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Abstract

Information extraction (IE) systems aim to auto-
matically extract structured information, such
as named entities, relations between entities,
and events, from unstructured texts. While
most existing work addresses a particular IE
task, universally modeling various IE tasks with
one model has achieved great success recently.
Despite their success, they employ a one-stage
learning strategy, i.e., directly learning to ex-
tract the target structure given the input text,
which contradicts the human learning process.
In this paper, we propose a unified easy-to-
hard learning framework consisting of three
stages, i.e., the easy stage, the hard stage, and
the main stage, for IE by mimicking the hu-
man learning process. By breaking down the
learning process into multiple stages, our frame-
work facilitates the model to acquire general
IE task knowledge and improve its generaliza-
tion ability. Extensive experiments across four
IE tasks demonstrate the effectiveness of our
framework. We achieve new state-of-the-art re-
sults on 13 out of 17 datasets. Our code is avail-
able at https://github.com/DAMO-NLP-SG/
IE-E2H.

1 Introduction

Information extraction (IE) is a crucial task in nat-
ural language processing (NLP) that involves ex-
tracting structured knowledge from unstructured
text data (Bing et al., 2013, 2015), enabling various
applications such as information retrieval (Ruambo
and Nicholaus, 2019), knowledge graph construc-
tion (Oramas et al., 2016; Wang et al., 2019), and
question answering (Khot et al., 2017). Depending
on what kind of information is to be extracted, IE
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consists of a wide range of tasks, including named
entity recognition (NER) (Li et al., 2022a), joint
entity and relation extraction (RE) (Taillé et al.,
2020; Chia et al., 2022), event extraction (EE) (Li
et al., 2022b), and aspect-based sentiment analysis
(ABSA) (Zhang et al., 2022b).

Traditionally, IE has been approached with spe-
cialized models that are designed to handle specific
IE tasks. For example, NER is often formulated as
a sequence labeling (Ma and Hovy, 2016; Xu et al.,
2021b) or span-based classification (Wang et al.,
2020) problem. The more complex RE or EE task
is usually solved with pipeline approaches that split
the original task into several sequential subtasks
and design specific models for each subtask (Sub-
burathinam et al., 2019; Yang et al., 2019; Peng
et al., 2020). These models often require extensive
task-specific knowledge to design dedicated model
architectures and thus suffer from poor generaliza-
tion. Recently, motivated by pre-trained generative
models such as T5 (Raffel et al., 2020) that handle
multiple tasks with the unified text-to-text format,
there has been a shift towards the use of unified
models for IE as well, which can tackle all IE tasks
with a single model structure. For example, TANL
(Paolini et al., 2021) tackles various IE tasks with
a text-to-text generative model by framing them as
translation between augmented natural languages.
UIE (Lu et al., 2022) models heterogeneous IE
structures into a uniform representation via a struc-
tural extraction language.

Despite the success of existing unified models on
various IE tasks, they typically adopt a one-stage
learning paradigm, i.e., directly learning to predict
the target structure given the input text. In contrast,
humans often learn to tackle a task in an easy-to-
hard manner. They learn basic concepts or skills
before solving more complex problems and often
tackle harder examples to gain a better understand-
ing of the problem. Taking the RE task as an exam-
ple, it aims to extract relational triplets, where each
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triplet consists of a head entity, a relation, and a tail
entity. To tackle it, humans first learn some basic
skills, such as identifying entities, recognizing rela-
tions, and associating entities and relations, before
extracting complex relational triplets. This process
facilitates humans to learn meaningful substruc-
tures and the dependencies among them. Moreover,
in practical scenarios, humans usually encounter
harder cases, i.e., long input context of multiple
sentences containing more entities and relations.
By solving hard cases, humans improve their un-
derstanding of the task and problem-solving skills.
By comparison, models are only trained with the
provided training data. The gap between the model
and human learning strategies hinders IE models
from further development.

To bridge the gap, we propose an easy-to-hard
(E2H) learning framework for IE tasks in this paper.
E2H mimics the human learning procedure to learn
each IE task in stages, i.e., the easy stage, the hard
stage, and the main stage. The easy stage aims to
help the model acquire basic skills of the task, and
the hard stage aims to assist the model in handling
broad-range variations of the task via training the
model with diverse and harder data. Finally, the
main stage focuses on the main task at hand for
training. Thus an immediate question is how to
prepare the data with different levels of difficulty
for the easy and hard stages. It is labor-intensive
and challenging to construct such data manually. In
this work, we attempt only to leverage the existing
data of the main task for constructing the data.

Specifically, for the easy stage, we observe that
the target IE structure often has meaningful sub-
structures. Therefore, we identify several basic
skills for each task according to the substructures
of its target structure. Returning to the RE example,
the skills can be recognizing the entities, relations,
and dependencies between them. We can automati-
cally construct training data for learning these skills
by modifying the input prompt and decomposing
the target structure of the main task. For the hard
stage, we combine two training instances of the
main task to build a harder training instance by
concatenating their input texts to form the new text
and their targets to build the new target. The new
instance contains more entities, relations, and com-
plicated contexts, making it harder than the original
instances. Through these two novel construction
strategies, we can reduce much human effort to
obtain the data for different stages.

To summarize, our contributions are three-fold:
(1) We propose a unified easy-to-hard (E2H) learn-
ing framework for IE tasks by imitating the hu-
man learning process; (2) We develop two novel
strategies to build the easy and hard stages of our
framework without using any additional resources;
(3) We conduct comprehensive evaluations on 17
datasets across four IE tasks and achieve state-of-
the-art results on 13 datasets. Notably, our E2H
method consistently outperforms the one-stage
learning counterpart by introducing two extra learn-
ing stages with an average increase of 0.38, 2.96,
1.33, and 1.39 absolute points on the NER, RE, EE,
and ABSA tasks, respectively.

