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Abstract

Hierarchical Topic Models (HTMs) are useful
for discovering topic hierarchies in a collec-
tion of documents. However, traditional HTMs
often produce hierarchies where lower-level
topics are unrelated and not specific enough to
their higher-level topics. Additionally, these
methods can be computationally expensive.
We present HyHTM - a Hyperbolic geome-
try based Hierarchical Topic Models - that
addresses these limitations by incorporating
hierarchical information from hyperbolic ge-
ometry to explicitly model hierarchies in topic
models. Experimental results with four base-
lines show that HyHTM can better attend to
parent-child relationships among topics. Hy-
HTM produces coherent topic hierarchies that
specialise in granularity from generic higher-
level topics to specific lower-level topics. Fur-
ther, our model is significantly faster and leaves
a much smaller memory footprint than our best-
performing baseline. We have made the source
code for our algorithm publicly accessible. 1

1 Introduction

The topic model family of techniques is de-
signed to solve the problem of discovering human-
understandable topics from unstructured corpora
(Paul and Dredze, 2014) where a topic can be inter-
preted as a probability distribution over words (Blei
et al., 2001). Hierarchical Topic Models (HTMs),
in addition, organize the discovered topics in a hi-
erarchy, allowing them to be compared with each
other. The topics at higher levels are generic and
broad while the topics lower down in the hierarchy
are more specific (Teh et al., 2004).

While significant efforts have been made to
develop HTMs (Blei et al., 2003; Chirkova and
Vorontsov, 2016; Isonuma et al., 2020; Viegas et al.,
2020), there are still certain areas of improvement.

∗Authors contributed equally to the work.
1Our code is released at: https://github.com/

simra-shahid/hyhtm
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Figure 1: In figure (a) we see a concept tree in Euclidean
spaces. Words such as space shuttle and satellite, which be-
long to moderately different super-concepts such as vehicles
and space, respectively, are brought closer together due to
their semantic similarity. This leads to a convergence of their
surrounding words, such as helicopter and solar system, cre-
ating a false distance relationship and a crowding effect in
Euclidean spaces. In figure (b), we see a concept tree in Hy-
perbolic spaces (Poincaré ball), which inherently has more
space (represented by grey circles) than Euclidean spaces. The
distances here grow exponentially towards the edge of the ball,
and the concepts at deeper levels such as helicopter and solar
systems move apart in these growing spaces and are far from
each other. The dashed blue line shows how the distances in
both spaces are calculated.

First, the ordering of topics generated by these ap-
proaches provides little to no information about the
granularity of concepts within the corpus. By gran-
ularity, we mean that topics near the root should be
more generic, while topics near the leaves should
be more specific. Second, the lower-level topics
must be related to the corresponding higher-level
topics. Finally, some of these approaches such as
CluHTM (Viegas et al., 2020) are very computa-
tionally intensive. We argue that these HTMs have
such shortcomings primarily because they do not
explicitly account for the hierarchy of words be-
tween topics.

Most of the existing approaches use document
representations that employ word embeddings from
euclidean spaces. These spaces tend to suffer from
the crowding problem which is the tendency to ac-
commodate moderately distant words close to each
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other (Van der Maaten and Hinton, 2008). There
are several notable efforts that have shown that Eu-
clidean spaces are suboptimal for embedding con-
cepts in hierarchies such as trees, words, or graph
entities (Chami et al., 2019, 2020; Guo et al., 2022).
In figure 1(a), we show the crowding of concepts
in euclidean spaces. Words such as space shuttle
and satellite, which belong to moderately different
concepts such as vehicles and space, respectively,
are brought closer together due to their semantic
similarity. This also leads to a convergence of their
surrounding words, such as helicopter and solar
system creating a false distance relationship. As
a result of this crowding, topic models such as
CluHTM that use Euclidean word similarities in
their formulation tend to mix words that belong to
different topics.

Contrary to this, hyperbolic spaces are naturally
equipped to embed hierarchies with arbitrarily low
distortion (Nickel and Kiela, 2017; Tifrea et al.,
2019; Chami et al., 2020). The way distances are
computed in these spaces are similar to tree dis-
tances, i.e., children and their parents are close to
each other, but leaf nodes in completely different
branches of the tree are very far apart (Chami et al.,
2019). In figure 1(b), we visualise this intuition on
a Poincaré ball representation of hyperbolic geom-
etry (discussed in detail in Section 3). As a result
of this tree-like distance computation, hyperbolic
spaces do not suffer from the crowding effect and
words like helicopter and satellite are far apart in
the embedding space.

Inspired by the above intuition and to tackle the
shortcomings of traditional HTMs, we present Hy-
HTM, a Hyperbolic geometry based Hierarchical
Topic Model which uses hyperbolic geometry to
create topic hierarchies that better capture hierarchi-
cal relationships in real-world concepts. To achieve
this, we propose a novel method of incorporating
semantic hierarchy among words from hyperbolic
spaces and encoding it explicitly into topic mod-
els. This encourages the topic model to attend to
parent-child relationships between topics.

Experimental results and qualitative examples
show that incorporating hierarchical information
guides the lower-level topics and produces coher-
ent, specialised, and diverse topic hierarchies (Sec-
tion 6). Further, we conduct ablation studies with
different variants of our model to highlight the im-
portance of using hyperbolic embeddings for rep-
resenting documents and guiding topic hierarchies
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Figure 2: Comparing our Hyperbolic-based HyHTM model
to the Euclidean-based CluHTM, for selected 20News docu-
ment labels (comp.graphics, comp.os.ms-windows.misc), we
find that HyHTM is better at discriminating between similar
document labels. CluHTM’s root-level topics are not related
to computer concepts, and it cannot separate these labels at
lower levels. HyHTM groups them in the same root level
and separates them into different lower-level topics, showing
the advantage of using hyperbolic embeddings over euclidean
ones to avoid the crowding problem. We show the top words
with the highest probability for the topics.

