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Abstract

Multilingual vision-language (V&L) pre-
training has achieved remarkable progress in
learning universal representations across differ-
ent modalities and languages. In spite of re-
cent success, there still remain challenges lim-
iting further improvements of V&L pre-trained
models in multilingual settings. Particularly,
current V&L pre-training methods rely heav-
ily on strictly-aligned multilingual image-text
pairs generated from English-centric datasets
through machine translation. However, the
cost of collecting and translating such strictly-
aligned datasets is usually unbearable. In this
paper, we propose Regularized Contrastive
Cross-lingual Cross-modal (RC3) pre-training,
which further exploits more abundant weakly-
aligned multilingual image-text pairs. Specif-
ically, we design a regularized cross-lingual
visio-textual contrastive learning objective that
constrains the representation proximity of
weakly-aligned visio-textual inputs according
to textual relevance. Besides, existing V&L
pre-training approaches mainly deal with vi-
sual inputs by either region-of-interest (ROI)
features or patch embeddings. We flexibly inte-
grate the two forms of visual features into our
model for pre-training and downstream multi-
modal tasks. Extensive experiments on 5 down-
stream multi-modal tasks across 6 languages
demonstrate the effectiveness of our proposed
method over competitive contrast models with
stronger zero-shot capability.

1 Introduction

Vision-language (V&L) pre-training aims to learn
universal representations that can express visual
and textual semantics informatively. It exploits
a large amount of multi-modal data (e.g. image-
text pairs) to make the model capable of handling
cross-modal data. Till now, the advents of various
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En: Discovery Hut was built by Robert Falcon Scott and is located 
at Hut Point on Ross Island.

Ja: !"#$%&'()*+,-./012$3425
(En: Mt. Terror is a mountain located in the eastern part of Ross Island.)

En: A man driving a car through the mountains.

De: Ein Mann, der ein Auto durch die Berge fährt. 

Translate: parallel.

Strictly-aligned: 

Weakly-aligned:

Collect from web: maybe relevant but not necessarily parallel.

Figure 1: Comparison between “strictly-aligned” and
“weakly-aligned” image-text pairs in different lan-
guages.

V&L pre-trained models have achieved remarkable
results on many downstream multi-modal tasks.

Recently, V&L pre-trained models have devel-
oped from focusing on English-dominant tasks (Su
et al., 2020; Chen et al., 2020; Cho et al., 2021) into
multilingual scenarios (Ni et al., 2021; Liu et al.,
2021a; Zhou et al., 2021). To this end, researchers
construct multi-modal data in multiple languages
and design various cross-lingual pre-training ob-
jectives. Such advances enable multi-modal mod-
elling to leverage more diverse language resources.
Meanwhile, these multilingual V&L pre-trained
models also show their advantages over previous
English-centric models in terms of generalization
abilities across languages, especially in zero-shot
settings.

Despite the promising performances of current
multilingual V&L models, one of the major chal-
lenges is that they usually require massive strictly-
aligned multilingual image-text pairs. The preva-
lent practice is to translate English-only multi-
modal datasets into pseudo-parallel multilingual
versions via machine translation (MT) (Ni et al.,
2021; Zhou et al., 2021). However, the cost of
collecting and translating such large-scale multi-
modal datasets is often unbearable. To deal with
this issue, we turn our eyes on those more easily
available weakly-aligned multilingual multi-modal
data, such as WIT (Srinivasan et al., 2021). As
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shown in Figure 1, the so-called “weakly-aligned”
means that the multilingual textual data of the same
image are not strictly parallel.

In this paper, we propose a Regularized
Contrastive Cross-lingual Cross-modal (RC3) pre-
training framework, which can make better use
of relatively abundant weakly-aligned multilin-
gual image-text pairs. Specifically, we adopt an
encoder-decoder architecture so that our model
can be more adaptive to both discriminative and
generative downstream tasks. Besides the widely
used image-text matching (ITM) task, we fur-
ther introduce masked conditional language mod-
elling (MCLM) and cross-lingual textual con-
trastive learning (XTCL) along with our proposed
regularized cross-lingual visio-textual contrastive
learning (R-XVtCL) during pre-training. Particu-
larly, while R-XVtCL encourages the visio-textual
representations of two weakly-aligned image-text
pairs to be close, a regularization term is designed
to constrain such proximity according to the textual
relevance of their respective texts.

Meanwhile, in current V&L models, there are
mainly two ways of processing visual inputs:(1)
Region-of-interest based (ROI-based). It uses ex-
ternal object detectors (e.g. Faster-RCNN (Ren
et al., 2015b)) to extract ROI features from images
and feed them with paired text into V&L models
(Su et al., 2020; Chen et al., 2020; Cho et al., 2021;
Ni et al., 2021; Liu et al., 2021a; Zhou et al., 2021).
This method exerts the informativeness of ROI fea-
tures, but such cumbersome protocol hinders the us-
age of massive online image-text pairs and requires
additional procedures for various downstream tasks.
(2) Patch-based. It directly transforms the original
image pixels into patch embeddings and take them
as inputs with textual data (Jia et al., 2021; Lee
et al., 2022; Wang et al., 2022). This significantly
simplifies pre-training protocols but cannot lever-
age informative ROI features. To improve the infor-
mativeness of visual features without complicating
the whole training protocol, we flexibly integrate
the above two forms of visual features into the
model for pre-training and downstream tasks.

Our contributions can be summarized as follows:
(1) We propose a cross-lingual cross-modal pre-
training framework that can better exploit more
abundant weakly-aligned multilingual image-text
pairs; (2) We integrate ROI-based and patch-based
visual features to enhance our V&L model for pre-
training and downstream multi-modal tasks; (3) Ex-

tensive experiments on 5 downstream tasks across
6 languages show that our V&L model achieves
higher or comparable performances over recent
competitive contrast models with strong zero-shot
capability.