2 Task Definition

This paper investigates four common IE tasks, i.e.,
NER, RE, EE, and ABSA. In this section, we pro-
vide formal definitions of these tasks. Detailed
examples of these tasks are in Appendix A.3.

Named Entity Recognition (NER) Given an in-
put text T , the task is to identify and classify en-
tities in T into predefined categories, i.e., extract
{(ei, ci)}, where ei is the i-th entity, which is a
continuous text span in T , ci ∈ C is its category,
and C is the entity category set.

Relation Extraction (RE) Given an input text T ,
RE is to identify a set of (head entity, relation, tail
entity) triplets, i.e., extract {((ehi , chi ), ri, (eti, cti))},
where the superscripts h and t denote the head and
tail entities, ri ∈ R is the i-th relation, and R is
the relation set.

Event Extraction (EE) Given an input text
T , the task is to identify a set of events where
each event consists of an event trigger and a
set of corresponding arguments, i.e., extract
{((etrii , ctrii ), (earg1i , carg1i ), · · · , (eargmi , cargmi )

)},
where etrii is the i-th trigger, which is a continuous
text span in T , ctrii ∈ Cevent is its category, eargji

is the j-th argument of the i-th event, which is
also a continuous text span in T , cargji ∈ Cevent is
its category, and Cevent consists of all event and
argument categories.

Aspect-based Sentiment Analysis (ABSA)
There are four essential elements in ABSA, namely
aspect category c, aspect term a, opinion term
o, and sentiment polarity p. We focus on the
aspect sentiment triplet extraction (ASTE) task
(Peng et al., 2020) and the aspect sentiment quad
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[HE] {ES} {T}

[HE] [HR] [Ent] person: Pichai {RS} {T}

[HE] [HR] [Ent] organization: Google {RS} {T}

[HE] [HR] [Ent] location: California {RS} {T}

[HR] {RS} {T}

T5

Skill1

[HE] [HR] [Rel] work for {ES} {T}

[HE] [HR] [Rel] located in {ES} {T}

( (person: Pichai ) (organization: Google)
(location: California) )

( (person: Pichai (work for: Google)) )

( (organization: Google (located in: California)) )

( )

( (work for) (located in) )

( (person: Pichai (work for: Google)) )

( (organization: Google (located in: California)) )

{T} : Pichai is the CEO of Google which is located in California. {T1} : Bob is a Microsoft engineer.
[HE] : Entity Hint [HR] : Relation Hint [Ent] [Rel] : Special tokens to denote the entity category and relation, respectively
{ES} : Entity Schema, i.e., [Ent] person [Ent] organization [Ent] location [Ent] other
{RS} : Relation Schema, i.e., [Rel] work for [Rel] located in [Rel] live in

Skill2

Skill3

Skill4

( (person: Pichai (work for: Google))
(organization: Google (located in: California))
(location: California) (person: Bob (work for:

Microsoft) (organization: Microsoft) )
[HE] [HR] {ES} {RS} {T} {T1} T5

The easy stage

The hard stage

( (person: Pichai (work for: Google))
(organization: Google (located in: California))

(location: California) )
[HE] [HR] {ES} {RS} {T} T5

The main stage

RE NER
The easy stage

The hard stage

The main stage

EE
The easy stage

The hard stage

The main stage

ABSA
The easy stage

The hard stage

The main stage

Figure 1: Overview of E2H consisting of three stages, i.e., the easy stage, the hard stage, and the main stage. We
highlight Hint in red, Constraint in brown, and Schema in blue.

prediction (ASQP) task (Zhang et al., 2021a)
given their popularity. Given an input text T , the
ASTE task is to identify a set of {(ai, oi, pi)}
triplets, and the ASQP task is to identify a set of
{(ci, ai, oi, pi)} quadruplets, where ci ∈ Cabsa is
i-th aspect category, ai is i-th aspect term, oi is
i-th opinion term, both ai and oi are continuous
spans in T , pi ∈ {positive, negative, neutral} is
i-th sentiment polarity, and Cabsa is the aspect
category set.

3 Our E2H Framework

Our proposed easy-to-hard (E2H) framework con-
sists of three sequential stages: the easy stage, the
hard stage, and the main stage. In this section, we
first introduce our text-to-structure formulation for
facilitating three-stage learning in a unified frame-
work. Next, we will describe how to realize the
easy and hard stages. Finally, we will discuss the
main stage as well as the detailed training and in-
ference process of our framework.

3.1 Unified Text-to-Structure Formulation

Similar to UIE (Lu et al., 2022), we formulate NER,
RE, EE, and ABSA as text-to-structure generation
problems, which allows us to use a single model
to tackle multiple tasks. Given a text T and its cor-
responding prompt P , we aim to generate the tar-
get IE structure S with an encoder-decoder model
M : (P, T ) → S. To facilitate the learning of dif-

ferent stages, we design the prompt P containing
three types of information: Hint, Constraint,
and Schema. Hint guides the model on what
elements should be extracted, Constraint indi-
cates specific constraints for the task, and Schema
provides necessary information such as the possi-
ble relation set for the extraction. With these three
types of information, the prompt is able to connect
the learning process in different stages.