(Section 7). We also compare the scalability of our
model with different sizes of datasets and find that
our model is significantly faster and leaves much
smaller memory footprint than our best-performing
baseline (Section 6.1). We also present qualita-
tive results in Section 6.2), where we observe that
HyHTM topic hierarchies are much more related,
diverse and specialised. Finally, we discuss and
perform in-depth ablations to show the role of hy-
perbolic spaces and importance of every choice we
made in our algorithm (See Section 7).

2 Related Work

To the best of our knowledge, HTMs can be clas-
sified into three categories, (I) Bayesian gener-
ative model like hLDA (Blei et al., 2003), and
its variants (Paisley et al., 2013; Kim et al., 2012;
Tekumalla et al., 2015) utilize bayesian methods
like Gibbs sampler for inferring latent topic hi-
erarchy. These are not scalable due to the high
computational requirements of posterior inference.
(II) Neural topic models like TSNTM (Isonuma
et al., 2020) and others (Wang et al., 2021; Pham
and Le, 2021) use neural variational inference for
faster parameter inference and some heuristics to
learn topic hierarchies but lack the ability to learn
appropriate semantic embeddings for topics. Along
with these methods, there are (III) Non-negative
matrix factorization (NMF) based topic models,
which decompose a term-document matrix (like
bag-of-words) into low-rank factor matrices to find
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latent topics. The hierarchy is learned using some
heuristics (Liu et al., 2018a,b) or regularisation
methods (Chirkova and Vorontsov, 2016) based on
topics in the previous level.

However, the sparsity of the BoW representa-
tion for all these categories leads to incoherent top-
ics, especially for short texts. To overcome this,
some approaches have resorted to incorporating
external knowledge from knowledge bases (KBs)
(Duan et al., 2021b; Wang et al.) or leveraging
word embeddings (Meng et al., 2020). Pre-trained
word embeddings are trained on a large corpus
of text data and capture the relationships between
words such as semantic similarities, and concept
hierarchies. These are used to guide the topic hi-
erarchy learning process by providing a semantic
structure to the topics. Viegas et al. (2020) uti-
lizes euclidean embeddings for learning the topic
hierarchy. However, Tifrea et al. (2019); Nickel
and Kiela (2017); Chami et al. (2020); Dai et al.
(2021) have shown how the crowding problem in
Euclidean spaces makes such spaces suboptimal
for representing word hierarchies. These works
show how Hyperbolic spaces can model more com-
plex relationships better while preserving structural
properties like concept hierarchy between words.
Recently, shi Xu et al. made an attempt to learn
topics in hyperbolic embedding spaces. Contrary to
the HTMs above, this approach adopts a bottom-up
training where it learns topics at each layer indi-
vidually starting from the bottom, and then during
training leverages a topic-linking approach from
Duan et al. (2021a), to link topics across levels.
They also have a supervised variant that incorpo-
rates concept hierarchy from KBs.

Our approach uses latent word hierarchies from
pretrained hyperbolic embeddings to learn the hier-
archy of topics that are related, diverse, specialized,
and coherent.

3 Preliminaries

We will first review the basics of Hyperbolic Geom-
etry and define the terms used in the remainder of
this section. We will then describe the basic build-
ing blocks for our proposed solution, followed by
a detailed description of the underlying algorithm.

3.1 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geome-
try with a constant negative Gaussian curvature.
Hyperbolic geometry does not satisfy the parallel

postulate of Euclidean geometry. Consequently,
given a line and a point not on it, there are at
least two lines parallel to it. There are many mod-
els of hyperbolic geometry, and we direct the in-
terested reader to an excellent exposition of the
topic by Cannon et al. (1997). We base our ap-
proach on the Poincaré ball model, where all the
points in the geometry are embedded inside an
n-dimensional unit ball equipped with a metric ten-
sor (Nickel and Kiela, 2017). Unlike Euclidean
geometry, where the distance between two points
is defined as the length of the line segment connect-
ing the two points, given two points u ∈ Dn and
v ∈ Dn, the distance between them in the Poincaré
model is defined as follows:

dP (u, v) = arcosh

(
1 + 2

∥u− v∥2
(1− ∥u∥2)(1− ∥v∥2)

)
(1)

Here, arcosh is the inverse hyperbolic cosine
function, and ∥.∥ is the Euclidean norm. Fig-
ure 1 has shown an exemplary visualization of how
words get embedded in hyperbolic spaces using the
Poincaré ball model. As illustrated in Figure 1(b),
distances in hyperbolic space follow a tree-like
path, and hence they are informally also referred
to as tree distances. As can be observed from the
figure, the distances grow exponentially larger as
we move toward the boundary of the Poincaré ball.
This alleviates the crowding problem typical to Eu-
clidean spaces, making hyperbolic spaces a natural
choice for the hierarchical representation of data.

3.2 Matrix Factorization for Topic Models
A topic can be defined as a ranked list of strongly
associated terms representative of the documents
belonging to that topic. Let us consider a document
corpusD consisting of n documents d1, d2, . . . , dn,
and let V be the corpus vocabulary consisting of
m distinct words w1, w2, . . . , wm. The corpus can
also be represented by a document-term matrix
A ∈ Rn×m such that Aij represents the relative
importance of word wj in document di (typically
represented by the TF-IDF weights of wi in dj).

A popular way of inferring topics from a given
corpus is to factorize the document-term ma-
trix. Typically, non-negative Matrix Factorization
(NMF) is employed to decompose the document-
term matrix, A, into two non-negative approximate
factors: W ∈ Rn×N and H ∈ RN×m. Here, N
can be interpreted as the number of underlying top-
ics. The factor matrix W can then be interpreted
as the document-topic matrix, providing the topic
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memberships for documents, and H, the topic-term
matrix, describes the probability of a term belong-
ing to a given topic. This basic algorithm can
also be applied recursively to obtain a hierarchy
of topics by performing NMF on the set of docu-
ments belonging to each topic produced at a given
level to get more fine-grained topics (Chirkova and
Vorontsov, 2016; Viegas et al., 2020).

