S, t) denotes the highest perfor-
mance on t among the k top-ranked source tasks of
the evaluated selection method. In our experiments,
we include k = 1 and k = 3.

F More Implementation Details

For classification/regression tasks, we set the max
sequence length to 128. For question answering
tasks, we set the max sequence length to 384. The
batch size for all experiments is set to 32. Our
experiments are performed on twelve NVIDIA
GeForce RTX 3090 GPUs. We perform 3 restarts
for our experiments and report the mean. For
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Figure 6: More results of correlation between COPATE similarity and inter-task transferability. Each point represents
a source task to a target task.
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Method CR QA

in-cls all-cls in-cls all-cls

EARLY-EMB 66.7 52.1 69.9 70.1
w/o Head 62.2 55.9 60.8 59.9
w/o FFN 66.7 48.4 64.7 61.5

Table 6: Ablation results when heads or intermediate
neurons are removed from similarity computing in FULL

→ LIMITED regime.

Method CR QA

in-cls all-cls in-cls all-cls

EARLY-EMB 63.4 46.7 69.5 69.9
w/o Head 57.8 48.2 68.5 67.5
w/o FFN 63.3 48.3 65.8 64.2

Table 7: Ablation results when heads or intermediate
neurons are removed from similarity computing in LIM-
ITED → LIMITED regime.

PTUNING, we adopt P-Tuning v2 in (Liu et al.,
2021), which implements a prompt tuning method
by introducing additional attention prefix matrices
to each transformer layer. We set the prefix length
to 20. For LORA, we set the r to 8 and α to 8. For
the searching stage of winning tickets, we set the
regularization strength λH and λF to 1e− 4.

G More Results of Head v.s. FFN

Table 6 and Table 7 show the results of Head v.s.
FFN in FULL → LIMITED and LIMITED → LIMITED ,
respectively. We can still find that both of them are
important for high-quality task embeddings.

H More Results of Impact of Sparsity

Figure 7 and Figure 8 show the results of impact
of sparsity in FULL → LIMITED and LIMITED →
LIMITED , respectively. We can still find that 1/3
and 0.4 are reasonable sparsity for heads and FFN,
respectively.

I More Ablation Studies

I.1 Impact of Pruning Strategies

In this section, we investigate the impact of dif-
ferent pruning strategies to the embedding perfor-
mance. Results in Table 8, Table 9 and Table 10
show that layerwise pruning and global pruning are
proper strategies for self-attention heads and FFN,
respectively.
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Figure 7: Impact of sparsity on the performance of CO-
PATE. The results are from FULL → LIMITED regime.
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Figure 8: Impact of sparsity on the performance of
COPATE. The results are from LIMITED → LIMITED

regime.
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Figure 9: Impact of different early-stopping thresholds
γ. Each line in the figure represents a data regime, and
we report the mean results of different transfer settings.
We can observe that the performance of embeddings
converges when γ reduces to near 0.05.

I.2 Impact of Different Early-Stopping
Thresholds

In this section, we investigate the impact of differ-
ent values of the early-stopping threshold γ. Re-
sults in Figure 9 show that the performance of CO-
PATE converges when γ reduces to near 0.05.

I.3 Importance of Sparsity-inducing
Regularizer

In this section, we investigate the importance of
the sparsity-inducing regularizer during the con-
nectivity pattern searching stage. Results in Table
11 show that the regularizer is indispensable for
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Strategy FFN-Global FFN-Layerwise

Head-Global 76.2 78.7
Head-Layerwise 82.8 81.8

Table 8: Impact of pruning strategies in FULL → FULL

regime. The results are NDCG scores averaged on dif-
ferent transfer settings.

Strategy FFN-Global FFN-Layerwise

Head-Global 55.4 58.7
Head-Layerwise 64.7 63.8

Table 9: Impact of pruning strategies in FULL → LIM-
ITED regime. The results are NDCG scores averaged on
different transfer settings.

Strategy FFN-Global FFN-Layerwise

Head-Global 61.1 61.3
Head-Layerwise 62.4 61.9

Table 10: Impact of pruning strategies in LIMITED →
LIMITED regime. The results are NDCG scores averaged
on different transfer settings.

Method FULL → FULL FULL → LIMITED LIMITED → LIMITED

EARLY-EMB 82.8 64.7 62.4
w/o Regularizer 72.3 58.2 52.5

Table 11: Ablation results if we remove the sparsity-
inducing regularizer during connectivity pattern search-
ing. We report the average results of different settings.

generating high-quality task embeddings.

J Further Storage-efficiency with Single
Layer

In this study, we examine the performance of CO-
PATE when utilizing a single layer to generate
task embeddings. The results, as illustrated in Fig-
ure 10, demonstrate the performance of each layer.
The findings indicate that a single layer can yield
performance comparable to that of the full model.
Specifically, when the fifth layer is used to generate
the embedding, there is a significant reduction of
91.7% in the storage space required for the embed-
ding, while the final NDCG score is only slightly
lower, at 0.67 on average, as compared to the full
model.
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Figure 10: The impact of using one single transformer layer for embedding generation. The NDCG is an average of
different transfer settings.
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