Taking the RE task as an example, as depicted in
Figure 1, Hint consists of one or both of an entity
hint and a relation hint. The entity hint, represented
by the special token [HE], guides the model to ex-
tract entities, and the relation hint, represented by
the special token [HR], guides the model to ex-
tract relations. The use of both hints guides the
model to extract both entity and relation informa-
tion, in the form of (head entity, relation, tail entity)
triplets. Constraint is a specific entity or rela-
tion, which limits the target structure to be related
to that entity or relation. Lastly, Schema contains
pre-defined entity categories or relations or both of
them, depending on the information that needs to
be extracted. It provides essential information for
identifying entities and relations in a text.

3.2 The Easy Stage
The goal of the easy stage is to enable the model to
learn basic skills that will aid in tackling the main
task. To achieve this, we identify several skills for
each task and automatically construct the training
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Task Basic Skills

NER
Skill1: T → a set of entity categories {ci}
Skill2: T and an entity category constraint c→ a set of entities of c {(ei, c)}

RE

Skill1: T → a set of entities {(ei, ci)}
Skill2: T and a head entity constraint (eh, ch) → a set of relational triplets {((eh, ch), ri, eti)}
Skill3: T → a set of relations {ri}
Skill4: T and a relation constraint r → a set of relational triplets {((ehi , chi ), r, eti)}

EE
Skill1: T → a set of event triggers {(etrii , ctrii )}
Skill2: T and a trigger constraint (etri, ctri) → the event

(
(etri, ctri), (earg1 , carg1), · · · , (eargm , cargm))

ASTE

Skill1: T → a set of aspect terms {ai} and a set of opinion terms {oi}
Skill2: T and an aspect term constraint a → a set of triplets {(a, oi, pi)}
Skill3: T → a set of sentiment polarities {pi}
Skill4: T and a sentiment polarity constraint p → a set of triplets {(ai, oi, p)}

ASQP

Skill1: T → a set of aspect categories {ci}
Skill2: T → a set of (aspect category, aspect term) tuples {(ci, ai)}
Skill3: T → a set of (aspect category, opinion term) tuples {(ci, oi)}
Skill4: T → a set of (aspect category, sentiment polarity) tuples {(ci, pi)}

Table 1: Basic skills for NER, RE, EE, ASTE, and ASQP. We omit Hint and Schema for simplicity. Detailed
examples are in Appendix A.3.

data for them based on the data of the main task.
Table 1 presents the basic skills of NER, RE, EE,
ASTE, and ASQP. We design each skill to be a sub-
task of the main task according to its target struc-
ture. These skills are more fundamental and well-
defined. Combining these skills gives the model a
whole picture of how to tackle the main task. For
example, the RE task has four skills. Skill1 and
Skill3 help the model recognize substructures of the
relational triplet, i.e., the entity and relation, respec-
tively, and Skill2 and Skill4 help the model learn
the dependencies between these substructures.

To construct the training data for each skill, we
modify the input and target of the main task’s train-
ing data. Specifically, the input text is the same for
the skills and the main task, but the prompt is dif-
ferent. As shown in Figure 1, for the RE task, there
is only [HE] in the hint of Skill1 as it only extracts
entities and only [HR] in the hint of Skill3 as it
only extracts relations. Both [HE] and [HR] are
in the hints of Skill2, Skill4, and the main task be-
cause they extract (head entity, relation, tail entity)
triplets. For Skill2 and Skill4, there is also a Con-
straint, i.e., a head entity or relation, which
requires their targets to be triplets related to a spe-
cific head entity or relation. The schema of the RE
task consists of both entity categories and relations.
For a specific skill of RE, the schema only contains
entity categories or relations. The target of each
skill is a part of the target of the RE task. For Skill1

and Skill3, which extract a substructure of the rela-
tional triplet, we use the substructure as the target.
For Skill2 and Skill4, we use the corresponding
subset of triplets of the RE task as the target.

3.3 The Hard Stage

The hard stage aims to construct training exam-
ples that are harder than the original training ex-
amples of the main task to train the model. Intu-
itively, the training instance is harder if the input
text contains more structural elements and more
complicated contexts. To this end, we combine two
training instances of the original task to construct
a harder instance. Formally, given two training
instances (P, T1, S1) and (P, T2, S2), we can con-
struct a harder training instance (P, T1◦T2, S1◦S2),
where P is the prompt, Ti is the i-th text, Si is the
i-th target structure, and ◦ denotes concatenation.
An example is shown in the hard stage part of the
RE task in Figure 1. The model has to process and
understand the combined information from both in-
stances, making it more challenging for the model
to correctly extract the target structure.

Let N denote the number of training examples
of the original task. For each training example, we
randomly sample M training examples whose tar-
get structures are not empty to construct M hard
instances. This results in a total of N ∗M hard in-
stances. This approach allows us to easily construct
a large amount of diverse hard training data.
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3.4 The Main Stage
After training the model in the easy and hard stages,
we train the model with the main task in this stage.

Training We adopt the pre-trained sequence-to-
sequence model T5 (Raffel et al., 2020) as the back-
bone of E2H. The model is trained with a maximum
likelihood objective. Given the training example
(P, T, S), the loss function Lθ is defined as

Lθ = −
n∑

i=1

logPθ (Si | S<i, P, T ) (1)

where θ is the model parameters, P is the prompt,
T is the text, S is the target structure, and n is the
length of S. We train the model in the easy, hard,
and main stages sequentially. For the easy stage, we
adopt the weights of pre-trained T5 to initialize the
model. For the hard and main stages, we initialize
the model with the weights of the model trained in
the previous stage.

Inference Once the training process is complete,
we use the model trained in the main stage to gener-
ate the target structure S for any given tuple of the
prompt and text (P, T ). Although our training pro-
cess has three stages, the inference is a one-stage
process. The computational load is the same as that
of the one-stage learning counterpart.