4 Hierarchical Topic Models Using
Hyperbolic Geometry

We now describe HyHTM – our proposed Hyper-
bolic geometry-based Hierarchical Topic Model.
We first describe how we capture semantic simi-
larity and hierarchical relationships between terms
in hyperbolic space. We then describe the step-
by-step algorithm for utilizing this information to
generate a topic hierarchy.

4.1 Learning Document Representations in
Hyperbolic Space and Root Level Topics

As discussed in Section 3.2, the first step in infer-
ring topics from a corpus using NMF is to compute
the document-term matrix A. A typical way to com-
pute the document-term matrix A is by using the
TF-IDF weights of terms in a document that pro-
vides reprsentations of the documents in the term
space. However, usage of TF-IDF (and its vari-
ants) results in sparse representations and ignores
the semantic relations between different terms by
considering only the terms explicitly present in a
given document. Viegas et al. (2019) proposed an
alternative formulation for document representa-
tions that utilizes pre-trained word embeddings to
enrich the document representations by incorporat-
ing weights for words that are semantically similar
to the words already present in the document. The
resulting document representations are computed
as follows.

A = (TF×MS)⊙ (1× IDFT ) (2)

Here, ⊙ indicates the Hadamard product. A is
the n×m document-term matrix. TF is the term-
frequency matrix such that TFi,j = tf(di, wj)
and MS is the m × m term-term similarity ma-
trix that captures the pairwise semantic related-
ness between the terms and is defined as Msi,j =
sim(wi, wj), where sim(wi, wj) represents the
similarity between terms wi and wj and can be
computed using typical word representations such

as word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). Finally, IDF is the m × 1
inverse-document-frequency vector representing
the corpus-level importance of each term in the vo-
cabulary. Note that Viegas et al. (2019) used the
following modified variant of IDF in their formula-
tion, which we also chose in this work.

IDF(i) = log

(
|D|∑

d∈D µ (wi, d)

)
(3)

Here, µ (wi, d) is the average of the similarities
between term wi and all the terms w in document
d such that MS(wi, w) ̸= 0. Thus, unlike tradi-
tional IDF formulation where the denominator is
document-frequency of a term, the denominator in
the above formulation captures the semantic contri-
bution of wi to all the documents.

In our work, we adapt the above formulation
to obtain document representations in Hyperbolic
spaces by using Poincaré GloVe embeddings (Tif-
rea et al., 2019), an extension of the traditional Eu-
clidean space GloVe (Pennington et al., 2014) to hy-
perbolic spaces. Due to the nature of the Poincaré
Ball model, the resulting embeddings in the hyper-
bolic space arrange the correspondings words in
a hierarchy such that the sub-concept words are
closer to their parent words than the sub-concept
words of other parents.

There is one final missing piece of the puzzle
before we can obtain suitable document represen-
tations in hyperbolic space. Recall that due to the
nature of the Poincaré Ball model, despite all the
points being embedded in a unit ball, the hyper-
bolic distances between points, i.e., tree distances
(Section 3.1) grow exponentially as we move to-
wards boundary of the ball (see Figure 1). Conse-
quently, the distances are bounded between 0 and
1. As NMF requires all terms in the input matrix
to be positive, we cannot directly use these dis-
tances to compute the term-term similarity matrix
MS in Equation (2) as 1− dP

(
w,w′) can be neg-

ative. To overcome this limitation, we introduce
the notion of Poincaré Neighborhood Similarity,
(spn), which uses a neighborhood normalization
technique. The k-neighborhood of a term w is de-
fined as the set of top k-nearest terms w1, ..., wk in
the hyperbolic space and is denoted as nk(w). For
every term in the vocabulary V , we first calculate
the pair-wise poincaré distances with other terms
using Equation (1). Then, for every term w ∈ V ,
we compute similarity scores with all the other
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terms in its k-neighborhood nk(w) by dividing
each pair-wise poincaré distance between the term
and its neighbor by the maximum pair-wise dis-
tance in the neighborhood. This can be represented
by the following equation where w′ ∈ nk(w):

spn
(
w,w′) = 1− dP

(
w,w′)

max
wa,wb∈nk(w)

(dP (wa, wb))
(4)

With this, we can now compute the term-term
similarity matrix MS as follows.

MS(w,w′) =

{
spn

(
w,w′) if spn

(
w,w′) ≥ α,

0 otherwise
(5)

Note that there are two hyperparameters to control
the neighborhood – (i) the neighborhood size using
ks; and (ii) the quality of words using α, which
keeps weights only for the pair of terms where
the similarity crosses the pre-defined threshold α
thereby reducing noise in the matrix. Without α,
words with very low similarity may get included
in the neighborhood eventually leading to noisy
topics.

We now have all the ingredients to compute the
document-representation matrix A in the hyper-
bolic space and NMF can be performed to obtain
the first set of topics from the corpus as described
in Section 3.2. This gives us the root level topics
of our hierarchy. Next, we describe how we can
discover topics at subsequent levels.

4.2 Building the Topic Hierarchy

In order to build the topic hierarchy, we can iter-
atively apply NMF for topics discovered at each
level as is typically done in most of the NMF based
approaches. However, do note that working in the
Hyperbolic space allows us to utilize hierarchical
information encoded in the space to better guide
the discovery of topic hierarchies. Observe that
the notion of similarity in the hyperbolic space
as defined in Equation(4) relies on the size of the
neighborhood. In large neighborhood, a particular
term will include not only its immediate children
and ancestors but also other semantically similar
words that may not be hierarchically related. On
the other hand, a small neighborhood will include
only the immediate parent-child relationships be-
tween the words, since subconcept words are close
to their concept words. HyHTM uses this arrange-
ment of words in hyperbolic space to explicitly
guide the lower-level topics to be more related and
specific to higher-level topics. In order to achieve

this, we construct a Term-Term Hierarchy matrix,
MH ∈ R|V |×|V | as follows.