2 Our Approach

In this section, we first briefly introduce the three
types of datasets used for pre-training and more
details are given in Appendix A. Then, we describe
the model architecture and pre-training objectives.

2.1 Pre-training Data
Strictly-aligned Multilingual Image-caption
Dataset Ds. We use the machine translation
augmented image-caption paired data released in
(Zhou et al., 2021). The English captions from
Conceptual Captions dataset (Sharma et al., 2018)
are translated into five different languages (Czech,
German, French, Japanese and Chinese). This
gives rise to a final strictly-aligned multilingual
visio-linguistic dataset Ds, each image of which is
paired with semantically-equivalent captions of 6
languages.

Weakly-aligned Multilingual Image-text Dataset
Dw. We build a weakly-aligned visio-linguistic
dataset Dw by extracting a fraction of multilingual
image-caption pairs of 6 languages (German, En-
glish, French, Indonesian, Japanese and Chinese)
from WIT dataset (Srinivasan et al., 2021). Note
that the attached multilingual texts of the same im-
age in Dw are not strictly parallel.

Multilingual Parallel Text Dataset Dt. We also
use a combination of different textual data to form
a multilingual parallel text dataset Dt. It is com-
prised of the parallel text corpus collected by (Zeng
et al., 2022) from a subset of WikiMatrix (Schwenk
et al., 2021a) and the parallel captions from Ds,
which includes all 7 languages involved in Ds and
Dw (i.e. English, Czech, German, French, Indone-
sian, Japanese and Chinese).

2.2 Model Architecture
We extend the encoder-decoder structure to make
our model adaptive to both discriminative and gen-
erative multi-modal tasks. Figure 2 depicts the
model architecture and the sequence formats for
visio-textual/textual-only inputs.

Cross-lingual Cross-modal Encoder. As shown
in Figure 2, given a visio-textual input composed
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patch

DecoderEncoder

ROI

[BOS] A man is driving a car 
through the mountains. [En]

RCNN

ROI-based

…… ……

patch-based

[CLS] [En] ……[Fr]

Discriminative Tasks Generative Tasks

[BOS]

Encoder
Visio-textual: CLS , 𝑣!, … , 𝑣" , BOS , 𝑥!, … , 𝑥 𝒙 , [LAN$%&]

Textual-only: BOS , 𝑥!, … , 𝑥 𝒙 , [LAN$%&]

Decoder
Textual: [LAN'('], 𝑦!, … , 𝑦 𝒚

[Fr] Un homme conduisait une voiture à travers les montagnes.

Patch-based: 𝑣!, … , 𝑣" = 𝑝!, … , 𝑝𝒌
ROI-based: 𝑣!, … , 𝑣" = 𝑟𝑜𝑖!, … , 𝑟𝑜𝑖𝒌

and/or

Combined: 𝑣!, … , 𝑣" = 𝑝!, … , 𝑝𝒌 SEP , 𝑟𝑜𝑖!, … , 𝑟𝑜𝑖𝒌

Figure 2: The architecture of our model and the se-
quence formats for visio-texual/textual-only inputs.

of an image and texts, the visual features are con-
catenated with text embeddings, which are then
fed to the multi-layer encoder. Specifically, the
visual features can be presented in the following
three forms: (1) ROI-based. The ROI features roi
= {roi1, roi2, ..., roik} generated from an external
object detector are projected by a fully-connected
(FC) layer to have the same dimension as text em-
beddings; (2) Patch-based. Raw pixels are also
mapped by another FC layer into a patch embed-
ding sequence p = {p1, p2, ..., pk}; (3) Combined.
To enhance the informativeness of visual features,
ROI features and patch embeddings are combined
and fed to the encoder together, between which a
special token [SEP] is inserted. For texts, we add a
special token [BOS] and a language tag. Finally, a
special token [CLS] is prepended at the beginning
of the concatenated sequence, the output hidden
state of which serves as its visio-textual representa-
tion (VtR).

For a textual-only input, only text embeddings
are fed to the encoder and the output hidden state
corresponding to [BOS] is used as its textual repre-
sentation (TR).

Multilingual Decoder. In generative tasks that
involve multiple languages, we also prepend a spe-
cial language tag on the decoder side, indicating to
which language the decoder is expected to generate
texts.

2.3 Pre-training Objectives

During training, we adopt four pre-training
tasks: (1) Masked Conditional Language Mod-
elling (MCLM); (2) Image Text Matching (ITM);
(3) Cross-lingual Textual Contrastive Learning
(XTCL); (4) Regularized Cross-lingual Visio-
textual Contrastive Learning (R-XVtCL). These
tasks train the model to capture cross-lingual cross-

modal alignments among images and multilingual
texts using different types of pre-training data de-
scribed in Section 2.1.

2.3.1 Masked Conditional Language
Modelling (MCLM)

Masked language modelling (MLM) has been
widely used in previous encoder-only visio-
linguistic models. Given an image v and its caption
xli in language li from the strictly-aligned dataset
Ds, a word in xli has a probability of 15% to be re-
placed with a special token [MASK]. The objective
is to predict a set of masked words xli

m based on
other unmasked words xli

\m and the visual input:

LMLM = −E(v,xli )∼Ds
logPθe(x

li
m|xli

\m,v),
(1)

where θe is the trainable parameters of the encoder.
Moreover, with respect to xli , since Ds also pro-

vides the parallel caption xlj in another language
lj , we simultaneously train the decoder to autore-
gressively predict the target text xlj based on the
unmasked words xli

\m and v. The MCLM objective
can be formulated as follows:

LMCLM = LMLM (2)

−E
(v,xli ,xlj )∼Ds

|xlj |∑

t=1

logPθd(x
lj
t |x

lj
<t,x

li
\m,v),

where θd is the trainable parameters of the decoder.
In addition to MLM, the incorporation of the autore-
gressive term on the decoder can make the model
better adapt to downstream generative tasks.