4 Experiments

4.1 Experimental Setup
Datasets We conduct experiments on 17 datasets
across four IE tasks, i.e., NER, RE, EE, and ABSA.
We evaluate the flat NER task with CoNLL03
(Tjong Kim Sang and De Meulder, 2003), and the
nested NER task with ACE04-Ent (Mitchell et al.,
2005) and ACE05-Ent (Walker et al., 2006). For
RE, we experiment on CoNLL04 (Roth and Yih,
2004), ACE05-Rel (Walker et al., 2006), and Sci-
ERC (Luan et al., 2018). Regarding to EE, we
use ACE05E, ACE05E+ (Walker et al., 2006), and
CASIE (Satyapanich et al., 2020). As for ABSA,
we consider the ASTE and ASQP tasks. For ASTE,
we adopt four popular datasets, including Rest14,
Laptop14, Rest15, and Rest16 provided by Xu
et al. (2020). For ASQP, we use R-ACOS and
L-ACOS provided by Cai et al. (2021), and Rest15
and Rest16 provided by Zhang et al. (2021a). These
ABSA datasets are derived from the datasets pro-
vided by the SemEval ABSA challenges (Pontiki
et al., 2014, 2015, 2016), except L-ACOS which is

collected from the Amazon Laptop domain. Statis-
tics of these datasets are provided in Appendix A.1.

Evaluation We use Micro-F1 as the primary eval-
uation metric. For each experimental result, we
report the average performance on three random
seeds. For NER, RE, EE, and ASTE, we follow Lu
et al. (2022) to use Entity F1, Relation Strict F1,
Event Trigger F1 and Argument F1, and Sentiment
Triplet F1 as the evaluation metrics and map the
generated string-level extraction results to offset-
level for evaluation. For ASQP, we follow Zhang
et al. (2021a) to use Sentiment Quad F1 to evaluate
the model. A sentiment quad is correct if and only
if the four elements are exactly the same as those
in the gold sentiment quad.

Baselines We divide our baselines into two cat-
egories: specialized models and unified models.
Specialized models are designed for a particular IE
task, while unified models are designed for general
IE. For specialized models, we use state-of-the-
art methods such as BARTNER (Yan et al., 2021)
and DeBias (Zhang et al., 2022a) for NER, UniRE
(Wang et al., 2021) and PURE (Zhong and Chen,
2021) for RE, Text2Event (Lu et al., 2021) and
DEGREE (Hsu et al., 2022) for EE, and PARA-
PHRASE (Zhang et al., 2021a) and Seq2Path (Mao
et al., 2022) for ABSA. For unified models, we use
TANL (Paolini et al., 2021), UIE (Lu et al., 2022),
and LasUIE (Fei et al., 2022) as baselines. To make
a fair comparison with one-stage learning methods,
we also build T5-base and T5-large baselines. We
set their inputs and outputs the same as those of
E2H and only train them in the main stage.

Implementation Details E2H has two model
sizes: E2H-base and E2H-large, which are initial-
ized with pre-trained T5-base and T5-large models
(Raffel et al., 2020), respectively. Other details are
reported in Appendix A.2.

4.2 Main Results

We compare E2H with state-of-the-art specialized
and unified models. Tables 2-4 report the experi-
mental results on 17 datasets across four IE tasks.
We have the following observations: (1) E2H is
an effective framework for various IE tasks. E2H-
large achieves new state-of-the-art results on 13 out
of 17 datasets. (2) The proposed easy-to-hard three-
stage learning method consistently outperforms the
one-stage learning counterpart. E2H performs bet-
ter than T5 on all the datasets for two model sizes,
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Models
NER RE

CoNLL03 ACE04-Ent ACE05-Ent Avg CoNLL04 ACE05-Rel SciERC Avg

Specialized Models
BARTNER (Yan et al., 2021) 93.24 86.84 84.74 88.27 - - - -
DeBias (Zhang et al., 2022a) 93.12 85.28 84.93 87.78 - - - -
UniRE (Wang et al., 2021) - - - - - 64.30 36.90 -
PURE (Zhong and Chen, 2021) - - - - - 64.80 36.80 -

Unified Models
TANL (Paolini et al., 2021) 91.70 - 84.90 - 71.40 63.70 - -
UIE∗ (Lu et al., 2022) 92.99 86.89 85.78 88.55 75.00 66.06 36.53 59.20
LasUIE∗ (Fei et al., 2022) 93.20 86.80 86.00 88.67 75.30 66.40 - -
T5-base (Raffel et al., 2020) 91.72 85.60 84.16 87.16 69.58 62.91 33.13 55.20
T5-large (Raffel et al., 2020) 92.05 86.78 85.76 88.20 71.72 64.49 35.44 57.21
E2H-base 91.92 86.24 84.83 87.66 72.23 65.44 35.06 57.58
E2H-large 92.43 87.06 86.25 88.58 75.31 66.21 39.00 60.17

Table 2: Experimental results on the NER and RE tasks. The best results are in bold and the second-best results are
underlined. Models marked with ∗ conduct large-scale continued pre-training with external resources. Except for
T5-base and T5-large, the results of baselines are taken from their original papers.