MH(w,w′) =

{
1 if w′ ∈ nkh(w),

0 otherwise
(6)

Here, kH is a hyperparameter that controls the
neighborhood size. MH is a crucial component
of our algorithm as it encodes the hierarchy infor-
mation and helps guide the lower-level topics to be
related and specific to the higher-level topics.

Without loss of generality, let us assume we are
at ith topic node ti at level l in the hierarchy. We
begin by computing A0 = A, as outlined in Equa-
tion (2), at the root node (representing all topics)
and subsequently obtaining the first set of topics
(at level l = 1). Also, let the number of topics at
each node in the hierarchy be N (a user-specified
parameter). Every document is then assigned to
one topic with which it has the highest association
in the document-topic matrix Wl−1. Once all the
documents are collected into disjoint parent topics,
we use a subset of A0 with only the set of docu-
ments (Dtj ) belonging to the jth topic, and denote
this by Al−1. We then branch out to N lower-level
topics at the ith node, using the following steps:

Parent-Child Re-weighting for Topics in the
Next Level: We use the term-term hierarchical
matrix MH to assign more attention to words hier-
archically related to all the terms in the topic node
ti, and guide the topic hierarchy so that the lower-
level topics are consistent with their parent topics.
We take the product of the topic-term matrix of the
ti, denoted by, Hi with the hierarchy matrix MH.
This assigns weights with respect to associations
in the topic-term matrix

Mti = 1
T
i Hl−1 ×MH (7)

Here, 1i is the one-hot vector for topic i, and Hl−1

is the topic-term factor obtained by factorizing the
document-representations Al−1 of the parent level.

Document representation for computing next
level topics: We now compute the updated docu-
ment representations for documents in topic node
ti that infuse semantic similarity between terms
with hierarchical information as follows.

Al = Al−1 ⊙Mti (8)

By using the updated document representations
Al we perform NMF as usual and obtain topics
for level l + 1. The algorithm then continues to
discover topics at subsequent levels and stops ex-
ploring topic hierarchy under two conditions – (i) if
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it reaches a topic node such that the number of doc-
uments in the node is less than a threshold (Dmin);
(ii) when the maximum hierarchy depth (Lmax) is
reached. We summarize the whole process in the
form of a pseudcode in Algorithm 1.

Algorithm 1: The HyHTM Algorithm
Input : Max depth level (Lmax)

Min # of documents (Dmin)
Default # of topics (N )

Output :Hierarchy of Topics
1 Compute A using Eq (2) & (5)
2 GetHier(A, 1)
3 def GetHier(A, L):
4 if L > Lmax or len(A) < Dmin:

return
5 Wl−1,Hl−1 ← NMF(A, N)
6 for i = 0 to Hl−1.size do
7 Get parent topic using Hl−1

8 Add topic to hierarchy
9 Get Docs of topic tj using Wl−1

10 Get Al−1 for Dtj from A0

11 Compute Parent-Child
Reweighting Mti using Eq (7)

12 Compute Al next level from Mti

& Al−1 using Eq (8)
13 GetHier(Al, L+ 1)

5 Experimental Setup

Datasets: To evaluate our topic model, we con-
sider 8 well-established public benchmark datasets.
In Table 1 we report the number of words and doc-
uments, as well as the average number of words
per document. We have used datasets with vary-
ing numbers of documents and average document
lengths. We provide preprocessing details in the
Appendix (See C.1).

Dataset Vocabulary No. of Documents Avg. Doc
Length

InfoVis-Vast (InfoVAST) 8,309 1,085 153.62
Neurips 9,407 1,499 517.9
BBC 6,384 2,255 209.00
20Newsgroup (20News) 12,199 18,846 119.80
Enron 10,116 39,860 93.29
Amazon Reviews (Amazon) 9,458 40,000 39.04
Web of Science (WOS) 40,755 46,985 132.30
AGNews 17,436 127,600 24.15

Table 1: Dataset characteristics

Baseline Methods: Our model is a parametric
topic model which requires a fixed number of top-
ics to be specified. This is different from non-

parametric models, which automatically learn the
number of topics during training. For the sake of
completeness, we also compare our model to vari-
ous non-parametric models such as hLDA (Blei
et al., 2003) a bayesian generative model, and
TSNTM (Isonuma et al., 2020) which uses neural
variational inference. We also compare with NMF-
based parametric models like hARTM (Chirkova
and Vorontsov, 2016) which learns a topic hi-
erarchy with a bag of words of documents and
CluHTM (Viegas et al., 2020) which uses eu-
clidean based pre-trained embeddings (Mikolov
et al., 2017) to provide semantic similarity context
to topic models. We provide the implementation
details of these baselines in the Appendix (See C).
Number of topics: hARTM only allows fixing the
total number of topics at a level and cannot specify
the number of child topics for every parent topic.
CluHTM, on the other hand, has a method to learn
the optimal number of topics, but it is highly ineffi-
cient2. We use the same number of topics for fair
comparison in hARTM, CluHTM, and HyHTM.
We fix the number of topics for the top level as 10,
with 10 sub-topics under each parent topic. The
total number of topics at each level is 10, 100, and
1000. Non-parametric models hLDA and TSNTM
learn the number of topics, and we report these
numbers in the appendix (See E).
We select the best values for the hyperparameters
kH , kS , and α by tuning them for the model with
the best empirical results. We report these in the
Appendix C.