2.3.2 Image Text Matching (ITM)
ITM aims to discriminate whether an image and a
piece of caption are matched, training the model
to learn the alignment between visual and textual
modalities. The representation of a visio-textual
input (v,xl) is fed to an FC layer and a sigmoid
function to get a score sθe(v,x

l). The score ranges
from 0 to 1, predicting to what extent v and xl are
matched. We sample positive and negative visio-
textual inputs from the strictly-aligned dataset Ds,
where the negative one is constructed by randomly
selecting another caption within the same batch
to be paired with the original image. Thus, the
training objective of ITM is written as

LITM = −E(v,xl)∼Ds
[y log sθe(v,x

l) (3)

+(1− y) log (1− sθe(v,x
l))],

11749



𝑡𝑟∗

𝑑"#$

$𝑑"#%

𝑑"#% (𝒙′) = ||𝑡𝑟%(𝒙′) − 𝑡𝑟∗||&

𝑡𝑟%(𝒙′)

𝑡𝑟$

,𝑡𝑟%(𝒙′)

𝛌 =
𝑑"#$

𝑑"#% (𝒙′)

'·)!"#$

∈ (
𝑑"#$

𝑑"#% (𝒙′)
, 1]

Universal Textual Representation Space (UTRS)

Figure 3: The construction of harder negative samples
by smoothed linear interpolation. The blue and green
points represent the anchor instance and the positive
sample in the UTRS, respectively. The red point refers
to a negative sample whose interpolated harder TR rep-
resentation corresponds to the grey one.

where y ∈ {0, 1} indicates whether (v,xl) is a
negative or positive sample.

2.3.3 Cross-lingual Textual Contrastive
Learning (XTCL)

XTCL is to learn semantically informative repre-
sentations of multilingual texts in a universal tex-
tual representation space (UTRS), where the TR
representation of semantically equivalent texts are
expected to be close while those of irrelevant ones
are far from each other. Therefore, we adopt the
interpolation-based contrastive learning method in-
troduced in (Wei et al., 2021) to train the model, as
depicted in Figure 3.

Specifically, given a batch of parallel text pairs
Bt = {(xli

b ,x
lj
b )}

|Bt|
b=1 (li ̸=lj) from the multilingual

parallel dataset Dt, for a pair of parallel texts
(xli ,xlj ) ∈ Bt, we treat xli as the anchor textual
instance, the representation of which serves as the
anchor point tr∗ (the blue center) in the UTRS.
Intuitively, the semantically equivalent xlj is natu-
rally the positive sample and its representaion tr+

(the green point on the circle) should be near to
tr∗. On the contrary, each of the other texts x′

within B is used as the negative sample whose TR
representation tr−(x′), i.e. the red point out of the
circle, should be far from the anchor. The XTCL
objective can be defined as

Lxltcl(x
li) = − log

exp (−d+tr)

exp (−d+tr)+
∑

x′∈N (xli )

exp (−d−tr(x′))
,

(4)
where N (xli) is the set of negative samples with
respect to xli , d+tr and d−tr(x) denote the euclidean
TR distances from tr+ and each tr(x′−) to the
anchor in the UTRS, i.e. d+tr = ||tr+ − tr∗||2 and

d−tr(x
′) = ||tr−(x′)− tr∗||2.

However, since the above negative samples are
usually not informative, following (Wei et al.,
2021), we generate harder negative samples by
smoothed linear interpolation (Bowman et al.,
2016; Zheng et al., 2019). For a negative sample x′

from Ntr, a more difficult negative representation
in the UTRS is constructed through the following
interpolation:

t̃r
−
(x′) =

{
tr∗ + λ(tr−(x′)− tr∗), d−tr(x

′) > d+tr;

tr−(x′), d−tr(x
′) ≤ d+tr;

(5)

λ =
(

d+tr
d−tr(x′)

)ζ·p+avg
, (6)

where p+avg= 1
100

∑
τ∈[−100,−1] e

−L
(τ)
xltcl is the aver-

age log-probability over the previous 100 training
steps in Equation 4 and ζ is a slacking coefficient
set to 0.9 in our experiment. By doing so, the diffi-
culty of the interpolated representation t̃r

−
(x′), i.e.

the grey point out of the circle in Figure 3, can be
dynamically adjusted during training, which results
in a lower λ (harder samples) when p+avg increases
and vice versa.

Thus, Equation 4 is reformulated by replacing
the original representation of each negative sample
x′ with the harder interpolated one t̃r

−
(x′):

L̃xltcl(x
li) = − log

exp (−d+tr)

exp (−d+tr)+
∑

x′∈N (xli )

exp (−d̃−tr(x′))
,

(7)
where d̃−tr(x

′) is the euclidean distance between the
anchor and t̃r

−
(x′), i.e. d̃−tr(x

′)=||t̃r−(x′)−tr∗||2.
Finally, the XTCL objective is:

LXTCL = E
(xli ,xlj )∼Dt

L̃xltcl(x
li). (8)

In this way, the relevance of two arbitrary pieces of
texts can be measured by the proximity of their TR
representations in the UTRS, which will be used in
the next pre-training objective.

2.3.4 Regularized Cross-lingual Visio-textual
Contrastive Learning (R-XVtCL)

Similarly, the R-XVtCL objective is to learn se-
mantically informative representations of visio-
textual inputs in a universal visio-textual represen-
tation space (UVtRS), which involves both strictly-
aligned and weakly-aligned image-caption pairs.
We treat visio-textual inputs in another representa-
tion space because they differ from textual-only in-
puts in that their semantics depend on both images

11750



𝒙!!:A very typical bus station. (En)

𝒙!":一个非常典型的公交站。 (Zh)

#𝒙!!:Pangodi est un village estonien situé dans le district de kanbuja. (Fr)

#𝒙!":Pangodi is a village in Kambja Parish in eastern Estonia. (En)

𝒗: "𝒗:

𝑣𝑡𝑟∗: 𝑣𝑡𝑟# 𝒗, 𝒙!!