Models
ACE05-E ACE05-E+ CASIE Avg

Trig F1 Argu F1 Trig F1 Argu F1 Trig F1 Argu F1 Trig F1 Argu F1

Specialized Models
Text2Event (Lu et al., 2021) 71.90 53.80 71.80 54.40 - - - -
DEGREE (Hsu et al., 2022) 73.30 55.80 70.90 56.30 - - - -

Unified Models
TANL (Paolini et al., 2021) 68.40 47.60 - - - - - -
UIE∗ (Lu et al., 2022) - - 73.36 54.79 69.33 61.30 - -
T5-base (Raffel et al., 2020) 68.19 49.68 69.68 50.65 68.40 60.19 68.76 53.51
T5-large (Raffel et al., 2020) 70.40 52.42 71.45 54.08 69.29 60.98 70.38 55.83
E2H-base 70.12 50.98 69.99 52.85 68.45 60.40 69.52 54.74
E2H-large 72.19 53.85 73.50 55.67 69.58 61.96 71.76 57.16

Table 3: Experimental results on the EE task. The best results are in bold and the second-best results are underlined.
Models marked with ∗ conduct large-scale continued pre-training with external resources. Except for T5-base and
T5-large, the results of baselines are taken from their original papers.

Models
ASTE ASQP

Rest14 Laptop14 Rest15 Rest16 Avg R-ACOS L-ACOS Rest15 Rest16 Avg

Specialized Models
PARAPHRASE (Zhang et al., 2021a) 72.03 61.13 62.56 71.70 66.86 - - 46.93 57.93 -
Seq2Path (Mao et al., 2022) 75.52 64.82 65.88 72.87 69.77 58.41 42.97 - - -

Unified Models
UIE∗ (Lu et al., 2022) 74.52 63.88 67.15 75.07 70.16 - - - - -
T5-base (Raffel et al., 2020) 72.11 63.06 66.27 72.24 68.42 59.26 43.12 48.24 58.92 52.39
T5-large (Raffel et al., 2020) 73.48 63.62 67.08 74.85 69.76 61.24 44.37 51.76 60.93 54.58
E2H-base 75.40 65.78 68.58 73.83 70.90 60.66 43.51 49.45 59.55 53.29
E2H-large 75.92 65.98 68.80 75.46 71.54 63.50 44.51 52.39 61.86 55.57

Table 4: Experimental results on two ABSA tasks, including the ASTE task and the ASQP task. The best results are
in bold and the second-best results are underlined. Models marked with ∗ conduct large-scale continued pre-training
with external resources. Except for T5-base and T5-large, the results of baselines are taken from their original
papers.

11918



1% 5% 10%

50

60

70

80

Data Ratio

E2H-base

T5-base
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(d) ABSA results on Rest14

Figure 2: Results of E2H-base and T5-base in low-
resource scenarios.

and E2H-large obtains an average improvement
of 0.38, 2.96, 1.33, and 1.39 absolute points over
T5-large on the NER, RE, EE, and ABSA tasks,
respectively. This demonstrates the strong general-
ization ability of our framework. (3) Without using
any external resources, our method exhibits com-
parable or stronger performance than models with
large-scale continued pre-training. Compared with
UIE (Lu et al., 2022), which is pre-trained with
large-scale structured, unstructured, and parallel
data, E2H-large achieves better performance on the
RE, EE, and ASTE tasks and obtains comparable
results on the NER task. (4) Easy-to-hard learning
brings more benefits to complex tasks than simple
tasks. Specifically, compared with the improve-
ment on the NER task, which only extracts enti-
ties, the improvements of E2H over T5 are more
significant on the other three tasks, which extract
tuples with multiple elements. This shows that our
method can help the model effectively capture the
structural dependency of complex structures.

4.3 Low-Resource Results

Our experiments in low-resource scenarios show
that E2H is particularly effective in situations
where there is limited training data. As shown
in Figure 2, by training on a fraction (1%, 5%,
and 10%) of the original data1, we observe that

1We repeat each experiment three times with different
samples and report their averaged results.

Models NER RE EE ABSA
ACE04-Ent ACE05-Rel ACE05-E Rest14

E2H-base 86.24 65.44 50.98 75.40
w/o Skill1 85.91 64.28 50.85 74.33
w/o Skill2 86.13 64.05 49.89 74.98
w/o Skill3 - 63.74 - 75.14
w/o Skill4 - 64.00 - 74.88

Table 5: Ablation results of E2H-base regarding differ-
ent skills in the easy stage.

E2H-base significantly outperforms T5-base on all
datasets. For example, when there is only 5% of the
training data, E2H-base obtains an average of 7.1,
12.0, 6.4, and 8.2 absolute points of improvement
over T5-base on ACE04-Ent, ACE05-Rel, ACE05-
E, and Rest14 respectively. This highlights the ef-
fectiveness of our easy-to-hard learning framework
when data is scarce. On one hand, the easy stage
facilitates the model to identify the substructures
of the target structure and capture the dependen-
cies among them, which are difficult when there
is limited data. On the other hand, the hard stage
provides diverse and harder data to help the model
tackle broad-range variations of the task, which is
especially important in low-source scenarios.

5 More Analysis

Analysis on different learning strategies In the
main result table, we report the results of E2H
trained with the easy→hard→main strategy, i.e.,
training the model in the easy, hard, and main
stages sequentially. In this section, we investi-
gate alternative learning strategies. Table 6 reports
the results of T5-base models trained with differ-
ent learning strategies on four datasets across four
tasks. We have the following observations: (1) The
easy→hard→main strategy is the best among the
seven concerned strategies. It performs better than
other strategies on all datasets. (2) Easy-to-hard
multi-stage learning outperforms multi-task learn-
ing (i.e., easy+main+hard). When the easy, main,
and hard parts of the training data are used, the
easy→hard→main and easy→main→hard strate-
gies show superiority over the easy+main+hard
strategy on all datasets. This indicates that easy-to-
hard multi-stage learning is essential to the model’s
performance. (3) Each stage is critical to our E2H
framework. Removing any of the stages will reduce
the performance of E2H. (4) In general, three-stage
learning is better than two-stage learning, and they
are better than one-stage learning.
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Learning Strategy Type NER RE EE ABSA
Avg