6 Experimental Results

In this section we compare our model’s perfor-
mance on well-estabilished metrics to assess the
coherence, specialisation, and diversity of topics.
We present qualitative comparision for selected top-
ics in Figure 2 and in Appendix 6.2. We discuss
and perform ablations to show the role of hyper-
bolic spaces and effectiveness of our algorithm (See
Appendix 7).
RQ1: Does HyHTM produce coherent topics?
Topic coherence is a measure that can be used to
determine how much the words within a topic co-
occur in the corpus. The more the terms co-occur,
the easier it is to understand the topic. We employ

2The training time of CluHTM 20News was approxi-
mately 32 hours, and for Amazon was approximately 22 hours.
For every branch and level, it runs an empirical analysis for
topics in ranges 5 and 20 and picks the topic number corre-
sponding to the best coherence.
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the widely used coherence measure from Aletras
and Stevenson (2013) and report the average across
the top 5 and 10 words for every topic in Table
2. We observe that for majority of the datasets,
HyHTM consistently ranks at the top or second
highest in terms of coherence. We also observe
that for some cases hLDA and TSNTM, which
have very few topics (See E) compared to HyHTM,
have higher coherence values. To this end, we con-
clude that incorporating neighborhood properties
of words from hyperbolic spaces can help topic
models to produce topics that are comprehensible
and coherent. Coherence is mathematically defined
as,

Coherence =

∑n−1
i=1

∑n
j=i+1 log

P (wi,wj)
P (wi)P (wj)(

n
2

) (9)

where wi and wj are words in the topic, while
P (wi, wj) and P (wj) are the probabilities of co-
occurrence of wi and wj and the of occurrence of
wj in the corpus respectively.

Dataset hLDA TSNTM hARTM CluHTM HyHTM

InfoVAST 0.061 0.017 0.044 0.027 0.045
Neurips 0.066 0.133 0.084 0.226 0.338
BBC 0.232 0.248 0.296 0.181 0.235
20News 0.214 0.279 0.325 0.293 0.325
Enron 0.226 0.250 0.327 0.346 0.365
Amazon 0.127 0.097 0.166 0.124 0.158
WOS 0.024 0.096 0.025 0.010 0.052
AGNews 0.145 0.209 0.142 0.039 0.154

Table 2: Comparing topic coherence, where higher co-
herence is better. Bold represents the best-performing
metric and underline represents the second-best metric.

RQ2: Does HyHTM produce related and di-
verse hierarchies? To assess the relationships be-
tween higher-level parent topics and lower-level
child topics, we use two metrics: (i) hierarchical
coherence, and (ii) hierarchical affinity.
Hierarchical Coherence: We build upon the co-
herence metric above to compute the coherence
between parent topic words and child topic words.
For every parent-topic and child-topic pair, we cal-
culate the average across the top 5 words and top 10
words and report this in Table 3. We observe that
HyHTM outperforms the baselines across datasets,
and we attribute this result to our parent-child
reweighting framework of incorporating the hier-
archy of higher-level topics. In most cases, hLDA
and TSNTM have very low hierarchical coherence
because the topics generated by these models are

often too generic across levels and contain multiple
words from different concepts, whereas hARTM
and CluHTM have reasonable scores and are of-
ten better than these. From this observation, we
conclude that adding hierarchies from hyperbolic
spaces to topic models produces a hierarchy where
lower-level topics are related to higher-level topics.
Hierarchical coherence is defined as,

HCoherence =

∑n
i=1

∑n
j=1 log

P (wi,wj)
P (wi)P (wj)

n2

(10)
where wi and wj represent words from the parent
topic and child topic, while P (wi, wj) and P (wj)
are the probabilities of co-occurrence of wi and wj

and the of occurrence of wj in the corpus respec-
tively.

Dataset hLDA TSNTM hARTM CluHTM HyHTM
InfoVAST 0.011 0.018 0.007 0.011 0.025
Neurips 0.059 0.019 0.049 0.063 0.296
BBC 0.064 0.089 0.211 0.102 0.221
20News 0.031 0.049 0.133 0.127 0.287
Enron 0.023 0.068 0.139 0.107 0.329
Amazon 0.008 0.056 0.073 0.085 0.123
WOS 0.006 0.022 0.016 0.002 0.045
AGNews 0.017 0.018 0.046 0.071 0.151

Table 3: Comparing Hierarchical Coherence. Bold rep-
resents the best-performing metric and underline repre-
sents the second-best metric.

Hierarchical Affinity: We employ this metric
from Isonuma et al. (2020) which considers the
topics at levels 2 as parent topics and the topics at
level 3 to compute (i) child affinity, and, (ii) non-
child affinity. The respective affinities are mea-
sured by the average cosine similarity of topic-term
distributions between parent & child and parent &
non-child topics. 3 When child affinity is higher
than non-child affinity, it implies (i) the topic hier-
archy has a good diversity of topics, and, (ii) the
parents are related to their children. We present the
hierarchical affinities in figure 3.
We observe that HyHTM has the largest between
child affinities across all the datasets. We also
observe that the difference between child and non-
child affinities is also larger than that for any other
baseline. hLDA and TSNTM have very similar
child and non-child affinities, which indicates how
generic topics are across the hierarchy. In hARTM,
we observe high child affinity and negligible non-

3Hierarchical Affinity metric is independent of the em-
bedding space the models were they are trained on.
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Figure 3: Analysis of Hierarchical Topic Affinities. A higher
Child Affinity value indicates stronger relatedness between
parent and child topics. The more the difference between
Child to Non-Child Affinities, the more diverse the topics are
in the hierarchy. Please note, some affinities appear to be
missing in the visualization due to their significantly lower
magnitudes compared to the highest affinity value."

child affinity. From these observations, we con-
clude that HyHTM produces related and diverse
topics.

RQ3: Does HyHTM produce topics with vary-
ing granularity across levels? We use the Topic
specialisation metric from Kim et al. (2012), to
understand the granularity of topics in the hierar-
chy. Topic specialization is the cosine distance
between the term distribution of a topic with the
term distribution of the whole corpus. According
to the metric, the root-level topics are trained on the
whole corpus so they are very generic, while the
lower-level topics are trained on a subset of docu-
ments, and they specialise. A higher specialization
value means that the topic vector is not similar to
the whole corpus vector, and hence it is more spe-
cialised. With increasing depth in the hierarchy,
the specialisation of a topic should increase and
its distance from the corpus vector must increase
to model reasonable topic hierarchies described
above.