𝑣𝑡𝑟$: 𝑣𝑡𝑟# 𝒗, 𝒙!"

𝑣𝑡𝑟%#: 𝑣𝑡𝑟#(𝒗, #𝒙!!)

𝑣𝑡𝑟&#: 𝑣𝑡𝑟#(𝒗, #𝒙!")

𝑣𝑡𝑟'#: 𝑣𝑡𝑟# #𝒗, 𝒙!!

𝑣𝑡𝑟(#: 𝑣𝑡𝑟# #𝒗, 𝒙!"

𝑣𝑡𝑟)#: 𝑣𝑡𝑟# #𝒗, #𝒙!"

𝑣𝑡𝑟*#: 𝑣𝑡𝑟# #𝒗, #𝒙!"
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𝑣𝑡𝑟$
𝑑+,-$

𝑑+,-#

,𝑑+,-# -𝑣𝑡𝑟%#

Universal Visio-textual Representation Space (UVtRS)

𝑡𝑟$
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𝑡𝑟&#

𝑑,-(#𝒙!!)

Universal Textual Representation Space (UTRS)

𝑑,-(𝒙!")
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𝑡𝑟∗: 𝑡𝑟# 𝒙!!

𝑡𝑟$: 𝑡𝑟# 𝒙!"

𝑡𝑟%#: 𝑡𝑟#(#𝒙!!)

𝑡𝑟&#: 𝑡𝑟#(#𝒙!")

𝑑,-(#𝒙!")

Figure 4: The illustration of Regularized Cross-lingual Visio-textual Contrastive Learning (R-XVtCL). In the
UVtRS, the red, pink and brown points out of the circle correspond to VtR representations of the three types of
negative samples. The grey ones are the interpolated VtR representation that are harder for the model to discriminate.
In the UTRS, the distance between any two TR representations measures the textual relevance of their related texts.

and texts. Analogously, we also expect the visio-
textual representations (VtR) of semantically equiv-
alent visio-textual inputs are near to each other.

First, we introduce how to leverage the strictly-
aligned multilingual image-caption pairs. Given
a batch of image-caption triplets in two different
languages Bvt={(vb,x

li
b ,x

lj
b )}

|Bvt|
b=1 (li ̸=lj), for a

triplet (v,xli ,xlj )∈Bvt, we use the pair (v,xli)
as the anchor visio-textual instance, with its VtR
representation vtr∗ serving as the anchor point in
the UVtRS. Meanwhile, since xlj is parallel to
xli , the pair (v,xlj ) is used as the positive sample,
whose VtR representation vtr+ should be close to
vtr∗. Along with (v,xli ,xlj ), we construct three
types of negative visio-textual samples using an-
other triplet (v̂, x̂li , x̂lj ) within the same batch:

(1) (v, x̂li) and (v, x̂lj ), containing the same im-
age with the anchor instance but semantically
non-equivalent captions;

(2) (v̂,xli) and (v̂,xlj ), containing semantically
equivalent captions but different paired im-
ages;

(3) (v̂, x̂li) and (v̂, x̂lj ), containing different im-
ages and semantically non-equivalent cap-
tions.

With these negative samples, we construct their
harder representations in the UVtRS through the
similar interpolation procedure described in Sec-
tion 2.3.3, resulting in their interpolated VtR rep-
resentations, as illustrated in Figure 4.1 Therefore,

1We denote these VtR representations as ṽtr
−
(v, x̂li),

the contrastive loss using strictly-aligned multilin-
gual image-caption pairs can be written as

L̃xlvtcl(v,x
li) = (9)

− log
exp (−d+vtr)

exp (−d+vtr) +
∑

(v′,x′)∈N (v,xli )

exp (−d̃−vtr(v′,x′))
,

where N (v,xli) includes the above three types of
negative samples, d+vtr and d̃−vtr(v

′,x′) are the eu-
clidean distances from vtr+ and each interpolated
ṽtr

−
(v′,x′) to the anchor in the UVtRS.

However, when using weakly-aligned multilin-
gual image-caption pairs, it is not reasonable to
simply encourage the VtR representation vtr+ to
be close to the anchor vtr∗ because xli and xlj

are not strictly parallel. Hence, we propose to con-
strain the proximity of (v,xlj ) to the anchor in-
stance (v,xli) in the UVtRS through an additional
regularization term, given that the proximity of two
TR representations in the UTRS can be seen as
textual relevance (See Section 2.3.3).

Concretely, we first obtain the TR representa-
tions of all captions in the two weakly-aligned
image-caption triplets (v,xli ,xlj ) and (v̂, x̂li , x̂lj )
from Dw. The textual relevances of xlj , x̂li and
x̂lj with respect to xli can be measured by the neg-
ative TR distance, i.e. −dtr(x

lj ), −dtr(x̂
li) and

−dtr(x̂
lj ), the closer to 0 the more relevant. Then,

we transform these relevance scores into a normal-

ṽtr
−
(v, x̂lj ), ṽtr

−
(v̂,xli), ṽtr

−
(v̂,xlj ), ṽtr

−
(v̂, x̂li)

and ṽtr
−
(v̂, x̂lj ).
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ized relevance distribution in the UTRS:

Ptr = softmax([−dtr(x
lj ),−dtr(x̂

li),−dtr(x̂
lj )]).
(10)

Moreover, in the UVtRS, we can also obtain such a
normalized relevance distribution Pvtr. Concretely,
we select the image-text pairs that contain the same
image as the anchor visio-textual instance (v,xli),
including (v,xlj ), (v, x̂li) and (v, x̂lj ), because
their VtR representation differences with the an-
chor only derive from semantically non-equivalent
texts. Thereafter, Pvtr can be computed as

Pvtr =softmax([−dvtr(v,x
lj ), (11)

− dvtr(v, x̂
li),−dvtr(v, x̂

lj )]).