ACE04-Ent ACE05-Rel ACE05-E Rest14

easy→hard→main three-stage 86.24 65.44 50.98 75.40 69.52
easy→main→hard three-stage 86.23 65.40 49.76 74.45 68.96
easy+main+hard multi-task 86.10 64.46 49.16 73.94 68.42
easy→main two-stage 85.93 63.85 50.31 74.52 68.65
hard→main two-stage 85.99 64.41 49.26 74.67 68.58
easy→hard two-stage 86.18 65.35 46.69 75.34 68.39
main one-stage 85.60 62.91 49.68 72.11 67.58

Table 6: Experimental results of T5-base models trained with different learning strategies. The easy+main+hard
strategy represents that the model is trained with the easy, main, and hard parts in a multi-task learning manner. The
arrow → indicates the order between different stages.

Models CoNLL03→ACE04-Ent ACE04-Ent→CoNLL03

T5-base 19.54 17.45
E2H-base 19.71 30.08

Models Rest16→Laptop14 Laptop14→Rest16

T5-base 42.37 60.50
E2H-base 44.86 62.32

Table 7: Cross-domain generalization performance of
E2H-base and T5-base.

Is each skill necessary in the easy stage? To
quantify the contribution of each skill, we exam-
ine the performance of E2H-base after removing a
basic skill for training in the easy stage. Ablation
results on four datasets across four tasks are shown
in Table 5. Removing any skill degrades the per-
formance of E2H on the main task, indicating that
recognizing substructures and the dependency be-
tween them is crucial to the model’s performance.

Does easy-to-hard learning improve the model’s
cross-domain generalization ability? To an-
swer this question, we compare the performance
of the E2H-base model and the T5-base model
trained on a dataset on another dataset in a dif-
ferent domain of the same task. Table 7 re-
ports the results of the cross-domain generalization
performance of different models on two dataset
pairs: CoNLL03↔ACE04-Ent of the NER task and
Rest16↔Laptop14 of the ASTE task. E2H-base
performs better than T5-base in all scenarios. This
indicates that easy-to-hard learning can enhance
the model’s cross-domain generalization ability.

6 Related Work

IE is a long-standing research area in natural lan-
guage processing. Over the years, the paradigm

for IE has undergone several transitions. Early
approaches to IE focus on sequence labeling tech-
niques (McCallum and Li, 2003; Ma and Hovy,
2016; Zhang et al., 2018; Li et al., 2019; Zhang
et al., 2021b), in which each word in a text is as-
signed a label indicating its role in the extraction
task. Span-based approaches (Luan et al., 2019;
Wang et al., 2020; Zhao et al., 2020; Xu et al.,
2021a; Zhou et al., 2022, 2023), which involve
identifying spans in the text that correspond to
the desired information, are later introduced for
IE. MRC-based methods (Du and Cardie, 2020;
Li et al., 2020; Mao et al., 2021; Xu et al., 2023)
that frame the extraction task as a reading com-
prehension problem and generation-based methods
(Yan et al., 2021; Lu et al., 2021; Zhang et al.,
2021c) that generate the extracted information di-
rectly from the text have gained popularity in recent
years for IE. They have been shown to be more ef-
fective and flexible. Most of these methods target
a specific IE task. There have been some efforts
to develop unified IE methods (Paolini et al., 2021;
Lu et al., 2022; Fei et al., 2022), which can unify
various IE tasks with one framework. Our E2H
framework, a unified IE framework, introduces a
novel easy-to-hard learning paradigm for IE to re-
duce the gap between model and human learning.

From the perspective of improving the learning
process, E2H shares similar spirits with transfer
learning (Pan and Yang, 2010), which uses the
knowledge gained from solving one task to help
solve another related task. By comparison, E2H
learns basic skills specifically designed to assist
with the target task. E2H is also related to cur-
riculum learning (Bengio et al., 2009; Wang et al.,
2022) in its fundamental motivation of learning
from easy to hard. Curriculum learning, inspired
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by the human learning process, presents examples
starting from the easiest samples, then gradually
introducing more complex ones. However, curricu-
lum learning involves the intricate task of ordering
instances based on their difficulty. This requires
a reliable difficulty criterion or a ranking system,
which can be challenging to define and often neces-
sitates substantial human effort. In contrast, E2H
emphasizes on mastering certain fundamental skills
prior to tackling more intricate tasks, eliminating
the requirement for a difficulty criterion. This ap-
proach can be particularly beneficial in scenarios
where the target task requires a distinct set of skills,
or when the learning setting does not naturally pro-
vide a straightforward measure of difficulty.

7 Conclusion

This paper proposes an easy-to-hard learning frame-
work consisting of the easy stage, the hard stage,
and the main stage for IE. Two novel strategies are
proposed to build the easy and hard parts of the
framework to enable the learning process. Experi-
mental results in both full and low-resource scenar-
ios demonstrate the effectiveness of our framework
and its superiority over one-stage learning methods.

Limitations

While the results have shown the effectiveness of
our framework in IE without using any additional
resources, we did not explore the potential enhance-
ment by utilizing existing resources in the easy-to-
hard learning process. On one hand, we can build
the easy stage with the help of existing data of sim-
pler tasks. On the other hand, the data of harder
tasks can be used for the hard stage. To enhance
the E2H framework via effectively using existing
resources is an interesting and promising direction.
Another limitation is that we did not extensively
explore the possible skill sets for each task. Explor-
ing more approaches to obtain the skill sets is also
open for future research. We plan to investigate
these possibilities in our future work.
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A Appendix

A.1 Statistics of Datasets

Statistics of datasets are reported in Table 8.