As the resulting topic-proportions and range of
topic-specialisation of CluHTM and HyHTM are
similar, we first focus on these models to effectively
underscore the advantages of employing hyperbolic
spaces. As depicted in Figure 4, unlike CluHTM,
our HyHTM model consistently exhibits an increas-
ing trend in topic specialization across majority of

HyHTM
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Figure 4: Comparision between Topic Specialisation of
CluHTM and HyHTM for different datasets. An increasing
trend from Level 1 (L1) to Level 3 (L3) indicates that topics
are becoming more specific, diverging from a more generic
corpus-word distribution.

the datasets. We attribute this result to our use of
hyperbolic spaces in our algorithm which groups
together documents of similar concepts from the
root level itself.

Additionally, we present the topic specialization
of other models in Appendix Table 5. We discover
that TSNTM usually scores low, suggesting generic
topics at all levels. Although hLDA shows increas-
ing specialization, it seemingly fails to generate
related topic hierarchies, as evidenced by quantita-
tive metrics and qualitative topics (See Section 6.2).
Despite hARTM showing an increase in granular-
ity, it often lumps unrelated concepts under a single
topic hierarchy, akin to CluHTM, as illustrated in
the qualitative examples (See Section 6.2).

6.1 Runtime & Memory footprint

7 min

2.5 hrs

27 GB

77 MB

5k 15k 25k 35k 45k 55k 75k65k 85k 95k 105k 115k 125k

5k 15k 25k 35k 45k 55k 75k65k 85k 95k 105k 115k 125k

Figure 5: Comparing runtime and memory footprint for Hy-
HTM (our model) and CluHTM on AGNews dataset.

To evaluate how our model scales with the
size of the datasets, we measure the training time
and memory footprint by randomly sampling
a different number of documents (5k to 125k)
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from the AGNews dataset. From Figure 5
we observe that, as the number of documents
increases, the training time of our model does not
change considerably, whereas that of the CluHTM
increases significantly. HyHTM can be trained
approximately 15 times faster than the CluHTM
model with even 125k documents. CluHTM
works inefficiently by keeping the document
representations of all the topics at a level in the
working memory. This is a result of CluHTM
developing the topic hierarchy in a breadth-first
manner. We have optimized the HyHTM code to
train one branch from root to leaf in a depth-first
manner which makes our model more memory and
efficient. hLDA took approximately 1.32 hours for
training on the complete dataset, and hARTM and
TSNTM took more than 6 hours.

6.2 Quality of Topics
To intuitively demonstrate the ability of our model
to generate better hierarchies, we present topic hi-
erarchies of all models for some selected 20News
target labels in the Appendix in Figure 6. 4 Across
various topic categories, unlike HyHTM, other
models tend to struggle with delineating specific
subconcepts, maintaining relatedness, and ensur-
ing specialization within their topics, which high-
lights HyHTM’s improved comprehensibility. For
the sci.space 20News label, we observe that top-
ics from CluHTM across all the levels are related
space concepts but it is challenging to label them as
specific subconcepts. The hARTM topics for space
has a resonable hierarchy but it has documents
of different concepts such as sci.space, sci.med,
rec.sports.baseball. For hLDA and TSNTM, the
lack of relatedness and specialization makes it
difficult to identify these topics as space-themed.
A similar trend can be observed for comp.os.ms-
windows.misc and sci.med 20News categories in
the figure, where the models exhibit similar strug-
gles.

7 Ablation

Do Hyperbolic embeddings represent docu-
ments better than Euclidean ones?
To investigate this we consider a variant of our
model called Ours (Euc) which incorporates pre-
trained Fasttext (Bojanowski et al., 2017) (trained

4We present only those topic-hierarchies where most of
the documents of the respective 20News label lies.

on euclidean spaces) instead of Poincare embed-
dings in Ms(w,w

′), and we keep all the other steps
unchanged. From Table 4, we observe that using
hyperbolic embeddings for guiding parent-child in
Al is better choice as it produces topics that are
more coherent and hierarchies in which lower-level
topics are related to higher-level topics.

20News Amazon

Coh Hier Coh Coh Hier Coh

Ours 0.325 0.287 0.158 0.123
Ours (Euc) 0.322 0.240 0.156 0.113
CluHTM 0.293 0.127 0.124 0.085

Table 4: Analysis the role of hyperbolic embeddings

Does enforcing hierarchy between parent-child
topics in equation 8 result in better hierarchy?
We examine this by comparing the Ours (Euc)
variant and the CluHTM baseline. Both models
use identical underlying document representations,
yet they differ in how they guide their hierarchies,
particularly in the equation 8 of our model. As
demonstrated in Table 4, Ours (Euc), which ac-
counts for word hierarchies between higher-level
and lower-level topics, generates topic hierarchies
that are nearly twice as effective in terms of topical
hierarchical coherence and hierarchical affinity.

In the Appendix (See Section B), we also exam-
ine the importance of our approach by replacing the
underlying algorithm with hierarchical clustering
methods.

8 Conclusion

In this paper, we have proposed HyHTM, which
uses hyperbolic spaces to distill word hierarchies of
higher-level topics in order to refine lower-level top-
ics. Both quantitative and qualitative experiments
have demonstrated the effectiveness of HyHTM
in creating hierarchies in which lower-level topics
are realted and more specific than higher-level top-
ics. HyHTM is much more efficient compared to
our best-performing baseline. A major limitation
of HyHTM is that it is parametric and therefore
requires empirical analysis to find the optimal num-
ber of topics at each level. We plan to investigate
this shortcoming in the future.
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9 Limitations

In this paper, we propose a method to effectively in-
corporate the inherent word hierarchy in topic mod-
els for hierarchical topic mining. We use poincare
embeddings, trained on wikipedia, to compute the
hierarchical relatedness between words. Hence,
our model relies on how well these embeddings
are trained and whether they effectively capture
the word hierarchy. Moreover, any bias in the em-
beddings is translated into our model. The second
major limitation of our model is that since these
embeddings are trained on wikipedia, they may
not perform well on datasets that are very different
from wikipedia or on datasets where the relation
between two words is very different from their rela-
tion in wikipedia. For example, topic and hierarchy
will have a very different relation in scientific jour-
nals from what they have in wikipedia. Our model
is parametric HTM, and we plan on investigating
methods to induce number of topics using hyper-
bolic spaces.