Hence, the regularized contrastive loss with
weakly-aligned multilingual image-text pairs is:

L̃reg
xlvtcl(v,x

li) = L̃xlvtcl(v,x
li) +KL(Pvtr||Ptr).

(12)
Finally, with training instances from both Ds and
Dw, the R-XVtCL objective can be formulated as
the following:

LR−XV tCL = E
(v,xli ,xlj )∼Ds

L̃xlvtcl(v,x
li)+

E
(v,xli ,xlj )∼Dw

L̃reg
xlvtcl(v,x

li). (13)

Note that Ds and Dw are simultaneously used in
this task. In particular, images from Ds are pro-
cessed into ROI-based visual features while those
from Dw are in the form of patch-based features.
This is due to the fact that in general scenarios, the
cost of obtaining ROI features of all images from
much more abundant weakly-aligned image-text
data is often unbearable.

3 Experiments

3.1 Downstream Tasks

We conduct experiments on five downstream multi-
modal tasks across 6 languages (English, German,
French, Indonesian, Japanese and Chinese), includ-
ing Cross-lingual Visual Natural Language Infer-
ence (XVNLI), Cross-lingual Grounded Question
Answering (xGQA), Multicultural Reasoning over
Vision and Language (MaRVL), Image-Text Re-
trieval (ITR) and Multi-modal Machine Transla-
tion (MMT). The first four are discriminative tasks
while the last one is a generative task. The details
about these tasks and their datasets are given in
Appendix B.

Model/Task XVNLI xGQA MaRVL ITR
M3P 76.89 53.75 68.22 27.97
mUNITER 76.38 54.68 71.91 42.70
xUNITER 75.77 54.83 71.55 35.25
UC2 76.38 55.19 70.56 35.97
RC3-Patch 71.21 41.36 - -
RC3-ROI 77.91 54.13 69.42 41.12
RC3-Combined 78.43 55.92 69.74 41.30

Table 1: Performances on English testsets of XVNLI,
xGQA, MaRVL and ITR tasks. We report the average
scores under three different random seeds.

3.2 Implementation Details

Following the setting of MBart-50 (Tang et al.,
2020), our model consists of 12 encoder layers
and 12 decoder layers with 16 attention heads and
1024 hidden dimensions, which is initialized by
MBart-50 parameters. For visual inputs, the dimen-
sion of ROI-based features and patch embeddings
are 2048 and 768, respectively. We use the ROI fea-
tures provided in IGLUE (Bugliarello et al., 2022)
generated from Faster-RCNN (Ren et al., 2015a),
which contain 36 regions for each image. Every
original image is resized to 224×224 pixels and
then mapped to a flattened one-dimensional patch
embedding sequence, where the patch size is set to
32×32. For text inputs, we build a vocabulary out
of the original one used in MBart-50, achieving a
cover rate of over 99.99% on the seven languages
involved in our pre-training and downstream tasks.

During pre-training, we use Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 5×10−5. We use DeepSpeed to support multi-
node training. It takes about ten days to converge
on 64 V100 GPUs, where the model is updated
for 100,000 steps and the batch size is set to 1024.
More details are given in Appendix B.

3.3 Contrast Models

For the four discriminative tasks, we compare our
model with recent competitive multilingual V&L
pre-trained models trained with strictly-aligned
multilingual image-caption dataset: M3P (Ni et al.,
2021), mUNITER, xUNITER (Liu et al., 2021a)
and UC2 (Zhou et al., 2021). Meanwhile, we make
comparison with several strong baselines, includ-
ing MeMAD (Grönroos et al., 2018), VL-T5 and
VL-BART (Cho et al., 2021). All of these contrast
models leverage ROI-based visual features during
their pre-training and fine-tuning.
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Model/Task XVNLI xGQA MaRVL ITR
Fr De Id Zh Id Zh De Ja Zh

M3P 56.36 33.42 32.58 28.65 56.47 55.04 12.60 9.95 15.60
mUNITER 59.36 23.95 9.36 7.03 54.79 55.34 11.95 7.00 11.60
xUNITER 63.32 34.83 33.73 19.55 55.14 53.06 13.95 10.50 15.87
UC2 69.67 42.85 28.67 31.16 56.74 59.88 26.25 23.32 28.95
RC3-Patch 64.43 24.44 22.53 25.97 - - - - -
RC3-ROI 71.65 40.39 29.24 36.06 57.80 62.55 35.20 30.82 35.52
RC3-Combined 72.43 43.69 31.94 39.49 57.26 60.77 34.35 30.90 37.20

Table 2: Zero-shot performances on non-English XVNLI, xGQA, MaRVL and ITR testsets. We also report the
average scores under three different random seeds.

3.4 Evaluation on Discriminative Tasks

In our experiments, we fine-tune the pre-trained
model using only the English training data of each
task and evaluate its performance on each target
language, which means that the evaluations on non-
English languages follow a zero-shot setting. The
metrics of XVNLI, xGQA and MaRVL are accu-
racy and that of ITR is Recall@1. Note that there
are two retrieval directions in ITR task: image-
to-text and text-to-image, where the average Re-
call@1 on the two directions is reported in Ta-
ble 1 and Table 2. We denote our V&L model
trained using Patch-based, ROI-based and Com-
bined visual features as RC3-Patch, RC3-ROI and
RC3-Combined, respectively. The reported results
of other contrast models are provided in IGLUE
benchmark (Bugliarello et al., 2022).