#Train #Val #Test

CoNLL03 14,041 3,250 3,453
ACE04-Ent 6,202 745 812
ACE05-Ent 7,299 971 1,060
CoNLL04 922 231 288

ACE05-Rel 10,051 2,420 2,050
SciERC 1,861 275 551

ACE05-E 17,172 923 832
ACE05-E+ 19,216 901 676

CASIE 11,189 1,778 3,208
Rest14 1,266 310 492

Laptop14 906 219 328
Rest15-ASTE 605 148 322
Rest16-ASTE 857 210 326

R-ACOS 1,530 171 583
L-ACOS 2,934 326 816

Rest15-ASQP 834 209 537
Rest16-ASQP 1,264 316 544

Table 8: Statistics of datasets.

A.2 Implementation Details

We set the maximum input length to 384 and the
maximum target length to 256. Following the prac-
tices of Lu et al. (2022), we use a batch size of 64
for E2H-base and 32 for E2H-large. The learning
rate is chosen from {1e-4, 3e-4} for E2H-base and
{5e-5, 1e-4} for E2H-large, and we use the AdamW
optimizer (Loshchilov and Hutter, 2019) with lin-
ear learning rate decay. The number of training
epochs for the easy, hard, and main stages are set
to [15, 30, 30] or [25, 50, 50], with the easy stage
having fewer epochs as it typically has more data.
For the hard stage, we choose M from {1, 2} for
the datasets of the NER, RE, and EE tasks and from
{1, 2, 3} for the datasets of the ABSA task. The
parameters are chosen based on the model’s per-
formance on the development set. Generally, for
large datasets such as ACE05-E, a smaller value
of M like 1 is more appropriate, while for smaller
datasets such as Laptop14, a larger value of M such
as 3 is preferred. All experiments are conducted on
NVIDIA Tesla A100.

A.3 Examples of IE tasks
Detailed examples of different IE tasks are shown
in Tables 9-13. We use the structural extraction
language proposed by Lu et al. (2022) to encode
the target structure.
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Task Input Target

NER [HEC] [HES] [Ent] location [Ent] miscellaneous [Ent]
organization [Ent] person [Text] Only France and Britain
backed Fischler’s proposal.

((location: France) (loca-
tion: Britain) (person: Fis-
chler))

Skill1 [HEC] [Ent] location [Ent] miscellaneous [Ent] organiza-
tion [Ent] person [Text] Only France and Britain backed
Fischler’s proposal.

((location) (person))

Skill2 [HEC] [HES] [Ent] location [Text] Only France and
Britain backed Fischler’s proposal.

((location: France) (loca-
tion: Britain))

Table 9: Detailed Examples for NER. We provide an instance for the main task and each skill. We highlight Hint
in red, Constraint in brown, and Schema in blue. [HEC] and [HES] are the entity category hint and entity span
hint, respectively. [Ent] is a special token to denote the entity category.

Task Input Target

RE [HE] [HR] [Ent] generic [Ent] material [Ent] method
[Ent] metric [Ent] other scientific term [Ent] task [Rel]
compare [Rel] conjunction [Rel] evaluate for [Rel] fea-
ture of [Rel] hyponym of [Rel] part of [Rel] used for
[Text] The demonstrator embodies an interesting combi-
nation of hand-built, symbolic resources and stochastic
processes.

((task: demonstrator)
(material: hand-built,
symbolic resources
(part of: demonstra-
tor)(conjunction: stochastic
processes)) (method: stochas-
tic processes (part
of: demonstrator)))

Skill1 [HE] [Ent] generic [Ent] material [Ent] method [Ent]
metric [Ent] other scientific term [Ent] task [Text] The
demonstrator embodies an interesting combination of
hand-built, symbolic resources and stochastic processes.

((task: demonstrator) (mate-
rial: hand-built, symbolic
resources) (method: stochas-
tic processes))

Skill2 [HE] [HR] [Ent] method: stochastic processes [Rel] com-
pare [Rel] conjunction [Rel] evaluate for [Rel] feature
of [Rel] hyponym of [Rel] part of [Rel] used for [Text]
The demonstrator embodies an interesting combination of
hand-built, symbolic resources and stochastic processes.

((method: stochastic pro-
cesses (part of: demonstra-
tor)))

Skill3 [HR] [Rel] compare [Rel] conjunction [Rel] evaluate for
[Rel] feature of [Rel] hyponym of [Rel] part of [Rel] used
for [Text] The demonstrator embodies an interesting com-
bination of hand-built, symbolic resources and stochastic
processes.

((part of) (conjunction))

Skill4 [HE] [HR] [Rel] conjunction [Ent] generic [Ent] mate-
rial [Ent] method [Ent] metric [Ent] other scientific term
[Ent] task [Text] The demonstrator embodies an interest-
ing combination of hand-built, symbolic resources and
stochastic processes.