10 Ethics Statement

• The dataset used to train the poincare embed-
dings is Wikipedia Corpus, a publicly avail-
able dataset standardized for research works.

• We have added references for all the papers,
open-source code repositories and datasets.

• In terms of dataset usage for topic modeling,
we have used only publicly available datasets.
We also ensure that any datasets used in our
research do not perpetuate any harmful biases.

• We also plan to make our models publicly
available, in order to promote transparency
and collaboration in the field of natural lan-
guage processing.
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A Additional Results

A.1 Topic Specialisation
In section 6 we report the Topic Specialisation for
CluHTM and HyHTM. In this section we present
the topic specialisation results in the table 5.

Dataset Lvl 1 Lvl 2 Lvl 3

hLDA

InfoVAST 0.218 0.826 0.811
Neurips 0.069 0.071 0.743
BBC 0.188 0.553 0.748
20News 0.31 0.49 0.52
Enron 0.081 0.394 0.858
Amazon 0.065 0.154 0.935
WOS46985 0.091 0.499 0.779
AGNews 0.149 0.331 0.921

TSNTM

InfoVAST 0.08 0.19 0.28
Neurips 0.91 0.17 0.12
BBC 0.26 0.32 0.3
20News 0.31 0.49 0.52
Enron 0.18 0.29 0.38
Amazon 0.20 0.38 0.38
WOS46985 0.19 0.37 0.31
AGNews 0.22 0.50 0.67

hARTM

InfoVAST 0.15 0.59 0.72
Neurips 0.23 0.32 0.67
BBC 0.36 0.58 0.73
20News 0.49 0.83 0.95
Enron 0.40 0.72 0.85
Amazon 0.53 0.88 0.96
WOS46985 0.42 0.81 0.96
AGNews 0.52 0.87 0.95

Table 5: Topic Specialisation for other models

B Additional Ablation Study

Hierarchical clustering with Hyperbolic Embed-
dings:

We replace the underlying topic model algorithm
with BERTopic (Grootendorst, 2022) which uses
an HDBSCAN hierarchical clustering method un-
der the hood which does not take into account the
hierarchy between words in higher-level topics and
lower-level topics. Both our model and BERTopic
employ hyperbolic document embeddings as A0,
followed by their respective approaches to gener-
ate a hierarchy of topics. As seen in Table 6, our
model outperforms BERTopic in terms of coher-
ence and hierarchical coherence measures. While
the lower-level topics in BERTopic are related to
their higher-level topics, the topic pairs (parent,
child) were not unique as compared to our model.

HyHTM HyHTM
c-TFIDF

BERTopic

Coherence 0.325 0.269 0.293
Hierarchical Coherence 0.296 0.148 0.239

Table 6: Ablation Study analyzing the effectiveness of
our approach using the 20News dataset.

Investigating the Need for Post-Processing Tech-
niques in HyHTM for Ensuring Uniqueness
Across Topic Levels:
BERTopic (Grootendorst, 2022) employs a class-
based TFIDF approach for topic-word represen-
tation, treating all documents in a cluster as one.
Inspired by this, we examined the impact of apply-
ing a similar class-based TFIDF to topics gener-
ated by our model as an additional post-processing
step. Theoretically, this should ensure unique top-
ics at each level. However, as reported in Table
6 under HyHTM c-TFIDF, we found no notice-
able improvement in topic coherence and hierar-
chy. This affirms that HyHTM inherently orga-
nizes documents into diverse and coherent themes
at every level, obviating the need for additional
post-processing.

C Implementation Details

C.1 Preprocessing
We remove numeric tokens, punctuations, non-ascii
codes and convert the document tokens to lower-
case. In addition to NLTK’s stopwords, we also
remove smart stopwords 5 Next we lemmatise each
token using NLTK’s WordNetLemmatizer. We fil-
ter the vocabulary by removing tokens whose ratio
of total occurrence count to number of training

5Smart stopwords
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spacecraft satellite
lunar nasa space

spacecraft orbit
lunar moon earth

shuttle flight space
launch aircraft soyuz

manned

HyHTMCluHTM

day moment time
night place

orbital orbit
spacecraft

asteroid moon

angle plane curve 
axis radius

hARTM

food doctor vitamin
treatment

space year nasa
study research

ball perfect fly drag
vandalizing

TSNTM

image data list
information mail 

posting university
nntp host

car space bike time
engine year

hLDA

question, point,
people, university

posting, university,
time, host, nntp

antenna, font, page,
moscow, lens, space

space sky mission
nasa pat henry

earth planet orbit
solar moon

food msg reaction
taste chinese

planet spacecraft
solar surface moon

image web file text
format link

file image web 
software format

text image video 
table display

web copy print
database format

playoff
defenseman
scorer goalie

interface software
database 
hardware

window mouse
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Figure 6: Comparing topic hierarchies for 20News documents. Every topic is represented by the top most probable words of the
topic.

documents in which the token appears is less than
0.8.

C.2 Computing Infrastructure
The experiments were run on a machine with
NVIDIA GeForce RTX 3090 GPU and 24 GB of
G6X memory. However, these experiments can
also be replicated on CPU. The CUDA version
used is 11.4.