Results on English Testsets. From Table 1, we
can observe that RC3-Combined achieves better re-
sults on the English testsets of XVNLI and xGQA
tasks over other contrast models, slightly underper-
forming mUNITER, xUNITER and UC2 on MaRVL.
Meanwhile, the ITR results of RC3-ROI and RC3-
Combined surpass all other models except the best
performing mUNITER. Another phenomenon is
that the inferiority of RC3-Patch over other variants
indicates the importance of informativeness from
visual features on these tasks, especially MaRVL
and ITR where RC3-Patch is uncomparably worse.
Whereas, RC3-Combined performs better than RC3-
ROI, showing that additional patch embeddings still
benefit the model to some extent.

Zero-shot Results. Table 2 gives the zero-shot
performances on XVNLI, xGQA, MaRVL and ITR
tasks across multiple non-English languages. Over-
all, we can see that our models, RC3-ROI and RC3-
Combined, significantly outperform other contrast

Model/Testset En-De En-Fr
2016 2017 2016 2017

MeMAD 38.9 32.0 62.2 54.4
VL-T5 45.5 40.9 - -
VL-BART 41.3 35.9 - -
RC3-Patch 45.49 42.06 68.29 62.56
RC3-ROI 45.73 41.52 68.38 62.71
RC3-Combined 45.86 42.01 68.50 62.66

Table 3: Performances on Multi30k English-to-German
(En-De) and English-to-French (En-Fr) testsets.

models. Particularly for ITR, the zero-shot results
of our models exceed the strongest UC2 model by
considerable margins in all three languages. As for
xGQA, though M3P and xUNITER perform slightly
better in Indonesian, our model RC3-Combined
still achieves higher accuracy in German (43.69 v.s
42.85) and especially Chinese (39.49 v.s 31.16).

For MaRVL, it can be seen that although RC3-
Combined surpasses other contrast models, it is
inferior to RC3-ROI. We conjecture that this is due
to the double-image nature of MaRVL task.2 Con-
cretely, when “Combined” visual features of the
two involved images are fed together to the encoder,
the excessive length of visual inputs might distract
the model from adequately attending to the textual
modality, which cannot offset the benefit gained
from additional patch embeddings. Such effect par-
ticularly stands out in a zero-shot setting, where
V&L models more heavily rely on meaningful tex-
tual representations learned from pre-training and
the English-only fine-tuning.

3.5 Evaluation on MMT

MMT is a generative task that involves both en-
coder and decoder to generate translations based
on source sentences and their paired images. Ta-
ble 3 lists the performances on Mulit30K English-

2Please refer to Appendix B for the details about MaRVL
task and its specific visual input formats.
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Model/Task XVNLI xGQA MaRVL ITR
En Fr En De Id Zh En Id Zh En De Ja Zh

RC3-Combined 78.43 72.43 55.92 43.69 31.94 39.49 69.74 57.26 60.77 41.30 34.35 30.90 37.25
RC3-ROI 77.91 71.65 54.13 40.39 29.24 36.06 69.42 57.80 62.55 41.12 35.22 30.82 35.55
w/o. KL(Pvtr||Ptr) 76.26 70.69 53.41 43.49 24.32 33.27 69.41 55.31 58.89 40.60 34.72 29.15 35.20
w/o. R-XVtCL 74.34 70.26 52.63 44.87 20.06 41.93 69.28 50.62 57.41 40.82 34.02 30.72 35.02
w/o. R-XVtCL & XTCL 76.17 70.52 52.43 39.71 11.17 33.28 68.83 52.21 56.42 39.22 33.80 30.02 34.70

Table 4: Ablation results. Note that all variants except RC3-Combined adopt ROI-based visual features for
evaluation.

to-German (En-De) and English-to-French (En-Fr)
datasets. We can see that our models outperform
other contrast models. Nevertheless, according to
previous research (Caglayan et al., 2019), it shows
that the source sentences in Multi30k dataset pre-
sumably take more effects than images for trans-
lations, which could explain the outcome that our
three model variants exhibit no obvious differences.

4 Ablation Study

In this section, we conduct ablation studies to inves-
tigate the effect of our proposed training objectives
in Section 2.3. Adopting ROI-based visual features,
we investigate the following three model variants:

• w/o. KL(Pvtr||Ptr): This variant removes the
regularization term in Equation 12, which
means that the weakly-aligned multilingual
image-caption pairs from Dw are used in the
same way as strictly-aligned ones.

• w/o. R-XVtCL: In this variant, the R-XVtCL
objective is totally removed during pre-
training.

• w/o. R-XVtCL & XTCL: In this variant, we re-
move both XTCL and R-XVtCL objectives,
only using MCLM and ITM for pre-training.

From Table 4, it is clear that the removal of
KL(Pvtr||Ptr) in Equation 12 gives rise to perfor-
mance drops, which demonstrates the effectiveness
of constraining the VtR representation proximity of
multilingual weakly-aligned image-caption pairs.
In Appendix C, we give several illustrative cases
that present how our proposed textual relevance-
based regularization affects the VtR representa-
tion proximity in the UVtRS. Moreover, although
w/o. R-XVtCL achieves the highest accuracy on
German and Chinese xGQA datasets, it still mostly
underperforms compared to w/o. KL(Pvtr||Ptr),
RC3-ROI and RC3-Combined. This shows that
the R-XVtCL objective brings improvement to
our model by enhancing the learned VtR repre-
sentations. Besides, removing both R-XVtCL and

XTCL results in worse performances compared to
the other two ablation variants except on XVNLI.

5 Related Work

In recent years, there have been a series of V&L
pre-trained models achieving remarkable progress
on many downstream multi-modal tasks. Overall,
these studies adjust model architectures and design
various pre-training objectives to learn alignment
between visual and textual modalities. They can
be mainly classified into single-stream (Chen et al.,
2020; Cho et al., 2021; Wang et al., 2022) and two-
stream V&L architectures (Lu et al., 2019; Zeng
et al., 2022).