((material: hand-built, sym-
bolic resources (conjunc-
tion: stochastic processes)))

Table 10: Detailed Examples for RE. We provide an instance for the main task and each skill. We highlight Hint in
red, Constraint in brown, and Schema in blue. [HE] and [HR] are the entity hint and relation hint, respectively.
[Ent] and [Rel] are special tokens to denote the entity category and relation, respectively.
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Task Input Target

EE [HT] [HA] [Tri] acquit [Tri] appeal [Tri] arrest jail [Tri] attack [Tri] born
[Tri] charge indict [Tri] convict [Tri] declare bankruptcy [Tri] demonstrate
[Tri] die [Tri] divorce [Tri] elect [Tri] end organization [Tri] end position
[Tri] execute [Tri] extradite [Tri] fine [Tri] injure [Tri] marry [Tri] meet
[Tri] merge organization [Tri] nominate [Tri] pardon [Tri] phone write
[Tri] release parole [Tri] sentence [Tri] start organization [Tri] start posi-
tion [Tri] sue [Tri] transfer money [Tri] transfer ownership [Tri] transport
[Tri] trial hearing [Arg] adjudicator [Arg] agent [Arg] artifact [Arg] at-
tacker [Arg] beneficiary [Arg] buyer [Arg] defendant [Arg] destination
[Arg] entity [Arg] giver [Arg] instrument [Arg] organization [Arg] origin
[Arg] person [Arg] place [Arg] plaintiff [Arg] prosecutor [Arg] recipient
[Arg] seller [Arg] target [Arg] vehicle [Arg] victim [Text] It was talking
something about the war in Iraq. I guess it’s a good thing about the elec-
tions that are going on.

((attack: war
(place: Iraq))
(elect: elections
(place: Iraq)))

Skill1 [HT] [Tri] acquit [Tri] appeal [Tri] arrest jail [Tri] attack [Tri] born [Tri]
charge indict [Tri] convict [Tri] declare bankruptcy [Tri] demonstrate [Tri]
die [Tri] divorce [Tri] elect [Tri] end organization [Tri] end position [Tri]
execute [Tri] extradite [Tri] fine [Tri] injure [Tri] marry [Tri] meet [Tri]
merge organization [Tri] nominate [Tri] pardon [Tri] phone write [Tri]
release parole [Tri] sentence [Tri] start organization [Tri] start position
[Tri] sue [Tri] transfer money [Tri] transfer ownership [Tri] transport [Tri]
trial hearing [Text] It was talking something about the war in Iraq. I guess
it’s a good thing about the elections that are going on.

((attack: war)
(elect: elec-
tions))

Skill2 [HT] [HA] [Tri] attack: war [Arg] adjudicator [Arg] agent [Arg] artifact
[Arg] attacker [Arg] beneficiary [Arg] buyer [Arg] defendant [Arg] desti-
nation [Arg] entity [Arg] giver [Arg] instrument [Arg] organization [Arg]
origin [Arg] person [Arg] place [Arg] plaintiff [Arg] prosecutor [Arg]
recipient [Arg] seller [Arg] target [Arg] vehicle [Arg] victim [Text] It was
talking something about the war in Iraq. I guess it’s a good thing about
the elections that are going on.

((attack: war
(place: Iraq)))

Table 11: Detailed Examples for EE. We provide an instance for the main task and each skill. We highlight Hint in
red, Constraint in brown, and Schema in blue. [HT] and [HA] are the event trigger hint and event argument
hint, respectively. [Tri] and [Arg] are special tokens to denote the event category and argument category, respectively.
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Task Input Target

ASTE [HE] [HR] [Ent] aspect [Ent] opinion [Rel] nega-
tive [Rel] neutral [Rel] positive [Text] Great food
but the service was dreadful!

((opinion: Great) (aspect: food
(positive: Great)) (aspect: ser-
vice (negative: dreadful))
(opinion: dreadful))

Skill1 [HE] [Ent] aspect [Ent] opinion [Text] Great food
but the service was dreadful!

((opinion: Great) (aspect: food)
(aspect: service) (opin-
ion: dreadful))

Skill2 [HE] [HR] [Ent] aspect: sevice [Rel] negative
[Rel] neutral [Rel] positive [Text] Great food but
the service was dreadful!

((aspect: service (nega-
tive: dreadful)))

Skill3 [HR] [Rel] negative [Rel] neutral [Rel] positive
[Text] Great food but the service was dreadful!

((positive) (negative))

Skill4 [HE] [HR] [Rel] positive [Ent] aspect [Ent] opin-
ion [Text] Great food but the service was dreadful!

((aspect: food (posi-
tive: Great)))

Table 12: Detailed Examples for ASTE. We provide an instance for the main task and each skill. We highlight
Hint in red, Constraint in brown, and Schema in blue. Following Lu et al. (2022), we formulate ASTE as the
RE task, where aspect terms and opinion terms are entities, and sentiment polarities are relations. [HE] and [HR]
are the entity hint and relation hint, respectively. [Ent] and [Rel] are special tokens to denote the entity category and
relation, respectively.

Task Input Target

ASQP [HC] [HA] [Cat] category [Arg] aspect [Arg] opin-
ion [Arg] polarity [Text] The pizza is delicious.

((category: food quality (as-
pect: pizza) (opinion: deli-
cious) (polarity: positive))

Skill1 [HC] [Cat] category [Text] The pizza is delicious. ((category: food quality))

Skill2 [HC] [HA] [Cat] category [Arg] aspect [Text] The
pizza is delicious.

((category: food quality (as-
pect: pizza))

Skill3 [HC] [HA] [Cat] category [Arg] opinion [Text]
The pizza is delicious.

((category: food quality (opin-
ion: delicious))

Skill4 [HC] [HA] [Cat] category [Arg] polarity [Text]
The pizza is delicious.

((category: food quality (polar-
ity: positive))

Table 13: Detailed Examples for ASQP. We provide an instance for the main task and each skill. We highlight
Hint in red, Constraint in brown, and Schema in blue. We treat the aspect term, opinion term, and sentiment
polarity as the arguments of the aspect category. [HC] and [HA] are the aspect category hint and argument hint,
respectively. [Cat] and [Arg] are special tokens to denote the aspect category and its arguments, respectively.
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