C.3 HyHTM
All experiments were performed with three runs
per dataset. We use the implementation provided
by (Stražar et al., 2016) for NMF. With this im-
plementation we can leverage GPUs which helps
us speed the topic model. Viegas et al. (2020)’s
implementation utilises the scikit-learn (Pedregosa
et al., 2011) implementation of NMF. We report
the difference in speed for both the approaches in
Experiments 6.1.

C.3.1 Varying kH : Neighbourhood of a word
defined in the hierarchical matrix

The term kH in equation (6) defines a neighbor-
hood around words which helps us extract concept
and sub-concept relations from hyperbolic geome-
try. If very large values of kH are considered, every
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Figure 7: KH=500 performs the best out of all the choices on
Hierarchical Coherence. A similar trend is observed on other
metrics as well

word would be in the neighborhood of every other
word, and for very small values of kH , even though
some very similar words will be included in the
neighborhood, the overall document representation
will become very sparse, and many concept and
sub-concept relations are discarded. We empiri-
cally tested this for kH in the range [500, 3000],
and show our findings in figure 7. We observe that
when kH is 500, the hierarchical coherence along
with the other metrics, is the highest, and after that,
it drops.
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C.3.2 Varying α: Similarity threshold in the
similarity matrix

The similarity threshold α in equation (5) is a hy-
perparameter that controls the pairs of words that
should be considered similar and used to create
the document representation. When the value is
very high, only the most similar words are included
in the term similarity matrix, which will result in
a very sparse matrix, and defeat the purpose of
adding more context about words from pretrained
embeddings. If the value is very low, words which
are not very similar can be picked up by the topic
models as similar words. It is also important to
note that while the vocabulary of terms can be
controlled depending on the corpus used for topic
modeling, the embeddings are pre-trained on large
corpora which can result in biases from these cor-
pora seeping into the arrangements of words in the
embedding space.
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Figure 8: α=0.4 performs the best out of all the choices on
Hierarchical Coherence. A similar trend is observed on other
metrics as well

We test our model with values of α that range
from 0.1 to 0.5. In figure 8, we observe that α value
0.4 gives the maximum value of hierarchical coher-
ence for 20ng, and α value 0.3 is the maximum for
Amazon Reviews. Similarly, we fine-tuned for all
other datasets and report the results in the table 7.

Dataset α kh kS

InfoVAST 0.4 100 1000
Neurips 0.4 100 500
BBC 0.4 100 500
20News 0.1 500 500
Enron 0.4 100 500
Amazon 0.3 500 500
WOS46985 0.1 100 500
AGNews 0.1 500 500

Table 7: Best performing hyperparameters.

C.4 CluHTM
We use the implementation provided by (Viegas
et al., 2020)6 for the CLUHTM baseline. While
this implementation does provide a method to learn
the optimal number of topics, it is highly ineffi-
cient, takingO(n3) time. The training time for this
model on 20NG data was ≈ 32 hours, and AR was
≈ 22 hours. Additionally, the number of topics is
different in every branch, and comparison across
models becomes difficult.

C.5 hARTM
For the hARTM baseline model, we use the Bi-
gARTM7 package, version 0.10.1. For this model,
we cannot choose the number of subtopics explored
for each parent, but we can control the total number
of subtopics from all parents at a certain level. In
our other parametric models, since each parent has
n subtopics, we obtain a total of nl topics at level
l. Thus for hARTM, we indicate that the model
chooses nl topics at level l starting from l = 1 to a
depth of l = 3.

C.6 hLDA
We use the following implementation8 for hLDA.

C.7 TSNTM
We use the official implementation provided by
(Isonuma et al., 2020) 9 for TSNTM.

C.8 BERTopic
We use the official implementation provided by
(Grootendorst, 2022) 10 for BERTopic. We use the
default parameters setup by BERTopic for HDB-
SCAN clustering.

D Number of topics for parametric
models

For the parametric models like hARTM, CluHTM,
and our model HyHTM, we use the same number
of topics at every level for a fair comparison. We
explain how the topic hierarchy grows when the
number of topics at each node of the tree is N =
10.

1. At the root level (level 1), we train the model
on the entire corpus of documents D and set

6https://github.com/feliperviegas/cluhtm
7BigARTM
8hLDA codebase
9TSNTM codebase

10BERTopic codebase
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the number of topics as N = 10. As a result,
we get 10 topics at the root level.

2. For every topic in the previous level, each
parametric model organizes how documents
will get distributed across topics. For
CluHTM and HyHTM, a document is as-
signed to the topic with which it has the maxi-
mum association. Therefore, each document
is assigned only 1 topic at a given level. Once
the documents are categorized, we perform
NMF on these documents and produce 10 top-
ics for every parent topic.

In this way, we obtain topics at root level as 10,
level 2 as 102 = 100, and level 3 as 103 = 1000.
hARTM follows a different procedure using regu-
larisers for categorizing documents and exploring
lower-level topics. After level 1, hARTM produces
flat topics in level 2 and learns the association be-
tween every lower-level topic with the higher-level
topic. We assign the number of topics in level 2
as 102, the same as the total number of topics in
level 2 for CluHTM and HyHTM, and similarity
for level 3.

E Number of topics for Non-Parametric
models

The number of topics for non-parametric models is
listed in Table 8:

Dataset Model Total topics L1 topics L2 Topics L3 topics

InfoVAST hLDA 15 1 4 10
TSNTM 12 1 5 6

Neurips hLDA 6 1 1 4
TSNTM 14 1 4 9

BBC hLDA 35 1 7 27
TSNTM 8 1 3 4

20News hLDA 122 1 14 107
TSNTM 20 1 7 12

Enron hLDA 194 1 15 178
TSNTM 9 1 3 5

Amazon hLDA 395 1 16 378
TSNTM 11 1 4 6

WOS hLDA 38 1 8 29
TSNTM 11 1 4 6

AGNews hLDA 344 1 16 327
TSNTM 14 1 5 8

Table 8: Number of topics for non-parametric models
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