Apart from the above models, some multilingual
V&L pre-trained models are proposed to learn uni-
versal representations across multiple languages
and modalities. One of the major difficulties is the
lack of high-quality multilingual multi-modal pre-
training data. To address this issue, Ni et al. (2021)
proposed to integrate multilingual pre-training and
multi-modal pre-training. Concretely, batches of
multilingual text corpora and monolingual multi-
modal data are alternately used. Following a simi-
lar manner, Liu et al. (2021a) build mUNITER and
xUNITER by initializing model parameters with
mBERT and XLM-R, respectively. Furthermore,
Zhou et al. (2021) translate original English pre-
training data into multiple languages and propose
UC2 to learn universal representations by intro-
ducing two cross-lingual/cross-modal pre-training
tasks. These models leverage strictly-aligned multi-
lingual and multi-modal datasets that are relatively
difficult to collect. Therefore in this paper, we addi-
tionally make better use of more abundant weakly-
aligned multilingual multi-modal data.

6 Conclusion

In this paper, we propose Regularized Contrastive
Cross-lingual Cross-modal pre-training, which
additionally exploits relatively more abundant
weakly-aligned multilingual image-text pairs. Dur-
ing pre-training, we constrain the proximity of
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visio-textual representations of weakly-aligned
image-text pairs according to their textual rele-
vance. Besides, we further enhance our V&L
model by integrating ROI-based and patch-based
visual features. Compared with recent competitive
V&L models, our model achieves higher or com-
parable results, especially demonstrating stronger
zero-shot performance.

Limitations

Currently, we build a vocabulary from the original
one used in MBart-50, and only conduct down-
stream experiments across 6 languages (English,
German, French, Indonesian, Japanese and Chi-
nese). Although we could involve more languages,
it would require a larger CUDA memory that might
go beyond our device capacity. Hence, we merely
select the above languages that have sufficient over-
lap with our pre-training datasets. In addition, for
fair comparisons, we only use the strictly-aligned
multilingual multi-modal dataset provided in (Zhou
et al., 2021), which is augmented through ma-
chine translation. It is unclear how the quality
of strictly-aligned dataset would affect model per-
formance. Meanwhile, the length of texts in our
weakly-aligned multilingual multi-modal dataset
is generally very long. As a result, we truncate
textual inputs before feeding them into the encoder,
possibly bringing information loss to some extent.
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A Pre-training Data

As described in Section 2.1, our pre-training in-
volves three types of data:

Strictly-aligned Multilingual Image-
caption Dataset Ds. Following previous
work (Bugliarello et al., 2022), we use the
ConceptCaption dataset as the strictly-aligned
multilingual image-caption dataset Ds, which
contains the original 2,777,649 image-caption
pairs and machine-translated captions in five other
languages (Czech, German, French, Japanese and
Chinese). Besides, during pre-training, we use the
pre-processed ROI features provided in IGLUE
benchmark (Bugliarello et al., 2022)

Weakly-aligned Multilingual Image-text Dataset
Dw. This dataset is built from a fraction of the
publicly-available WIT (Hruschka et al., 2022)
dataset. In WIT, there are a large number of unique
images that have multiple pieces of related texts in
different languages. First, we index images through
their unique urls. Then, each image is paired with
multiple pieces of related texts of different lan-
guages, resulting in a multilingual image-text tu-
ple (v,xli ,xlj , ...,xlk) that shares the same image.
The statistics of the constructed weakly-aligned
dataset is provided in Table 5, where each entry
represents the number of multilingual image-text
tuples in the corresponding language pair.

Multilingual Parallel Text Dataset Dt. For this
dataset used in XTCL task, we combine the par-
allel texts from Ds and a subset of WikiMa-
trix (Schwenk et al., 2021b) used in (Zeng et al.,
2022). As a result, Dt contains multilingual par-
allel texts of 7 languages, covering all languages
involved in the pre-training and all downstream
tasks, i.e. Czech, German, French, Indonesian,
Japanese and Chinese.

B Downstream Tasks and Datasets

We conduct experiments on five downstream multi-
modal tasks: XVNLI, xGQA, MaRVL, ITR and
MMT. For all downstream tasks, we fine-tune the
model on English training sets, and then evaluate
performances across all languages. The hyperpa-
rameters used in our experiments are listed in Ta-
ble 6.

XVNLI. Cross-lingual Visual Natural Language
Inference task aims to discriminate whether a given
textual hypothesis entails, contradicts, or is neutral

an image premise. Its dataset combines three exist-
ing text-only datasets SNLI (Bowman et al., 2015),
with their cross-lingual (Agić and Schluter, 2018)
and multi-modal (Xie et al., 2019) counterparts.

xGQA. The goal of Cross-lingual Grounded
Question Answering task is to answer several types
of structured questions about an image. The corre-
sponding dataset is manually translated from the
GQA (Pfeiffer et al., 2022) validation set into 7
languages.

MaRVL. Multicultural Reasoning over Vision
and Language task (Liu et al., 2021b) requires
the model to determine whether a textual descrip-
tion is true or false about a pair of images. Fol-
lowing (Bugliarello et al., 2022), the NLVR2
dataset (Suhr et al., 2019) is used for training while
the MaRVL dataset is used for testing. Because
the V&L model needs to take in two images as in-
puts in this task, the input format of visual features
is different from other tasks. Specifically, given
a piece of text x and an image pair (v1,v2), we
concatenate visual and textual features as [CLS],
v11 , v12 , ..., v1k, [SEP′], v21 , v22 , ..., v2k, [BOS], x1,
x2, x|x|, [LANsrc], where a special token [SEP′]
is inserted between two images. In the same way,
the top-layer hidden state corresponding to [CLS]
is used as the final visio-textual representation for
fine-tuning and evaluation.

ITR. Image-Text Retrieval task is composed of
image-to-text and text-to-image retrieval. Image-to-
text retrieval is to select out the most relevant texts
from a candidate set given an image. Inversely,
text-to-image retrieval is to pick the most rele-
vant image. We also use the ITR dataset provided
in (Bugliarello et al., 2022), which is collected by
combining 1,000 images from Flickr30K (Young
et al., 2014) and 1,000 from MSCOCO (Lin et al.,
2014).

MMT. Multi-modal Machine Translation task is
to translate a source sentence with the help of
its paired image. We conduct experiments on
the widely-used Multi30k dataset (Elliott et al.,
2016), where each image is paired with one En-
glish description and human translations into Ger-
man&French. The training and validation sets con-
tain 29,000 and 1,014 instances, respectively. Be-
sides, the test sets consist of test2016 and test2017,
each of which contains 1,000 instances for evalua-
tion.
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En De Fr Ja Zh Id
En 5,157,134 739,697 814,485 376,759 357,677 163,442
De 739,697 3,248,830 516,048 199,996 163,226 77,632
Fr 814,485 516,048 2485,944 223,177 188,968 91,712
Ja 376,759 199,996 223,177 1,032,183 174,226 67,030
Zh 357,677 163,226 188,968 174,226 798,853 66,294
Id 163,442 77,632 91,712 67,030 66,294 266,144

Table 5: Detailed statistics of weakly-aligned multilingual image-text dataset Dw.

𝑣𝑡𝑟!"#(𝒗, 𝒙$%)

𝑣𝑡𝑟!"#(𝒗, 𝒙&')

𝑣𝑡𝑟!"#(𝒗, 𝒙(!)

3. 𝒙!": It is used with various meats, seafood and vegetables in stews, soups, barbecue, sotos, gulai, and also as an 
addition to Indonesian-style instant noodles … 

6. 𝒙#$:ノヴァロッシワールドはノヴァロッシの商標のグローエンジンとラジコン⽤の関連する製品群で有名
なイタリアの模型⽤⼩型エンジンの会社である…
(Translation: Nova Rossi world is a small engine model for Italy's model engine, famous for Nova Rossi's trademark glow engine and 
related products for radios…)

1. 𝒙!": Crown jewels are the objects of metalwork and jewelry in the regalia of a current or former monarchy…

2. 𝒙%&: Die Tiara, Papstkrone oder auch gelegentlich römische Krone genannt, ist die früher bei feierlichen Anlässen 
getragene Krone des Papstes ... 
(Translation: The tiara, pope's crown or occasionally Roman crown, is the crown of the pope, formerly worn on solemn occasions…)

5. 𝒙!": Novarossi World, also known as Novarossi Nitro Micro Engines, are an Italian manufacturer of model 
engines and related items for radio-controlled models …

8. 𝒙'(: 1999年太平洋台风季泛指在1999年全年内的任何时间….
(Translation: The 1999 Pacific typhoon season generally refers to any time in the whole year of 1999 …)

7. 𝒙!": The 1999 Pacific typhoon season was the last Pacific and it ran year-round in 1999...
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𝑣𝑡𝑟∗(𝒗, 𝒙+,)

5.03.0 4.0 6.0

3.3

2.7

2.1

4. 𝒙)*:Le nasi campur est un plat de nasi putih accompagné d'autres plats en petites portions, tels que de la viande, des 
légumes, des arachides, des œufs et des... 
(Translation: Nasi Camp is a dish of Nasi Putih, accompanied by other small dishes, such as meat, vegetables, peanuts, eggs and 
vegetables …)

(a)

(b)

(c)

(d)

Figure 5: Illustrative cases. For the axis of each case, the blue start point represents the anchor VtR representation.
vtr∗(v,xEn). The green positions on the axis represent the ratio unit 1.0, corresponding to the VtR representation
without being regularized with KL(Pvtr||Ptr). The red positions refer to the regularized VtR representation in
terms of distance ratio in the UVtRS.

Hyperparameters XVNLI xGQA MaRVL
Learning Rate 4e-5 4e-5 4e-5
Batch size 128 256 64
Epochs 10 5 40
Input length 80 40 80
Hyperparameters ITR MMT (En-De) MMT (En-Fr)
Learning Rate 1e-5 5e-6 5e-6
Batch size 64 256 256
Epochs 10 5 5
Input length 80 50 50

Table 6: Hyperparameters for downstream tasks.

C Case Study

In Figure 5, we exhibit several typical cases that
can show the effect of our proposed regularization
term KL(Pvtr||Ptr) in Equation 12, each of which
contains an image and two pieces of texts. For each
case, the image and its English texts are combined
as the anchor visio-textual instance vtr∗(v,xEn),
corresponding to the blue start point in Figure 5.

Similarly, the combination of the image and its non-
English texts serves as the target visio-textual input
whose euclidean VtR distance from vtr∗(v,xEn)
is worth probing. We introduce an axis to indi-
cate the proximity of non-English visio-textual in-
put to the anchor in the UVtRS with and without
KL(Pvtr||Ptr).

Taking (a) for instance, let vtr(v,xDe) and
vtrreg(v,xDe) represent the VtR representations
with and without regularization, respectively. We
compute their euclidean distances to the anchor,
denoted as dvtr and dregvtr . Instead of marking the
two absolute distances on the axis, we choose to
record their ratio dregvtr/dvtr that can reflect the prox-
imity change after adding the regularization term
KL(Pvtr||Ptr). This is because the relative prox-
imity is the what really matters for each case. Re-
ferring to the translations in italics, we can observe
that the paired texts in cases (c) and (d) are more
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relevant to each other, i.e. 1↔2 and 3↔4, than
those in (a) and (b), i.e. 5↔6 and 7↔8. Accord-
ingly, it is clearly shown that the proximity changes
of VtR representations are more significant in cases
(a) and (b).
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